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Welcome to the lectures on Modern Digital Communication Techniques. In the previous

lecture we have been discussing about these the spectral characteristics of the digitally

modulated  signal.  And  what  we  have  seen  in  the  first  step  is  that  the  spectral

characteristics of the band pass signal can be calculated from the spectral characteristics

of the equivalent low pass signal. And when we wrote down the expression of the low

pass signal we found that it is a function of the information varying signal, which is a

standard thing which we had been using since the beginning. And since, the information

bearing  signal  is  random  we  stated  that  the  signal  the  baseband  or  the  low  pass

equivalent signal is represents a stochastic process.

Now since, this is a stochastic process and we are interested in the spectral characteristics

we  said  that  we  need  to  look  at  the  power  spectral  density-  that  is  the  frequency

characteristics of the signal. So, if you have to do the power spectral density we found

that the power spectral density of the pass band signal could be calculated from that a bit

low pass of the PSD of the low pass equivalent.  And to calculate the power spectral

density you need to know the autocorrelation function, because these are duals of each

other as Fourier transform and inverse Fourier transform.

So, since the power spectral densities of the low pass equivalent are connected to that of

the pass band signal so is the autocorrelation function relationship. So, there is also a

direct relationship between them. And if you know the carrier frequency which translates

from the low pass to the pass band you could easily get the complete information.

So then we took the I n that is the information bearing signal to be real; sorry, I mean we

said that in case of PAM it is real in case of others its complex and you would write it

using the j function. And we assumed that this information bearing sequence is a wide

sense stationary process. That is fair enough because for the duration of time that we are

under consideration is not infinitely large it is typically quite small.



So, over the small duration that we are considering; that means, the source that we are

under consideration we are saying that the mean of the signal is not changing with time

and the autocorrelation is dependent only on the lag between the 2 signals and not a

function  of  time.  So  with  these  few  assumptions  we  moved  ahead  to  calculate  the

autocorrelation function.

And  then  we  wrote  the  expression  of  the  power  spectral  density  of  the  low  pass

equivalent and what we found is that the these power spectral density of the low pass

equivalent signal could be expressed as product of the power spectral density of the pulse

that is g of t and that of the power spectral density of the information bearing signal. So,

now, if we have to change or control the power spectral density of the of the outgoing

signal  or  what  we  see  is  that  we  could  play  around  with  the  pulse  shape,  because

changing the pulse shape would of course change the spectral characteristics we had seen

in one of the previous lectures. And it also gives us the opportunity that you could do

something with the modulating signal so that it affects the spectral characteristics.

So, we had seen some of the basic forms like in case of MSK we used a different pulse

shape.  that  means,  a  half  sinusoid  and we had also seen  that  you could  change the

incoming signal in a way that they are kind of staggered that could also help you in some

form and there could be other forms where you could do an exhorting of the output with

that of the previous we had seen before. So, there are various ways of doing it. And this

gives us an opportunity to control the spectrum of the outgoing signal.



(Refer Slide Time: 04:26)

So moving ahead we had come to this particular expression in the previous lecture where

we identified  the  spectrum of  the  pulse  along  with  the  spectrum of  the  information

bearing signal which affects the pulse the power spectral density of the baseband signal.

(Refer Slide Time: 04:42)

So, whatever we told you is a kind of briefly stated over here; that means, the PSD of the

vt depends on spectral characteristics of gt and in so, therefore, you have some options

over here. So, spectral characteristics of vt could be controlled by the pulse shape g this



clearly visible and how does this effect is not. So, clear because we have not looked at

the phi ii of m.

So when we get a look at that then thing will be a little bit more clear. So, so we could

say that the for arbitrary autocorrelation function the corresponding PSD phi ii of f is

periodic frequency because of this expressions that we had already there. So, we had said

that phi ii of f see because this is from the discrete sequence because this is obtained

because of e of ii of n. So, which we have over here?

(Refer Slide Time: 05:43)

So, you have phi ii f these are discrete sequences right. So, since because of that you

could write it as a Fourier series right you could easily write it as a Fourier series. So,

that is what we have over here.

