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Welcome to the lectures on Modern Digital Communication Techniques. So, so far we

have seen the transmission of signal passing through an AWGN channel as well as the

receiver structures, where we have looked at the first part of the receiver; which consists

of the demodulator. We are now going to look into the next part of the receiver which

will complete AWGN receiver. So, the next part of the receiver will be the detector.

As discussed in the previous lectures that the de modulator could be realized in two

possible  ways:  one  is  the correlator  the other  is  the matched  filter.  In  the  correlator

version  we  use  the  basis  functions  on  n  dimensions.  That  means  the  n  different

dimensions of the transmitted signals and correlates the incoming signals with each of

the basis functions. Or in other words we project the signal on to the basis functions and

we get the components of the signal on the dimensions.

In case of matched filter  we say it is a filter  realization and the impulse response is

matched to the basis function; where if h t is the impulse response it should be equal to f

k of capital T minus t small t- that is the flipped version of the signal. We also saw that

matched filter  with this  kind of an impulse response which is  matched to the signal

produces maximum signal to noise ratio at the sampling interval of small t equals to

capital T; where capital T is the symbol duration.
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So, what we have shown is that if you would set the impulse response which is matched

to the signal you are going to get the maximum signal to noise ratio in both the cases the

received  signal  is  decomposed  into  its  components  and  we  have  the  vector  r  as

components with r 1 r 2 up to r n. And we explain briefly in the previous lecture that

these components consists of the component of the signal as well as component of the

noise and we said that since the signal can be decomposed into the directions of the basis

functions. So, once we have the components of the single we can reconstruct the signal

or we can identify which is the signal.

So, now at the receiver we have the signal components which are corrupted by noise and

the job of the detector would be to identify which of the possible m signals do we does

this  particular  vector  represent  in  the  best  possible  way.  So,  we  move  on  to  our

discussion on the optimum detector and we said that the optimum decision rule is to be

based on the  observation  of  the  vector  r  and  for  this  case  we assume memory  less

transmissions. That means, we do not assume with memory transmissions and our aim is

to design a signal detector which makes a decision on the transmitted signal in each

signal interval based on the observation of the vector r.
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Such that the probability of correct decision is maximized and we explain qualitatively;

why do we call it as the decision process, because you are choosing one of the possible

outcomes one of the possible waveforms. So, with this we move on and we have the aim

as stated that we have to create a decision rule and this is based on the computation of

the posterior probabilities now why it is.

So, because we already have observed a particular signal based on the observation we

want to know what has been transmitted. So, what was there at the source based on what

has  happened  after  passing  through the  channel  that  is  why we call  it  the  posterior

probabilities?  So,  we  basically  have  to  calculate  probability  of  signal  S  m  was

transmitted based on r where m could be one 2 up to capital M so; that means, you have

to calculate this probabilities for each of the possible signals based on the observation r

and. So, we indicate these particular probabilities as P S n given r.

So, this is the notation that we use and the decision criteria is select the signal select the

signal S m. So, you have to select the signal S m for which this probability is maximized.

So, what we are saying is you have observed r you have to calculate the probability of

any of each of these signals given r. So, that is why we have this posterior probabilities

what you could have done what you generally have is given a particular signal what is

the  probability  of  r.  So,  we  are  going  in  the  reverse  direction  that  is  why you call

posterior probabilities.



So, decision criteria is select the signal S m for which these probabilities are maximized

so; that means, we have to calculate these probabilities for m equals to one 2 upto capital

M.  So,  to  calculate  all  these  probabilities;  so,  for  that  value  of  m  for  which  this

probability is maximum we will be choosing that value of m as the solution. So, this kind

of criteria is hence known as the maximum a posteriori probability criteria and this kind

of receiver is denoted by the M A P rule maximum a posterior probability maximization

criteria. So, this is the rule that is what we are going to follow. So, to proceed with this

we have to start looking at what does this particular expression tell us?
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So, we use the Bayes rule. So, we have on the left hand side P S m given r because r is

observed. So, you have to find all possible probe all possible S m find the probability for

all  possible S m and then choose the best of it.  So,  to evaluate  this  we expand this

expression using Bayes rule where it P probability of S m given r can be expanded as

probability  of  r  given S m multiplied  by probability  of S n.  So,  this  gives  the joint

probability of r n S m upon probability of r. So, in another way you could also see P of S

m given r times P r is the joint probability of S m and r and this is also joint probability

of S m and r. So, that is a very short revision.

