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Welcome  to  the  lectures  on  Modern  Digital  Communication  Techniques.  Till  the

previous lecture we have almost nearly completed describing the signals the systems as

well as the narrowband noise process.
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And we have related each of these from their passband to their equivalent low pass. Just

a quick note on what we have been discussing in the previous lecture. So, that it helps

you in, unless confused. 

In this particular step that we did where we said it is even symmetric, we intuitively or

we had assumed that phi zz tau is equal to phi zz of minus tau and whereas, we had

actually this is basically comes from the set of assumptions that we have already set

forward regarding that phi zz of this; however, what we yet had to do is that this is real

valued. So, phi zz tau is real valued is the assumption that we basically use over here.

And in that case it is phi zz tau is phi zz of minus tau and of course, this appears when

we take this odd function so that means, this particular thing that we did is essentially for

tau equals to 0 or for all cases. 



So, whenever phi zz tau is real valued and this is real valued as we have seen for the

situation, where this correlation term goes to 0. So, one option is when tau is 0 and the

other thing we assume that let phi xy tau is 0. So, that is what we have taken over here.

So, we said that if tau phi xy tau equals to 0. So, that is real. 
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So, that is what we had used in this analysis. So, that we even symmetric and when we

were  calculating  this  stationary  noise  process  and  we  arrived  at  this,  we  use  these

particular relationships. In fact, that is not directly needed as well.

So,  anyway now back to this  point that generally  there is a confusion regarding this

power spectral density. So, you should remember that in the pass band it is n naught by 2

whereas, you are in the low pass equivalent it is n naught. So, that you should correct it,

also there is sometimes a reference to that whether you are considering one sided, or you

are considering 2 sided. So, if you are considering one sided noise power spectral density

it will be n naught if you are considering 2 sided it is n naught by 2. So, accordingly you

should set all your expressions proper.
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So, the next thing that we are interested in is the signal space representation. Now the

these things that we are doing we could straight ahead use these things without actually

describing, but these things are sometimes needed to visualize or to write the expressions

as we have already declared in the beginning on an ambiguous statement. And when we

talk about the signal space represent representation it gives us a pictorial image or a view

of the signal in the vector space. 

So, that is what we are interested to do so that means, we wanted to show that signals

have characteristics that are similar to vectors, right. And we have a vector representation

for signal, right. 

So, this is our objective and before we do that we would like to summarize some things

with  the  vector.  So,  let  there  be  a  vector  v  in  an  n  dimensional  space.  And  it  is

characterized by n components. So, you would have the n components like v one, v 2 up

to v n, and it is also represented as a linear combination of the vectors. So, basically this

vector you could write it as summation i equals 1 to n v i e i, where e i are the unit

vectors or the basis vectors, right. And you could also say that v i is the projection of v

on e i. And e i is the unit vector of size or length unity. Then you could define the inner

product vectors v 1 which is defined by v 1 1, v 1 two, to v 1 n. And v 2 as v 2 1 v 2 2 to

v 2 n as v 1 dot v 2 this is pretty standard; however, we are doing is just for revision v 1 I

times v 2 I. 



So, this is how would how you represent the inner product and why this is necessary

because you would say that 2 vectors are orthogonal if v 1 dot v 2 is equal to 0. So, you

can also say that a more generally a set of vectors v k with k ranging from m to 1 are

orthogonal. If v i v j dot product is equal to 0 for all i, i j in this range one to m and i not

equal to j. So that means, if v i dot v j is equal to 0 where i is not equal to j they are

orthogonal this is well known for vectors. And we are going to use this for signals as

well very soon. 

So, once we have that then we also have the triangular inequality.
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Which would say that vectors v 1 plus v 2 would be less than or equal to v 1 plus v 2

where this sign indicates it is a norm of a vector it is v dot v; that means, the dot product

with the self with the square root which is equal to square root of i equals 1 to n v i

squared, right.

