

Digital VLSI Testing

Prof. Santanu Chattopadhyay

Department of Electronics and EC Engineering

Indian Institute of Technology, Kharagpur

Lecture – 60

Memory Testing (Contd.)

(Refer Slide Time: 00:22)

So, in the test pattern generation process, the tags algorithm so as we have seen like it

will start with some basic pattern, and then it will go on augmenting that pattern set by

doing newer and newer memory operations. So, this generation process of this templates,

so we can divide it in a two part - one is called template generation, other is called

template filtration. So, in the generation part, so if you do not put any restriction then

naturally there are so many options that this generation process becomes too costly. So,

we follow some heuristics or some procedure by which we can augment this templates.

So, what are the augmentations like given a templates, so you can do one read insertion

this r insertion that that is a standalone read that we are inserting. So, this r can be

inserted anywhere in the template t expecting at the beginning.

(Refer Slide Time: 01:26)

So, your template t may be we have got a single write. So, in this we can introduce a

single this standalone read operation, so like this, so I cannot do it at the beginning,

because there is no point doing a read operation before doing any write operation, so this

read operation maybe inserted after the write operation, so that is one extension of the

template t. Other expansion can be that we can finish after one template is over, so we

can put another template and insert r at the beginning or at the end. So, in a template

element, we insert r at the beginning or at the end or at the end.

So, if I have got a template like some say w as we have taken the example, so this can be

extended as w r, so that is this reading, the difference between this one and this one is

that. So, here this w is applied over all the cells first, first all the cells are written and

then all the cells will be read. But in this case, the cell that is retain is read immediately

and then only w can go to the writing of the next cell. So, this is the template element

insertion r at the beginning or at the end. So, in within the template, so we can introduce

r at the beginning or at the end.

Similarly, we can introduce a standalone w operations, and standalone write operation.

So, we have got as we are talking, so we have got this template, so it can be extended by

another write operation, so that way it can extend the write operation by putting another

it can extend the template by putting another standalone write operation. Or we can have

expansion, so this template may get expanded by putting a write at the end or putting a

write at the beginning. So, at any point of time, so if we have got a set of templates then

those templates can be augmented, so you can expand individual templates or you can

introduce new standalone operations of read and write within the template. Now, so that

is the generation part.

So, after generation it may, so happen that you can it generates some of the templates

which are meaningless like this consecutive read. So, this consecutive read we have got

two successive reads, so these are not very much useful excepting when you are trying to

test say read disturb faults, so this is not useful. Similarly, this r followed by r, so that is

standalone r followed by r, so that is standalone r followed by standalone r, so that is also

meaningless, because of the same reason. And the tailing single write, so if you template

set stay if your template ends with a write operation at the end, so that has got no

meaning, because writing to the memory we are not checking anything. But so for

checking we need to have a read operation, so my template must end with a read

operation, so that is the other one.

(Refer Slide Time: 04:31)

So, this is an example, so how this say we have got we started with a single write

operation write 0. So, this is r this is a march test with whose length is 1N. So, you have

number of memory operation, so if there are if there is a n bit memory then we are doing

n memory operation, so this is this has got one template of write operation. Now, when

we are extending this w 0 maybe extended this w 0 followed by r 0, so that is a read

extension or we can have one say this one. So, we can extend this by another write

operation and then another read operation, so this way we can have this we can generate

this march test from starting with the basic template to the successive ones.

(Refer Slide Time: 05:24)

So, this is the complete one, so it has it generates go on generating the templates and

after that there are this filtering operation that filters out the unnecessary sequences. And

only the usable sequences will survive. So, this way you can generate a number of

sequences and then the time constraints being infinity, so it will go on generating the test

pattern until and unless all these faults are getting covered. So, it will go on generating

the different testing templates, so it goes up to 11 N.

(Refer Slide Time: 05:58)

So, this is actually the coverage information. Like if we have got this M 1 1 that is a

standalone write operation, so it is not doing any test, so naturally it cannot have any

fault coverage, so fault coverage is 0 for this. Then this M 1 2, so this has got a fault

coverage of this one this stuck-at-fault, stuck-at-fault coverage is there, so it is detecting

the stuck-at-fault; similarly this is detecting this M 1 3, so it is detecting this much of

stuck-at-fault and other faults are also there.

So, different color bars are identify, so interestingly as you are increasing the length of

the test, so number of operation read-write operation that we do, so more and more faults

will get covered. So, when we come to this M 1 11, so you see that that is the number of

read-write operation one, so at that point all the faults are getting covered, so all the

faults are getting covered, so you have reach the 100 percent coverage, so we can stop at

this point. Our test generation process can stop at this point provided these are the fault

models that we have to cover. So, if we are looking for only say stuck-at-fault then we

can stop at this point itself, so M 4, we can stop, so only four length test sequence will be

sufficient.

