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Lecture - 13
Source Coding (Contd.)

Welcome to the lectures on Modern Digital Communication Techniques, we have been

discussing Source Coding. And what we have covered till now is a unique decidability,

prefix  free  codes,  Kraft’s  inequality,  and  finally  we  have  come  to  understand  the

mechanism by which one could encode a discrete source. Of course, we are talking about

discrete sources.

So, while doing it we have come across several ways of doing the compression in some

way, or we finding out that what is the average number of bits per source symbol that we

need to send. So, when we did it we wanted to also find out that this average number of

bits per source symbol that we are getting what is the minimum value of it. And when we

did it we use the Kraft inequality because we have to set the prefix free condition. And

the reason for doing so is we wanted to have the unique decodability criteria. So, when

doing it we use the Lagrangian method and we relaxed the integer length constraint.
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 And when we did it we found that you could choose lengths l for a particular symbol j to

be  equal  to  the  ceiling  function  of  log  base  2  minus  sign  of  p  j;  where  p  j  is  the

probability of occurrence of the j-th symbol.

So, with this we have shown that if you select symbols in this way then the number of

bits that you get is indeed very close to the entropy, where we define entropy as the

measure of the minimum number of bits that is required to encrypt the source. So, if this

runs over g then p of j log base 2 p of j the minus sign in front of it. And this gives a

measure of what is the average on an average minimum number of bits required. And

when we did this particular method we found that these are integer numbers.

So, only when this p j was equal to sum integer power of 2 we realized that this could be

the actual minimum, and when it is not then it is more than the entropy, but it is at most 1

bit  more  than  the  entropy.  And  these  bounds  on  entropy  we  had  established  in  the

previous discussion. So, we said that L bar min is less than H x plus 1 and is greater than

or equal to H x. So, this is also something which we are established.

And we took one particular example in quick passing that this may not the method of

finding or the using this particular expression is not always going to give the best result.

And we will look at the counter example where we said let the probability of 0 b to the

power of sorry 2 to the power of minus 10; and we will see another example today.

So, further we said that if these you what you need to look at is rather encode n-tuples.

We had seen this thing for fixed length code, and we had also shown that if you have

variable length code then also you can come arbitrary close to H x. So, at that point we

said that L min bar when taken n-tuples at a time is very close so you get tighter bound 1

upon n and H x. That means, by choosing n very large you can make it very close to H x

this is all that it says.

So, if you are going to take n-tuples at a time. So, when we did n-tuples what we meant

is that if you take a few symbols 1, 2 up to n symbols and encode then in that case on an

average you are going to get this particular situation.  So, this is a fixed length code,

because from fixed length words you are mapping to variable length and then only your

establishing this, because we used for establishing this we used H of X n. That means,

the entropy of a discrete memory less source for n-tuples is n times H x. So, this is what

we had used and we arrived at this result.



So, we move on further with this basic background and let us see that what can we get

out of this. So, with these let us start off by considering a source which generates a 0 or

1. So, this particular source is a binary source. If it generates 0 and 1 then we need to

characterize the source, and as mentioned before that the source characteristics can be

described by means of the probability of occurrence of one of the symbols. And we say

for our particular example let it be 1 upon 4.

Since there are only two symbols definitely this  p of the second one is  1 minus the

probability of that. So, p of 1 the probability of getting a one is 3 upon 4. So, for this

particular source what we would like to find, is find a suitable encoding scheme. Now

this  might  seem to  be  a  very  simple  task.  So,  before  we proceed to  find a  suitable

encoding scheme what would like to is try to find out what is the entropy. So, if you are

interested in finding the entropy you would calculate H x, going by this expression.

So, that will be minus 1 upon 4 log base 2 1 upon 4, so it goes up minus 3 upon 4 log

base 2 3 upon 4. Of course, this minus comes in 4 by 3 minus 4, so this goes 4. So, this

part is very easy; it is 1 by 4 times minus, so 4 is goes on top log base 2 of 4. So, that is 2

to the power of 2; 2 comes outside log base 2 of 2 is 1. So, you have 2 minus sorry there

is a plus let us say you cnnot help it here you have to look into the log table. So, we are

going to get 0.415 and this is actually half. So, if we evaluate this is almost 50 percent of

0.34.