So, this is basically the length of a vector and this less than is holds with equality, if v 1

is equal to a times v 2; that means, both the vectors are aligned in the same direction. So,

that is true and then you have the very important result which will be using at a later

stage Cauchy Schwartz inequality, which states that v 1 dot v 2 is less than or equal to

the norm of v 1 times the norm of v 2 and with equality if v 1 is equal to some constant

times this v 2, right.



So, this is typically that for the vectors that you have and the norm square sum of 2

vectors. So, again you have v 1 plus v 2 squared is equal to norm of v 1 squared plus

norm of v 2 squared plus 2 v 1 dot v 2. Now if v 1 and v 2 are orthogonal then we have

this term going to 0 and then you have v 1 squared plus v 2 squared, and this is basically

the phythogoras result that is well known, right. 

So, these are some of the important results from vector that we can recall and we will be

using a similar notation for signals and that is the motivation for doing this particular

lecture. And why we do this because we will be encountering signals in n dimension at

some point. So, if you could represent signals at vectors then it would ease many of the

computations at some point, right.
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So, we move forward and we would like to talk about the gram Schmidt procedure. So,

what the gram Schmidt procedure does is that suppose you have a set of vectors and you

know that these vectors span the vector space,  but you have a very large number of

vectors let us say. What you are interested in is a set of orthonormal vectors which could

be sufficient to span the space. The need for this is you would be creating basis vectors,

and once you have your basis vectors then you can project your signals on those and you

can do many, many stuff.

So, basically a gram Schmidt procedure is a well known we will just summarize that. So,

suppose you have a set of n dimensional vectors suppose there is a set of vectors v i, i



less than equal to m and 1. You start by selecting an arbitrary vector v 1 and you would

make u 1 as a vector in this form. That is vector v divided by the length of the vector. So,

it is a unit vector and then you take v 2 and take away from v 2 the projection of v 2 on u

one, right. So, if you do this then you create a temporary vector u 2 prime and then you

would create u 2 cap as u 2 prime upon the length of u 2 prime. 

So, now you have created another unit vector, right. And you proceed further u 3 prime is

equal to v 3 minus that is, you taken a third vector projection of v 3 on u 1 is in this

direction minus projection of v 3 on u 2. So, once you have taken this away you would

create the third unit vector, right and so on and so forth. And you will find you have

created  n  one  set  of  orthonormal  vectors  in  the  sense  that,  these  vectors  they  are

independent of each other.

So, basically if I have a very large set of vectors then we do not know whether we have

they are whether all the vectors are independent of each other. So, if we have the basis

set they are basically the minimal set of vectors that are required to represent any vector

in that n dimensional space, right. So, that is going to help us in signal representation

anyway. 
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So, now we move forward from this to the signal space concept. So, if we are in the. So,

having summarised the vectors we would like to see how signals can be represented in a

similar form. So, we go to the signal space concept and it is a similar treatment, as that of



vectors. So, we say that let there be a set of signals defined on some interval a b. And

then the inner product of the signals would be defined as integral a to b x 1 of t x 2 of t

dt. And you would often place a conjugate if it is a complex signal, right. And then you

would define the norm of the signal as notation wise it is similar, this defined in this

interval  the  absolute  square  dt  and  finally,  a  square  root  of  that  and  in  case  of

orthonormal,  normal  orthonormal  would  make  it  one  and  if  you  are  talking  about

orthonormal; that means, this would result in 0 x 1 and x 2 inner product and this length

would together you can define orthonormal, where you would say that the inner product

would be 0 and the norm would be equal to 1.

So, that is the definition you would put triangular inequality would satisfy in a similar

way as in vectors. And you have this Cauchy Schwarz inequality I am writing in short it

is integral a to b x 1 of t So again, x 2 of t that would be a conjugate if it is of complex is

less than or equal to integral a to b x 1 of t squared dt to the power of half. So, that is

how you get the norm. So, remember this inner product is less than or equal to the norm

of the first and norm of the second. 

So, this is slightly different in notation, but it is the same thing that we have, raised to the

power of half, right. So, and that with equality if x 1 is equal to a times x 2 and if it is a

complex then of course, you have a complex. So, that is how these relationships hold. 
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And then we have the orthogonal expansion of signals. So, what we finally, mean is we

have to represent signal in terms of the basis signal set or the basis vector set. 