So, anyway this is by the Bayes rule we have this expression and where P of r given S m

is the conditional P d f of the observed vector given S m and we have calculated this

given the expression when we computed the output at the at the output of the matched



filter because r is the vector at the output of the matched filter and P S m is the prior

probabilities of the m-th signal being transmitted.
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So, if we have a constellation let us say with 2 symbols S 1 and S two. So, all we are

saying is that probability of S 1 is P S 1 and you have P S 2 as probability of S 2 now

generally as we said earlier if you want the mean to be 0 new to be 0 in one of the earlier

discussions we said the constellations have to be symmetrically placed and they have to

be chosen with equal probability you can make 0 with some other probabilities also in

that case the probabilities would be having non equal values.

So,  in  either  case  P of  S  m  is  the  prior  probabilities;  that  means,  in  general  cases

generally this probabilities are equal, but they are could be situations where these are

unequal and if you look at P of r P of r could be expanded as P of r given S m multiplied

by probability of S m. That means, we are taking suppose you choose S 1 and then you

get P of r given S 1 right multiplied by P of S 1 plus P of r given S 2 times P of S 2 so;

that means, you have averaged it over all possible transmitted signals. So, that is P of r.

So, you could also see that P of r is independent of S m because you are taking over all

possible S m you have already averaged over all possible S m right.

So, P of r is not dependent on S m it is just the probability of observing a particular a

particular output so; that means, if we have to maximize this probability we can see that

the denominator term is almost e relevant for us all we are left with is the numerator term



a similar situation we had used when we discussed the properties of matched filter. And

there  also  we  had  found  that  if  we  could  hold  the  denominator  constant  we  could

maximize the signal to noise ratio at the output by maximizing the numerator.

So, although these are 2 different context, but we have a similar a situation of operation

over here. So, in this expression we do not need to consider the denominator part because

it will be common for all S m, so, will concentrate on the numerator part only.
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So, going ahead so, therefore, what we have with us is maximize. So, what we want what

we  have  represented  over  here  is  Argmax;  Argmax  means  the  argument  which

maximizes this particular expression. So, the argument which maximizes is we are taking

S m as the argument. So, our outcome will be S m star you could say S m star you could

also say m star  that  is  the index right.  So,  we want to choose this.  Now, instead of

maximizing the whole expansion of this we just concentrate on the numerator part what

we discussed over here. So, we are now concentrating only on the numerator part and

going by the M A P criteria.  So,  you have to  maximize  P of  r  given S m which  is

relatively easier to do and multiplied by P of S m right because you have considered the

prior probabilities of S m as we just said that it  is highly possible that P of S m are

equiprobable with this particular example we said that probability of sending S 1 is half

probability of sending S 2 is half.



So; that means, they are equiprobable. So, P of S m should be equal to 1 upon 2 if there

are m such possible waveforms if there are m such possible signals and if there equal

equiprobable then P of S m is 1 upon m and then again you take a look at this particular

expression. So, what you will find is that this portion of the expansion is equal to 1 upon

m which is not dependent on small m. That means it is not dependent on S m. So, you

have to maximize this choose the argument which maximizes this; this part is no longer

dependent on S m if the signals are equiprobable. That means, they are equally likely, so,

in such a situations if you proceed with the case that if they are equiprobable we would

simply put P of S m as 1 over m and we are left with this term.

Again since we are talking about maximization over the argument S m and this is not a

function of S m we need not considered this term we can drop this particular term. So,

what we have is P of r given S m. So, all we need to find is P of r given S m over all

possible S m right. So, whichever maximizes this, whichever is a maximizes this would

be our choice of our answer or our solution. So, since the conditional P d f P of r given S

m are usually  called  the likelihood function  I  can briefly  tell  why do we call  it  the

likelihood function.

Therefore, the receiver is known as the maximum likelihood criteria receiver. So, also

you can write it as the m l receiver right and just at this point I would find it pertinent to

remind you that there is a M A P criteria which is distinct will of course, come across this

again the difference between the M A P criteria and the m l is clearly visible over here in

the m l the maxim likelihood criteria we have all  signals with equal probability;  and

therefore, P of S m is no longer used as you can clearly see in this expression, where is

an M A P criteria P of S m is used.