Now this Fourier series it is periodic with period 1 upon t and what you could see over

here that it is in the exponential form of Fourier series this particular relationship and

therefore, you could say that these are the Fourier coefficients. So, these are the Fourier

coefficients so; that means, there is this Fourier relationship between phi ii f m and phi ii

of f which is also natural you could say phi ii of m could be obtained using the inverse

Fourier transform of phi ii of f and this would be the relationship that you are going to

get. So, given this we can say that.
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Let us consider the case where the information bearing signals are real and mutually

uncorrelated, but this is in terms of assumption its not a very critical assumption because

if you are taking PAM then these are real and if you are taking memoryless source then

you can say that well its uncorrelated. That means, the ins are uncorrelated right we are

not  talking  about  the  modulating  form we  are  saying  that  the  source  is  generating

symbols which are not dependent on the previous 1.

so which is also a pretty good assumption and in that case we could say that this phi ii of

m right which is the autocorrelation of I am right which is expectation of in and in plus

m right. So, that would be equal to sigma squared I plus mu squared I because mu is the

is the mean of in and this is the variance of in for m equals to 0; that means, when they

are the same. So, if there is a mean and there is a variance you are going to get this as the

phi  ii  of  m and for  m not  equal  to  0.  That  means,  for  any other  value  if  they  are

uncorrelated right then you are going to get this as mu I squared because sigma ij would

be equal to 0 right oh sorry sigma I of m. That means, of a certain lag would become 0

un-correlatedness would give only leave you with the mean.

So, of course, we have said that this is the variance of the information sequence and

therefore, you could write phi ii of f in a form where there is this sigma squared I plus

mu  I  squared  times  this  term going  by  the  previous  expression  if  you  look  at  this

previous expression over here right from this and using this expression you could write it



in  this  form for  m equals  to  0 and this  is  for  all  other  terms,  right.  So,  that  is  the

relationship that you have and again you will find this is periodic with period 1 upon t,

because of this expression e to the power of j 2 pi fmt and it can also be viewed as an

exponential Fourier series as and this particular thing right can be viewed as a periodic

train of impulses each having an area 1 upon t.

(Refer Slide Time: 09:33)

So, you could also view it in a similar form and then you could also write it as this kind

of a structure, right.

So there is with this concurrence you could expand it in this form right where the ii phi ii

of f would have a similar form and using this particular expression you could write phi

vv of f which we had arrived at in the previous expression. So, here is what we have phi

vv of f. So, we have these 2 terms we now have an expression for phi I i of f while

making certain assumptions about I right which we just did. So, then you could write it

as using this expression as 1 upon t g f squared phi ii of f this is what we had before this

particular expression. So, sigma squared I gf and you have this particular term, right.

So what we see is that there is a gf and there is also a train of repetitions for t. So, that

that is what we get a structure which is not. So, I mean straightforward, but we cannot

help it that the expression looks in takes a form which is this. So, now, if you look at phi

vv of f whatever form it takes what you can say is that there are 2 terms in this thing.
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One is the dependence on shape of gt and the other is the discrete frequency component

spaced 1 upon t apart which is clear from this there is a delta f m upon t which is the

discrete frequency component and there is this gf which is also present and this one you

would evaluate at f equals to m m upon t.

So these are the 2 different things that you have in this particular expression and if your

mu that is the mean is 0 right then this particular term goes away mu is 0. So, discreet

frequency component means you are going to have like spikes of frequencies at f equals

to m upon t and clearly if mu is 0 this whole term would go to 0. So, if that term is 0 you

are left with only this term; right where you are you have the variance only and this is

usually  desirable  because  you  would  not  like  to  have  the  spikes  of  frequencies  in

repeated intervals.

Now if you want to make mu 0 if you have to make mu 0 then all you have to do is if the

information sequences are equally likely and symmetrical; symmetrical about 0 so; that

means, this is 0 and you have let us say d and let us say you have minus d and there is

equal likelihood of d and minus d the mean would be 0 if you have 3 d and if you have

minus 3 d then again the mean is 0; however, just for the sake of example if we have d

and 3 d as 2 constellation points this is s 1 this is s 2 this is not going to yield in a

situation where mu I 0. So, you to place them symmetrically and there has to be equal

likelihood.



So; that means, the designer can control the spectrum of the digitally modulated signal

by  properly  selecting  the  characteristics  of  in  so;  that  means,  you  have  option  of

choosing some characteristics  of in thereby you could control  the spectrum which is

apparent in this particular expression right. So, that is how we connect the; these this

spectral  the spectrum of the signal moving forward. So, let  us take the example of a

rectangular pulse shape.

(Refer Slide Time: 13:46)

So,  if  we take  a  rectangular  pulse shape of  gt  and we need to  find the  the spectral

characteristics the first thing that we have to do is to calculate the Fourier transform of gt

because gt is a fixed one it is not a stochastic one and gf is found by simply taking the

Fourier transform of gt unlike that of I n for I n you need to take the autocorrelation

function and go to the power spectral density.

So, if you take the Fourier transform g of f would have an expression which looks like

this has indicated there at sin pi ft upon pi ft. So, these basically sink e to the power of j

of phi pi ft. So, we have seen this kind of expressions before and the power spectral these

the power; power spectrum is mod of gf squared where you have at squared and mod of

this is going to be one sink squared right it is a sink squared. So, a rectangular pulse

shape has a power spectrum which looks like this with 0es at 1 by t 2 by t 3 by t and so

on and so forth. So, they will be 0 crossing at these points right.