So, we proceed in a similar way and suppose and we begin with s t which we define as a

finite energy signal. We say that it is a finite energy signal and e of s is defined as we did

this before, right. This is what we are with what we have defined. And now we say that

suppose there is a set of function that let there be a set of functions which we mark as f n

of t n is equal to 1 to up to k that are orthonormal, right. So, when you say orthonormal

what we mean is that minus infinity to infinity f n of t times f m of t dt is equal to 0 for n

not equal to m n is equal to this for n equal to m.

So, then what we say is that we may approximate the signal s of t by s cap of t which is

equal to sum of k equals 1 to capital K is k times f k of t where s k, k equals to 1 to up to

capital K are the coefficients of the approximation. So, what we are trying to say here till

this point is suppose, we have s of t as a signal and there are some other signals which

we define it  as f n of t so, where we have the relationship that these are orthogonal

signals. Orthogonal means if you are integrating them and taking the inner product so

that means, if they are complex if you take the complex of it. Then you will get a 0 if

these 2 functions are different and it will be one if they are the same. So, then you can

say that I can reconstruct I can represent s cap of t as in this form and what we will get is

that these coefficients are basically the projection of this on f k of t. 

So, only if these span the signal space then only your representation would be complete

otherwise there might be errors.
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So, the approximation error that you can say, now you know just a note at this point.

Simply you can think of that cos 2 pi fct and sin 2 pi fct if, if it is sounding out to be too

abstract these 2 functions I can call this f 1 of t I could call this f 2 of t. So, then I could

say that what is the projection of my signal or can I reconstruct my signal using these 2.

So, the answer turns out to be yes in quite a many cases, right. And there could be many

other functions as well. So, this is one particular example of the situation where these are

normal, orthonormal functions there could be n dimensional orthonormal function. So,

then we go to the approximation error. So, the approximation error e of t is equal to s of t

minus  s  cap  of  t.  And the  energy,  the  approximation  error  energy  is  of  course,  you

integrate the whole range dt, right. And this you would get the result as minus infinity to

infinity s squared of t minus summation s k f k of t squared sorry dt yeah. So, we have

replaced this with this, right. And then the optimum coefficients if you have to find you

have to take derivative and set it to 0 and; that means, derivative with respect to s k set it

equal to 0 and you can get the solution.

The other option is you do not follow this procedure, but what you can do from geometry

is that e of t is orthogonal to each of the functions in the series expansion. This is from

the MMSE criteria so, the geometric criteria. So, if you do that you will land up with s of

t minus s k, f k is the error on f n of t dt this will be equal to 0, right.



So, if you work this out you are going to get s t times f and t on this product and you are

going to get this term along with this term. So, if you look at this integral with s k and f k

so, s k is a constant term which is not a function of time. You are left with f k t and f and

t. So, f k t and f and t when integrated we have said that we will select them in such a

way that they are orthonormal; that means, only when they are equal to the same value it

is equal to 1 otherwise it is 0. 

So, using that over here if k is not equal to n then this turns out to be 0. So, only when

this is equal to f k then we have s of k with integral f k squared. So, what this means that

these 2 terms yield integral s t f n t and this term is integral s k f k and s k because, f k

and f n would turn out to be 0 f k, f k remains. So, if it is f k or f n integral is 1. So,

basically this is equal to f n. So, for k equals to n this is for only for k equals to n. So,

you have this relationship. So, what it means is that you s k or s n that we have over here

they are the same. So, only it is a matter of index what we mean is that n is equal to 1 to

up to capital K so that means, f n or the s k s that we get are basically projection of s of t

on f n of t. 

So, it is similar to the vector projection and what we will find is that, this helps us in the

few in the in the few lectures later.
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And if you would calculate the e minimum; that means, the minimum energy that would

turn out to be minus infinity to infinity e of t, s of t dt and this will work out to be within

a few steps e of s minus summation s k squared k equals to 0. 