So, what you get is nearly0.81127; as an answer that what you would get. And this is

definitely bits per symbol. So, this is what we can start off with.
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So, if we take this the next simple thing that we have, we do not have much option in

this. We have a 0, we can encode 0 with the 0 or 1. And if you have 1 you have no other

option, but to encode it as 1 or 0. So, whether this is 0 or 1 and this is 1 or 0 it is a same

story, so we have this.

So, if you take this source coding that is your basically doing nothing you are allowing

the source to pass through almost as it is or is one of the simplest possible source coding

0 becomes 0 and 1 becomes a 1. So, there is no change. So, these are the symbols and

these are the encoded bits. So, what we have one symbol mapping to 1 bit, one symbol

mapping to 1 bit. Therefore, we can say that you have 1 bit per symbol.

So, if this example is a bit confusing because you have 0 mapping to 0, we have a simple

thing let us talk about a source where there are only two possibilities a and b.Another

sample source could be a black and white. So, we can take off screen or a page which has

only black and white dots. And a black would be represented by let us say 0 and a white

could be represented by 1. If that is the case then all these things become very clear- that

we have a black which could be map to 0. So, this would be equivalent to this 0 and this

1 would be equivalent to this 1.

So, in this case you can similarly say that- the black gets mapped to 0 and the white get

mapped to 1; that is it. So, what we are asking is what kind of coding you can do. So, this

is the coding which you did. And you can get 1 bit per source symbol. Let us proceed a



bit  further  with  this  example.  And  if  we  have  to  take  this  solution  that  we  have

mentioned earlier, if we have to take the solution then let us see what do we get.
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So, if we do log base 2 1 by 1 upon 4, because you have a minus hear that means log

base 2 of 1 by p j using which we can write. So, we are using that simply that expression.

So, this is very very clear. So, this is equal to 2, and if we have to use the ceiling function

of 2 is basically 2. That means, l for let us say black is basically 2. So, this means 2 bits it

says this says you use 2 bits which represents black. And if I have to represent white

which comes with the probability of 3 by 4; that is the same example that we have. So, of

course, what we said is p of black is 1 by 4 and probability of white is 3 by 4. So, log

base 2 of 1 upon 3 by 4 and you take this ceiling function that is the ceiling of 0.415.

Now since I cannot take 0.415 bits I have to take the nearest integer, so length of white

should be equal to 1. As for the solution of this season the method to find the minimum

number of bits.

So, going by this if we have to construct a code tree we can constructor a code tree one

branch and of course the second one here. So, this one I could label as white, this one I

could label as black, this is 0 1 0. Now, going by or earlier discussion; since you can

clearly see that one branch can be added it is not a full tree and also this branch could be

reduced and brought over here. Still it does not violate the prefix tree condition. That

means there is although this appears to be an earlier intermediately node, but we can



shorten the tree and then the code becomes 1 for black, 0 for white or vice versa. We

could have drawn the tree otherwise. So, this is superfluous we do not need this we can

actually do better by simplistic into our original encoding scheme this one or simply this

encoding scheme.

So, well this really does not help us at this point. And in fact if we try to calculate the

average; so if try to use this method let us say what we are going to get is 2 bits coming

with the probability of 1 by 4 plus 1 bit coming with the probability of 3 by 4 and this

will be 1.25 bits, which is definitely worse that this which is 1 bit per symbol.

Now, we clearly see that L bar, this L bar this is not a good solution that we have arrived

at. So, instead what we can do is now we can consider; let us use a different technique

and we say that if you remember what you studied earlier that you can actually take n-

tuples. So, if we take n very very large that of course we can reduce this excess. So, what

we do as a first step: we can take two symbols. So, this black we can take.

Basically if I take two symbols the first place can be filled in two different ways black

and white,  second place  can be filled  in  two different  ways black  and white,  so we

basically end up with four possible options. So, we could have a black and a black, a

black and white, a white and a black, and a white and a white. So, this forms my new

symbol super symbol black black, or black white, or white black, or white white.

See if we take these four symbols then we can encode this new source. So as if this

source generates a symbol which is black black, it generates another symbol could be

white black, or black white, or could be white and white. So, these are the four distinct

symbols that it generates.

So,  since this  source is  a discrete  memory low less source that  we have taken;  that

means, the symbol is independent of the first symbol, so the joint probability of this

would be product of the individual probabilities. So, this probably of occurrence of this

symbol  is  simply  the  probability  of  occurrence  of  black  times  the  probability  of

occurrence of black. So, this is 1 by 4 times 1 by 4, so this is 1 upon 16. So, we could

write these as symbols and we could write this as probabilities. So, by doing so we can

calculate the probability of getting a black followed by white which is 1 by 4 of black

times 3 by 4 of white. So, this is 3 upon 16 by the same logic this one is also 3 upon 16,

and getting white and white is three times 16 times sorry 3 upon 4 that is 9 upon 16.