So, now, instead of doing this if you would take a raised cosine we had given a raised

cosine pulse pulse earlier the raised cosine pulse would look like this it rises slowly to

the maximum value and then it falls from the period 0 to t right in this case your gf

would take a structure which appears like this.  So, in the denominator  you had pi ft

earlier now you have pi ft 1 minus f squared and t square and this is 0 at f equals to nt.

So, when f is equal to nt it will become 0 for n plus minus 2 compared to this. So, there

is as at the 0 value there is a peak because of the sink both the things this goes to 0 at 1

upon t this goes to its first 0 at 2 by t and minus 2 by t.

However, the difference between these 2 that one the important difference between these

2 is that if you look at the denominator this decays as f squared or 1 upon f squared

because there is a single f here in the power there is 1 upon f 1 upon f squared. So, there

is an f here whereas, here it decays the mod gf squared decays as f to the power of six

simply, because there is an f square term over here there is another f f term over here. So,

what it means these side lobes decay at a much faster rate than these side lobes. So, it

goes to the first 0 very quickly, but these keep on coming with quite good amplitude

whereas, here it spreads out, but the side lobes are much much smaller.

So what hint we can take from this will probably see something more is that if you have

a requirement where you are you need to have the null within a certain small bandwidth

you can go for a rectangular pulse whereas, if your requirement is that you are adjacent

channel  interference  is  low;  that  means,  you  want  to  create  less  interference  in  the

neighboring channels then you could use a raised cosine pulse where your spectrum the

main lobe would be wider, but the spectrum would fall very sharply after a while.
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So, I mean if you would compare this against each other probably in one case you will

get spectrum falling like this and in the other case you might get going like this. So, this

would be the case for the raised cosine. So, this is let us say gf squared and this is f and

this would be the rectangular.

so although this comes to 0 earlier, but still there is lot of side lobe which is present in

this and which decays much much slowly compared to this these are rough hand drawn

picture. So, things going to exact; so, this decreases the advantage of this is that if we

have frequency axis and there are channels like fdm channels this is f one this is f 2 f 3

and. So, on and there is a spectrum right. So, you would have this kind of situation in one

case the other case you are going to have going down and down and down and down like

this right.

So then  one  has  to  decide  how to  design  the  communication  system what  should  I

consider as my system bandwidth and how should I choose the pulse shape and not only

that in the raised cosine you also have certain design parameters by which you could

control this thing. So, what clearly it means is that you have an opportunity to control the

spectral occupancy of the signal based on the pulse shape as evident from this particular

example right.
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We  move  on  further  and  take  a  look  at  another  example  and  we  say  that  let  your

information bearing signal that is in that we are interested in is generated in the form that

in equals to bn plus bn minus 1 where bn is the binary sequence right.

So bn is uncorrelated, but in is not uncorrelated. So, bn could take a value of 0 and 1. So,

in could take a value of 0 one or 2 it would take a value of 0 when both of them are 0 it

would take a value of one when either of them are one and the other one is 0 it would

take a value of 2 when both of them are taking a value of 1 so; that means, the phi ii of m

the autocorrelation between this; this sequence would be a value of 2 for m equals to 0 m

equals to 0 means in bm and bm.

So in that case you are going to get autocorrelation value of 2 and the for m equals to

plus minus 1; that means, when there is a difference of one you can get a value of one

otherwise it is 0. So, that is how the autocorrelation function would turn out to be and if

you take the Fourier transform of the autocorrelation function you are going to get power

spectral density. So, you have a power spectral density which is 2 times 1 plus cos 2 pi

fct  which is  clearly different  from that  of the power spectral  density of if  you were

considered bn and therefore, this you could write it as four cos squared pi fct because it

is 1 plus cos 2 theta which is equal to 2 times cos squared theta.

And then of course, you could have phi vv of gf in this case sorry phi vv of f which is the

power spectral density of the low pass equivalent signal as four upon t this t comes from



the original reference where it you had mod gf squared upon t and this four comes from

here and cos squared 2 pi cos squared pi fct. So, this is the overall structure whereby you

not only have converted this to a cos squared function because of this operation which

includes memory; that means, 2 bits are there; there is an autocorrelation present over

here as well as there is gf.