Now, since this is an energy this should be greater than or equal to 0. So that means, this

whole term should be greater than or equal to 0. And in the best case this will be equal to

0. So, in the best case you will find that e of s is equal to e of s k squared equals to 1 to

capital k. So, if we have to set the criteria that e min to be 0. So, we can only say that this

is 0 only by the condition that the energy of the signal can be represented by s k squared,

where you can construct s of t as s k f k t k equals to 1 to capital K. 

So, you should be able to construct the signal using this form where these are orthogonal

basis functions in the minimum mean squared error sense ah, that is the signal energy

matches the energy of the original source signal, where these s k s can be found by this

relationship over here.

So,  once  we have  this  then  what  we can  clearly  state  is  that,  we have  found these

coefficients s k s which are the coefficients of the signal and they could give us some

hints towards signal representation.
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So, what you have at this particular point what one should typically do is, one should

look at the gram Schmidt procedure for the signals. So, in this case we will summarize



by suppose s i is a set of finite energy signals, is the set of finite energy signals for i

equals to 1 2 up to capital m. And we wish to construct a set of orthonormal signals, right

from this set. 

Now, why we want to do this; that means, you are given a whole bunch of signals and

you would like to construct the basis set from this. So, that any signal in that signal space

could be represented in terms of the basis function in this form, where you have this

coefficients. So, please try to understand this that we have a whole set of signals given to

us and we if we can construct the basis set from this using gram Schmidt procedure then

we can find the projection of the signal on this basis which will term as our coefficient

which will serve as the coefficients for the expansion of the signal. 

So, to do this we will we will similarly follow that let f 1 of t is equal to s 1 of t upon the

square root of energy of 1. And then you would calculate c 1 2 which is the projection of

the second signal on the first signal. And then you would calculate f 2 prime of t which is

equal to s 2 that is, the second signal that we have selected minus c 1 2 f 1 of t. And

finally, f 2 t is equal to f 2 prime of t upon the square root of energy of 2. 

So, if you look at the process it is very similar to the one that we did for vectors. And

similarly you will go on to find f k prime which is equal to s k of t we will take the k th

signal  minus c i  k f  i  of t,  i  equals to  1 to k minus 1.  So,  in this  way you will  be

constructing k prime. So, which or you can go up to let us say some value n which is less

than or equal to m. Because you have m signals similar to the other case for which you

can find this orthogonal basis set. And you will be given through a tutorial how to use

this. 

So, finally, once we have these then any of the signals that are available with us we can

find a projection on these f 1 and f 2. You can find the similarity of the expression here.

So, these f 1 and f 2 that you see can be used to construct s of t using coefficients which

can be calculated using this  expression;  that  means,  if  you are given a whole set  of

signals s is of t it means, if you are given a whole set of signals s i of t over here from

which  you  construct  this  orthonormal  basis  set.  Once  you  have  constructed  this

orthonormal basis set then you can expand the signal in this form wherein, you will use s

k s from this expression and all of this follows with the minimum mean squared error

criteria. And then you can say that you could represent some k th signal.
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From this original set; that means, any signal which is in this which is from this. Or in

this signal space as s k 1 s k 2 up to, let us say s k n. So, if you are representing a signal

in this form basically this is the coefficient in the k 1 th function.

This is in the k 2 th function, this in the f k n th function. So that means, you could

represent a signal which was s i of t in a form of coefficients like the way we have

represented vectors in the initial set where we said vector could be v 1 v 2 upto v n, right.

So, now, if we are able to represent the signal in a vector form then we could use the

linear  algebra  or  we could  see  it  in  n  dimensional  vector  space  and then  we could

proceed  with  this  in  designing  transmitters  as  well  as  designing  signal  processing

mechanisms at the receiver. We can use some of the results of vector analysis to find

solutions of receivers which we will see in a few lectures from now.

So, we summarily have completed characterization of signals and systems as well as

noise and we will move into designing of transmitters or analysis of transmitters from the

next lecture onwards.

Thank you.