So, these are the probabilities of each of the symbols. And if we have to calculate the

lengths that are l j; so j is equal to 1 in this case, j is equal to 2, j is equal to 3, j is equal

to 4. So, we have these four symbols that are there with us. So, l j’s following this: it will

be 4 bits. And this particular case, what this result is straight forward if you evaluate this

you going to get 4 a ceiling function of 4 leads to 4. If it is 3 by 16, so basically log base

2 of 3 by 16 or log base 2 of 16 by 3 this is ceiling function of 2.4. This will be landing

up definitely with 3 bits, because 2.4 bits you cannot. So, same over here 3 bits 9 upon

16, this turns out to be 0.83, this results in 1 bit.

So, what we have in this case we are trying to encode this new symbol set with these

lengths. So, if you are going to do it, of course we can find out whether it satisfies the

Kraft  inequality.  But  what  we have  seen  earlier  that  if  we follow this  method,  it  is

definitely going to follow Kraft inequality. That means, we can ensure prefix tree quotes.

So, that is why we looked at the theorem and therefore we do not need to do it again, but

for your own sake you can easily calculate.

So, we can do this, and therefore we can construct tree and we can make codes, but what

is our interest as of now is to find what is L bar. So, L bar is the average number of bits

per source symbol. So, the way we calculate is we are going to get 4 bits whenever we

becomes, but b b comes with the probability of 1 upon 16 and every time it comes we

going to get 4 bit. 3 bits are going to occur with the probability of 3 by 16, because this is

going to come with the probability of 3 by 16 every time we get 3 bits, we get it 2 times.

And this one is going to occur with the probability of 9 by 16. So, we going to add up

only ones.

So, when you add this you will get the answer of 1.9375. Now if you look at L bar, L bar

is with 2 bits. Please remember this with 2 bits. So, what is L bar per symbol? So, L bar

per symbol would be L bar of this. So, I would rather say L bar 2, I would not put a two

over L bar 2 would be this divided by 2. And this turns out to be 0.96875 So, what you

can see is earlier we were having 1.25 bits if we followed this rho expression by taking

one symbol at a time, and which is worse than the case if I would directly encoded which

is  1  bit  per  symbol  which  is  also represented  here.  But  now, if  I  have  clubbed two

symbols  that  means I  have formed an n-tuple where n-tuple  is  2  I  could reduce the

average number of bits per symbol I could reduce that average number of bits per source

symbol 2.96875; and this is definitely less than 1.



So, as we move further of course we just need to remind you that we had found the

entropy of the system to the 0.81127. That means, we have been come a little bit closer

to this number.

(Refer Slide Time: 21:35)

So, moving ahead further with this you could ask what would be the case if I take three

symbols as a tuple. That means, if I let n is equal to 3. So if n is equal to 3, since each

position can take two values; that mean each position can take a black or a white: two

possibilities. So, definitely you are going to end up with eight possibilities and then you

can do a similar calculations.

And what we can do now instead of going for 3 let us take the case if I am going to take

n is equal to 4. If I take n is equal to 4 of course I have 2 2 2 2. So, 2 to the power of 4

possibilities and that would be. So, if I have there would be two possibilities here two

possibilities, two possibilities, two possibility. So, I am going to get a much a smaller

number in this case. So, as we move ahead further you can possibly get this numbers

which are smaller than this.

So, with this if you go ahead and considered a particular example where we say that

suppose I have a 2 gigabyte file to transfer. Suppose I have a 2 gigabyte file to transfer

and I use this particular method of encoding as we have just disused. So, what is there

any benefit? So, what you can calculate is that if you do not do this you would send 1 bit

per source symbol multiplied by 2 multiplied by 8 multiplied by 10 to the power of 9 bits



all together. Whereas, if you are using this encoding scheme as we have just discussed

here, if you are going to use this encoding scheme then we would be saving 1 minus

0.96875 bits. So, this much of savings is going to happen in this overall file size.

So, if you do this, if you work out these calculations you will almost get 0.5 gigabits.