So, if the signals are equal equally likely equiprobable in that case these 2 expressions

will be the same would give the same output the expression will not be the same, but

they would give the same output so; that means, the M A P and m l would result in the

same solution. So, if we know that signals are equiprobable we do not need to use this

part we only use this part of the expression. And therefore, we have the m l receiver. So,

with  this  we proceed with our  discussion about  the  m l  receiver.  So,  we have  been

discussing the AWGN channel.
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So, let us continue with this in case of AWGN channel I opened this part because we

have P of r given S m the likelihood function P of r given S m is given by this expression

which you have seen before. So, the difference or probably you slight change that you

might see is we are using P of vector r given vector S m. Now this consists of P of r k

given S m k that is what we had seen before and we had seen we had calculated that P of

r k is independent of P of r m; that means, for 2 different components we found that they

are independent.

So,  the  joint  distribution  we  found  it  as  the  product  of  the  marginal  conditional

distributions and therefore, its a product of those distributions if it is the product of n

marginal conditional distributions then we have in the denominator pi n naught to the

power of n by 2 where for each case it was just a square root and for each case P p of r k

S m k we had e to the power of minus r k minus S m k squared by n naught. So, now,

since you have multiplied all this r k because of joint distribution in the numerator we

have got the summation, because e to the power of minus alpha times e to the power of

minus beta times e to the power of minus gamma comes out be e to the power of minus

alpha minus gamma minus beta and so on and so forth. So, this is the expression of the P

of  r  vector  given S m vector  remember  we had used underline  to  denote the  vector

notation where S m is equal to S m 1 up to S m n.



Similar for r k this is equal to r 1 r 2 up to r n right that is what we had used. So, now, if

you look at these expressions this expression is looks a bit cumbersome. So, to reduce

the computation what we can do is we can use the log of this function. Now briefly we

said that we can discuss the likelihood. So, suppose this is x and we have some P d f. So,

this is P of x condition on let us say some parameter theta. So, this is the P d f and let

theta with the mean of the P d f suppose.

So, there we have the mean of the P d f. So, if I changed theta to some other value. So,

this is P of x condition on theta one to some other value I can get the P d f which goes

like this as theta 2 and this can be P of x conditional theta two. So, now, what we have is

in this particular thing x is already observed if you look at P of r given S m r is the

received vector. So, we already have some of the values. So, we already have some of

the values right.

So, when I put it back into this P d f P d f is no longer a probability is it is it can be now

read as a function because probability  would mean that  what  is  the probability;  that

means, we are reading on the x on the y axis, but now we say that we have already

observed these values that a whole set of values and I want to treat this as a function. So,

when I feedback all these values into the function it is now a parameter of theta. So, I can

I can have this function of theta of all this average values and my objective would be to

find the theta which is the best fit for all these set of values of x that I have got given this

kind of a function. So, generally these kind of expressions are known as the likelihood

function because they are constructed out of the P d f.

So,  because  given  the  function  we  know  that  the  curve  should  look  like  this  and

therefore, we would like to find the value of theta for a given set of x values which is

closest matching to that function. So, that is why it is called the likelihood function and

when we take the log of it log of this likelihood function this called the log likelihood

function. So, instead of maximizing the likelihood function you can take the log of it

because log is a monotonic function. So, maximizing this would give the argument of it

that  maximizes  this  would  be  the  same  over  here.  So,  taking  the  log  of  it  natural

logarithm you going to get minus n by 2 that is over here in the denominator l n by n

naught which is straight forward and since this is e n we are taking a natural logarithm

this would come straight down. So, you have expression which is in the exponent of E.



So, now we said we want to maximize this. So, if we have to maximize this; that means,

started with maximization of this therefore, maximization of the log likelihood function

and now let us look at the log likelihood function in the log likelihood function we again

see that this particular part is not influencing our result this particular part is constant for

all S m whereas, this part has S m.

So, if we want to maximize this since there is a negative sign and we take this particular

part separately it is as good as minimization of this section this part of the expression;

that means, if I could minimize this part again since n naught is constant not dependent

on m. So, I could take minimization of this particular part right. That means, we could

write maximization of the log likelihood function is same as find the vector S m that

minimizes this particular expression that we have.

Now, if you take a careful look at what this 2 expression means it is component twice

difference squared and some over all components. So, clearly it is the distance of the

vector  r  from  the  vector  S  m.  So,  if  we  say  I  want  to  maximize  this  which  is

maximization  of  this  which  is  produced  by  minimization  of  this  term.  That  means

minimization of this term is minimization of the distance of the vector r from the vector

S m. So, what we are trying to say is that we want to find the vector S m which is closest

to the vector r.
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So,  that  is  why  we  call  this  particular  expression  the  Euclidean  distance  and  our

algorithm or our result is to find S m that is closest in distance to r. And this is could also

be claimed as the minimum distance detection accordingly, so you still in the detection

problem.
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So, we have let us say 4 constellation points and whatever we have received in the vector

form is suppose here right and it has produced a component there and it has produced

another component which is there if you take this.