So what  we could  see  is  that  you can  control  the  spectral  content  of  the  signal  by

modifying the input sequence that goes into the modulator as well as by selecting the

pulse shape. So, before concluding we will quickly take a look at some of the spectrum

that has been pre calculated and we will just see how things are. So, what will do is we

will move to the power spectral density of a cp FSK signal, because otherwise we would

have had to do all similar calculations for cp FSK modulations and that is pretty time

consuming and which  we cannot  afford  to  do in  this  particular  course,  but  I  would

encourage you to go through the derivations available in typical textbooks and mainly

the one that we are following as of now.

(Refer Slide Time: 22:47)

So, the power spectral density of a cp FSK signal I have simply drawn a few pictures

available from references and we would like to see what it yields. So, before I go into

this I would like to remind you that in cp FSK signal binary cp FSK signal you would

remember we said that the modulation index h is equal to 1 upon 2 and you have the in

the modulating signal has 2 values plus 1 or minus 1; so, using that. So now, sorry I



stated something else in case of MSK we said in case of MSK you had h equals to half.

So, please not take my previous statement in case of MSK you had half.

So in case of binary cp FSK; that means, in this case we have h as the modulation index

and we would choose this particular spectrum as you see is a normalized spectrum with

ft because you would have you had you had 2 fdt as the value of h. So, and this is the

spectral  density.  So,  this  is  the power  spectral  density  and this  is  normalized  power

spectral density this is normalized frequency ft. So, if we take different values of h what

is the power spectral density that we get?

So what we see is that if you would choose h equals to half your curve power spectral

density would look like this if you; that means, half means 0.5 if you take it as 0.6, it

would become like this if you take it  at  0.7 it  would turn out to be like this  as you

increase h from 0.7 to 0.8 it becomes peaky at 0.95, it becomes even more sharp and as

we move on it is the same here you have h equals to 1.1 as this 1 an h equals to 1.2 and

here we have higher values this particular one is for h equals to 1.3 and this one is for h

equals to 1.4.

So, what we see from all these power spectral density curves for a binary CPSK cp FSK

is that the spectrum is relatively smooth and it is well confined for h less than one. So, h

less than one are all of these values here it is more than 1 right. So, if you keep h less

than one you are more or less quite confined in spectrum, whereas, as you increase h it

becomes broader right it stretches this one increases there you see the stretch over here it

stretches there and there and so on and so forth right and as h tends to 1. So, when it is

close to 1 if you look at 0.951 0.1; what you see is that there is a peak that is coming

right there is a power spectrum. So, there is some particular carriers which are coming

and one thing of course, a bit out of context, but if there is peak and there is a peak

interference at some point it could jeopardize your signal and if h is greater than one you

are going to have a broader thing.

So, this is some hint towards our discussion what we did for MSK in case of MSK we

have h equals to half and that would mean this particular spectrum that we follow right

this particular spectrum that we follow. So, it is pretty well contained over here.
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So, now we take a look at the relative comparison of the power spectral density of MSK

and offset QPSK. So, this is again a rough diagram. So, this is the normalized the power

spectral density in db and this is the normalized frequency axis fc times tb minus fctb.

So, what I had drawn before in the in the rough sense I have drawn it over here as well.

so this particular curve that you see which I am making it a bit more thicker here is

basically the curve for MSK and the curve for MSK clearly tells us that it is a bit broader

compared to offset QPSK. So, which curve is here? So, offset QPSK goes to 0 earlier

that was the null is earlier compared to this, but the side lobes you clearly see falls much

much faster than. So, this would go somewhere there and it would continue to go like

this right. So, this one falls like this the other one falls much much faster.

So, then the side lobes are much better. So, what you have is the main lobe of MSK is

much  larger  than  that  of  QPSK offset  QPSK and  the  side  lobes  fall  off  faster  and

generally it is known that the 99 percent of the total power is contained within 1.2 times

the signaling rate for MSK signal whereas, it is nearly eight times the signaling rate for

offset QPSK. So, if you have to contain ninety nine percent of the energy within a small

band of signals you would go for MSK whereas, if you have to constraint the null within

a smaller bandwidth you would go for QPSK and in this case in case of MSK you are

choosing one signal at a time and in this case you are choosing 2 bits at a time.



So there are certain differences. So finally, what we make to what we want to make the

statement is that given a constraint on the channel especially in terms of the amount of

bandwidth available or the amount of side information leakage that you can allow you

should  find  opportunities  to  choose  the  modulation  scheme  which  satisfies  the

constraints.

And this you can do by studying the spectral characteristics of the signal in the by the

mechanism that we have demonstrated in this. And the previous lecture I would like to

also remind you at this point is they are still quite a few more things to do especially

when we study the error probabilities which would help us in taking a concrete decision

and doing a performance evaluation of different modulation schemes which would help

you  in  finally  selecting  an  appropriate  modulation  scheme  for  a  particular  kind  of

channel.

Thank you.