Please note I used gigabytes so over here but I converting to gigabits. And if we do the

calculation that say- we have 10 mbps line; suppose I have a 10 mbps line so I would

require 0.5 into 10 to the power of 9 bits divided by 10 into 10 to the power of 6 bits per

second lesser time if I use this particular method. So, this would result in 0.5 into 10 to

the power of. So, this, and this, and this, would cancel out to make it 100.

So, I am going to get nearly 50 seconds or roughly 1 minute less time to download this

particular file. And which is significant. And if you look at this particular number then

you can guess the number of bits that get saved. So, if you are thinking in terms of the

subscribers, so one generally has to pay in terms of number of bits; that means finally

you going for a package of like let us say 500 megabyte or let us say 2 gigabyte for so

much of a sum of money. Let us say 100 rupees for 1 gigabytes something like that.

So, in this case you are saving quite a bit of data if you are doing some data compression.

And  if  you  are  thinking  in  terms  of  speed  or  download  time  if  this  kind  of  data

compression is done then again you can save quite a lot in terms of a bandwidth. That

means, you can free up the channel for at least 1 minute in this particular example that

we have taken.

So, I hope this helps you to realize that if you do this kind of an encoding and of course

many other advanced encoding schemes then you could have a huge potential in utilizing

the spectrum or the bandwidth much better than if you do not do any kind of source

coding. So, let us move on further and try to look at another situation.

So, where let us say we have the problem that we have three colors: red blue and green.

And  we  say  that  red  comes  with  the  probability  of  1  by  4,  blue  comes  with  the

probability of half, and green comes with the probability of 1 by 4. That means, let us say

I have a screen at or I have an image where every pixel in that can take one of these three

colors and only one of these three colors and I would like to encode this picture in this

pixel and send it out to the other side.



So, clearly there are three symbols. So, going by our previous notation m is equal to 3.

And if you have to use some fixed length code then you have to take log base 2 of 3 in a

ceiling function of that which would result 2 bits. So, clearly you can say that I would

encode read with is 0 0, a blue or a green let us say green with the 0 1, and a blue with 1

1. Red comes with probability 1 by 4, green comes with probability 1 by 4, and blue

comes with probability half. In this case we clearly see that you have 2 bits for every

symbol: 2 bits for blue, 2 bits for green, and 2 bits for red- so 2 bits per symbol.

For this particular case if you would calculate H x this I leave it as a home exercise you

are going to get the number as 1.5 bits per symbol. So, this clearly leaves us with a gap

of 0.5 bits. Now if it is 0.5 bits per source symbol seen clearly estimate that the amount

of saving that you can get if there is a 2 gigabyte file that requires to be transmitted. Now

H x please note this gives us an indication that what is the best possible source coding

that you can achieve with this.
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So, well if you use fixed length you are in this situation and what you could do that you

could go for variable length coding; if you go for variable length coding since now you

have this probabilities. So, this would result in the code word length of 2 bits, this would

result in a good word length of 2 bits, this would results in the code word length of 1 bit.

So, I do not need to define what is j any further. And if you would like to construct the

code tree you can easily construct a code tree like this where this will be blue, this will



be green, and this will be red; so 1 1 0 0. So, blue will have the code of 0, green is going

to have the code of 1 0, red is going to have the code of 1 1.

So, if you do this then you will find that; if you calculate L bar for this what you going to

get is blue comes with a probability of half. That means, this code word length comes to

the property of half. So, are going to get 1 occurring 50 percent of the time plus a code

word length of 1 occurring one-fourth of the time, so that is half plus half plus half. So,

that is 1.5 bits. So, what you can see is that by using this mechanism you can achieve 1.5

bits per source symbol and one can easily go back and calculate the number of bits that

one would save if one had to transmit a file which is as big as let us say 1 gigabit or 1

gigabyte or 2 gigabyte.

So, through these examples we have tried to establish how you can take advantage of the

source coding schemes in order to reduce the number of bits that required to transmitted.

So, this helps you in saving the number of bits and also saving bandwidth. And beyond

that you can also imagine that extend your imagination or calculations in real terms of

the amount of power that it saves which we should be able to calculate towards the end

of the course. Basically their use the terminology number of or the amount of joules that

is expanded oh that is pinned in sending 1 bit. So, if you can find that number let us say p

joules are send is required to send 1 bit and I have to send I have saved let us say nearly

1 gigabit. So, we can easily calculate the amount of energy that can be saved.

So, it is multi fold implication if we can do source coding appropriately. We stop this

lecture at this particular point, and we continue with these examples in the next lecture.