(Refer Slide Time: 07:15)

So, this is the another fault coverage, if you take only a single test length, if your test

length is restricted to say 6 N, so then what happens is that then also with 6 N restrictions

also, there are several test sequences that can be generated by that tags procedure. And

the list that we have seen previously, so in that this M 1, M 2, M 3, M 4, so these are

various six length sequence. And you see that all of them do not have the same level of

coverage for all the faults. So, naturally we will like to have the those tests, which will be

covering most of the faults, so accordingly you can select any of this patterns M 1, M 2,

so M 1 is really poor, because some of the faults are not covered and all that, so it is not

that good, so whereas, these are better. So, this way you can get some selection from the

tests.

(Refer Slide Time: 08:13)

Next, we look into memory BIST. So, basically what we have said is that, so there is a

march test sequence that we need to apply to the memory for testing it, but for how do

you apply those test pattern, are we applying from outside. So, if we are applying from

outside then we have to have all those controls, so we have to access individual cells and

then we have to same individual patterns and all that. So, BIST is a better option for

memory testing, because this is BIST can be integrated with the memory itself and once

it is signaled to start testing, so it can go on doing that it can generate the pattern as per

the template the read-write requests. And it can check whether it is ok or not, so

ultimately it can result in a go, no go solution telling whether the memory chip is ok or

not.

So, what are the issues in BIST design. First of all, what are the functional faults to be

covered, so which faults you are going to cover, so that is an important issue, so there

may be static or dynamic faults, can be operation mode, so what are the different

operating mode that the RAM, the memory has. What are the defects like opens, shorts,

timing parameter, voltage, currents what are the defects we are going to cover. Can it

support fault location and redundancy repair? So, if does it have the capability to locate

the faulty location, actually what happens is that memory as per the technologies

concerned, so this is an array of same type of cells. So, if one cell is faulty we can

replace that cell by another one, so my address decoder can be modified, so that it refers

to a different location when that particular address is generated, so that way if I can do

this. So, if I can support this correction this repair part, and also this redundancy because

some of the array locations may be redundant, because of this duplication.

Does it support burn-in? So, actually this burn-in is that when this design first comes into

a existence, so it is kept on for quite some time and then if there is a problem then many

of the wrongly manufactured module, so they will die down, so that way this our yield

can be improved by removing this burn-in pattern burn in chips. So, this can it support

this burn in detection. Can it support on-chip redundancy analysis and repair, so that is

also important. So, does it allow characterization test as well as mass production test? So,

characterization test is that can check the memory probably or mass production test is

those test that does not do thorough check, but it is much faster than mass production

though all faults may not be covered, so does it fault allow both of them.

Can it really replace ATE? So, ATE and the laser repair machine, so this is actually the

thing like if we detect that there is a fault, so then many a times what is done is by laser

technology, we can rectify some of those faults. So, that way there may be some laser

repair machine, so that can take care of this faulty chips, and they can introduce some

connections, so two lines are short, so it can put a laser beam there and remove the

connection between them. So, like that it can do many operations, so this can it, so this

can it ATE plus laser machine, so can it may be avoided if I use a BIST. So, the

necessity is the programmability, speed, timing accuracy, threshold voltage and the

parallelism all this things. So, by when I am talking about a BIST, so these are the

questions to be answered like which type of features will the BIST provide.

(Refer Slide Time: 12:03)

So, typical RAM BIST approaches are like this, so there can be two different

methodology or three different methodology. One is processer based BIST, so processor

based BIST, so they are programmable, so there will be an underline processor integrated

with the memory, and it will be generating the pattern. So, since it is a processor, so you

can program it to generate a different types of patterns, so that way it is good because

you can cover a number of different fault models.

Then hardware BIST, so hardware BIST will be faster than normal this processor based

BIST, because this software part is not there, so it is fast and compact and hybrid is mix

of these two, some part is hardware and some part remains in the processor. Then the

interface whether it is a serial scan or 1149.1 the boundary scan technology or it is

parallel, so they can is then embedded controller and hierarchical structures like that. So,

patterns the march march-like patterns or pseudorandom patterns or others, so what are

the different types of patterns that the RAM BIST will generate, so these are the different

issues while we are discussing about RAM BIST.

(Refer Slide Time: 13:15)

So, this diagram shows a typical architecture of RAM BIST. So, this is the ram, so that

has got a test column basically some multiplexers, so that it can get the address and data

lines from this RAM, from that BIST module as well as it should get address and data

lines from the processor for normal operation of the RAM. So, they are naturally there

will be some multiplexers that will be selecting between the two. So, there is a pattern

generator, so this pattern generator modules, so this will be generating different march

patterns or if it is a march based test or if it is pseudo random test will generate pseudo

patterns like that.

And there is a comparator, suppose I am generating a read zero, read zero is the pattern

that is given. So, this read zero is coming to the comparator as well and it is going to this

cell, so that particular location is read and this value is available where comparator, so

comparator will check whether the value coming from the pattern generator is same as

the value coming from the memory cell. If they are not same then the there is a problem,

so this location is faulty. So, faulty is detected, so that is why it generates a go, no go

type of signal.

And if it is a write operation of course, comparator does not have to do anything, so the

corresponding location will get retained. So, corresponding to the read operations only,

this comparator will check the value available from the pattern generator and the value

available from the RAM to see whether they are correct same or not, so these are typical

RAM based architecture.