So, now you have to find that which of these points are closest to this clearly in this

particular  case we find that  this  constellation  is  closest  to  this  and hence  we would

choose this as our possible transmitted signal. So, that is what it means right. So, more

further moving ahead what we could also see is that this d that we have discussed here

that we have discussed here d expression we expand this d expression that is a distance

and it turns out to be the length of the vector minus the inner product you could see this

as the inner product plus the length of the vector of S m. So, this is written in the vector

notation length squared and what you see is that this is common to call S m this is not

dependent on S m.

In the same manner we may ignore this while computing the distance component and

what is left with us is the projection of r on S m. So, your projecting r on S m and there is



the energy of the signal right. So, what we have is projection and energy of the signal

which is relevant for us.
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So, since we do not need this we modify the expression of d and presuppose mark it as d

prime d prime of r and S m. So, which could be read as minus 2 r dot S m; that means,

the inner  product  and non S m squared;  that  means,  find we need to find S m that

minimizes this metric. So, we have to find S m that minimizes d which is same as find

the one which minimizes this expression right.

So, d minimization since is a positive term is the same as minimization of the rest of the

term because this is not influencing. So, if we look at d prime we could also say that

instead of minimizing this we could also write it in by changing of notation of sin we

could say you could maximize 2 r dot S m minus non S m squared right because we have

simply  multiplied  by  a  minus  sign.  So,  instead  of  minimizing  something  it  is  a

maximizing the negative of it. Now, if we interpret this, this projection of r on S m this

project r on each S m, so, we have to try for different values of m and hence r dot S m

can be also read as the correlation metric.

Correlation of r on S m we have to do over each S m. So, the correlation metric in the

signal notation form you could write  it  as whatever we have c over here as 2 times

integrate r 0 to capital T r t times S m t that is projection of r on this particular vector

takeaway e m which is the energy of the signal right and this particular expression now



you could visualize just inform of a block diagrammatic representation similar to the

earlier structures that we had seen.
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So, what we can have with us is the received signal will use the expression that is present

with us and just for the sake of seeing it on the same screen we have the received signal

coming in received signal being split and in the first part it is getting multiplied with S 1

that is what we have r with S 1 and then there is the integrator. So, there is the integrator

and then you sample it at small t equals to capital T, because you have to read it up to

capital T because this S m is valid for capital T.

So, remember we had always stated that our decision rule is for this interval and our

signal S m is also valid for this interval and then I would take away the energy now since

we have  a  2  over  here.  So,  in  this  particular  realization  we  do  not  put  a  two.  So,

therefore, when we take away the energy we take away half the energy. So, you could

have multiplied here 2 and you could have taken away the energy itself this would have

resulted in the same expression.  So, just  try  to follow how we have converted from

vector notations and finally, reach the integral form and which can be realized in this

way. So, again as you see it is for S m: That means, we have to do for all m and find that

m which would maximize the c.

So, we could represent this diagrammatically in the form that the received signal gets

correlated with all the different S m right the m possible signals you may note this may



be a bit confusing with what we had studied before where we had taken projection of r

on the different on the different dimensions of the signal here we are projecting on the

different signals themselves directly and we have these components. So, you could do it

in the vector form as here or you could do it I mean as here or you could do it in integral

form when you read in the integral form you get it in this form and then what you have

are the different outcomes of the correlation of the received signal with the different

possible  waveforms  and  then  I  would  select  that  particular  outcome  which  is  the

maximum. So, which is represent over here as the highest possible signal and that will be

the decision output.

So, if this branch produces the maximum output my selection would be the signal S 2

was  sent  and  as  we  would  like  to  see  in  the  constellation  diagram if  there  is  or  a

waveform diagram suppose I have waveform like this. And let us say I have another

waveform like this and what I receive is a noisy version let us say I receive something

like this. So, what it tells you is you have to correlate the signal with S 1 and with S 2

whichever correlation give the highest output you choose that particular signal as your

desired signal.

So, that is how a detector would work. So, up to this point we have at  least taken a

complete  view of  a  transmitter  when it  the signal  goes  out  of  the transmitter  passes

through a channel enters the receiver exits the matched filter of the correlator receiver.

And then goes into the detector and you have seen the detailed architecture of how the

correlator on matched filter works as well as a detector works.

Thank you.