(Refer Slide Time: 14:51)

So, these actually shows a DRAM structures. So, this is the memory array, thus got sense

amplifiers and all that. And as we know that the memory is arrange in a 2D fashion, there

will be a row decoder and a column decoder. So, row decoder these are 1024 rows, each

of 256 columns, so they will be generating any address that we have, so this address has

got row address part and the column address part. Row address part will comes to the

row decoder, column address part comes to the column decoder and they are actually

selecting a particular location.

Now, if you want to write something then this D lines, so they actually get the data 16 bit

data line, so that is coming to the data in registers. Similarly, if you want to read

something from the memory cell then this 16 bit data is available through the Q line. So,

normally these lines are coming from the processor, but in a memory BIST environment,

so they can also come from the memory BIST. So, the test color is not shown here it is

basically that we will have the multiplexers at all this points.

So, this row address selector, column address selector and writable and these are some

timing controls that are given. So, in this row address is putting to this line, then this row

address selector is turned on. Similarly, this column address selector will turn on the

column address. And this timing is also controlled by the refresh controller, so since it is

a DRAM, so there is a refresh controller which also generates the address, so that is

there. So, we got several sources of this address part and accordingly it will be

generating they need to be multiplexed, so that they can be applied to the RAM.

(Refer Slide Time: 16:39)

So, this is the operation. So, initially this row address selection when it is making a

transition from high to low, the row address is provided at that time that gets latched.

Similarly, when the column address selection line makes a transition from high to low

this column get selected. So, whenever this column address selection line is making a

transition high to low, this corresponding column address is selected. Then this write

enable signal is given, when this write enable signal is low making a transition from high

to low then the D value is available, so that will be retain onto the, so RAM cell.

And if it is just reading the value then of course, when this write enable is high, once the

address is that been put this value is available on the Q line. Many a time what happens

is that this D and Q lines though it is shown separately; a here D and Q lines are shown

separately, but they may be together, so they are written as a D Q, so this D, Q is written

like this. And this OE line, so output enable line, so this will be when this makes a

transition from low to high, so at that time this Q value becomes available onto the bus.

So, this way this DRAM operation takes place, so it can read an entire page in this

fashion by generating different column addresses for all the columns for a particular row

it will generate the data.

(Refer Slide Time: 18:05)

Now, for the BIST as for the BIST architecture is concerned, so this part is that EDO

RAM, so this part is the BIST part. So, this has got several components in it, the BIST

controller, decode logic, test mode selection, so march, so you see some of them like

BIST scan paths are there then burn-in commands, march commands diagnosis

information, so they are all going to the sequence controller. And the sequence controller

accordingly generating this row addresses counter, column address counter, control

counter timing generators and all that, so that this addresses will be put onto this

interface buffer and they will go to the row address buffer, column address buffer

etcetera.

Similarly, when the values are read, so they are coming to the comparator. So,

comparator has got entry data available from the sequencer as well as this memory cell,

so they will be compared and accordingly it will give a go, no go type of signal. So, there

are many more signals, so I am not going to the much detail because that itself is quite

complex, but essentially what means is that the controller, so it is design to provide all

the read-write instructions, and this addresses to the memory getting its content change

for faults and all that.

(Refer Slide Time: 19:26)

So, to conclude, so BIST is the best solution for testing a embedded memories, because

the cost is low and it is effective and efficient. So, if you are using ATE, then ATE for

testing so many locations, so many memory locations it will take lot of time. Then

further improvement can be expected, so we can have some timing or delay faults and

disturb faults, so they can be covered. Built-in self design, and built-in self repair, built-

in self diagnosis BISD; and built in self repair, so these are the two directions where

works are going on, because diagnosis will diagnose the particular cell which is faulty

and repair will try to repair it in terms of may be replacement and all that.

Then this content accessible where memories so for then BIST is a challenge because

that the way they are accessed is different from this DRAM and for a flash memory also

they are difference. So, accordingly we will have to have different type of BIST

technology. Then BIST BISD, BISR compilers have to be there, because they in that

case they will get automatically introduced into the memory. So, if you say that this

memory should be BISTED then the BIST will get introduced in to the memory. Wafer

level burn-in and tests, so that also has to be there. So, accordingly we will come to once

we know that this dyes are not good, so you can get some information about the known

good die, how many dyes are good in your in entire wafer, so that can be collected, so

that gives an indication about the quality of production.

So, this memory testing as for as algorithms are concerned, so it is dependent mostly on

the march sequence generation, and we have seen that unlike other test pattern

generation algorithm say ATPG, so here it is based on simulation. So, you can have your

own test generation procedure, so you can think about anyway of generating this read-

write commands and then you can take help of this simulator MCs to generate that to

check whether the faults are getting covered properly or not. And accordingly you can

get a confidence about the quality of the test generation algorithm that we are proposing,

so that is on the test generation site.

On the test application site, we have got this BIST, so this BIST can be used for

generating this test pattern applying this test patterns to the memory array. So, combining

these two, we can get effective solutions for this memory testing.

