
Digital VLSI Testing 

Prof. Santanu Chattopadhyay 

Department of Electronics and EC Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 49 

System/Network –On-Chip Test (Contd.) 

 

So, test architecture it is going to determine the schedule. 

(Refer Slide Time: 00:22) 

 

So, in this particular slide you see that this is a TAM distribution of different cores of 

this particular SOCP 22810. So, this is a benchmark SOC that has got a number of cores 

in it. So, there are I think 26 cores in this particular benchmark. So, they come under the 

ITC 02 series of benchmarks. So, they are called ITC 02 benchmarks. 



(Refer Slide Time: 00:58). 

 

So, this ITC 02 benchmarks it has got a number of SOCs in it. So, they are the SOC 

benchmarks. And there are many such benchmarks in it, like it starts with say d 695, then 

we have this thing we have got d 695 in this p 22810. So, this is another benchmark. So, 

these types of benchmarks are there so that we can it they are often used for testing the 

component; testing the different test algorithms for this purpose. 

So, this 22810, so it has got some 26 cores in it; so in this case this TAM is divided into 

number of sub tams. So, this first one is of width 4, second one is of width 2, third one 6, 

then 4, then 7, then 5, then 14. So, then the individual cores are put on to the TAM like 

this so the on first TAM we have got only core 2, second TAM we have got core 8 and 

core 7, third TAM we have got core 1, fourth TAM they are 25, 4, 19, 17, 20, 12 

etcetera. 

Now if you see the corresponding schedule, so core 2 is such that it requires a huge test 

time. So, it required this much test time. Similarly this says in the second TAM, so this 8 

and 7. So, this 7 is tested first, so it takes this much time and then 8 is tested. So, it is not 

mandatory that if the cores are placed earlier on the TAM. So, it will be tested first it is 

not that it may be due to some precedence constraint or may be due to some other this 

the scheduling algorithm the ordered in which we fix up the core. So, that may determine 

the schedule. 



So, that here in this case what has happened is that this TAM this schedule has taken up 

core 7 first this algorithm, so it has been scheduled first. So, this part is; so this core 7 is 

tested here then core 8 is tested here. Now, then this core 6 is put on to this TAM, but 

you see that this is taking this much of time. Then we have got different other cores on 

TAM 4, so there are some cores. And what has happened is some time some parts are 

blank. So, actually in this part no testing is done for this; no TAM lines are used in this 

part. It may be due to the test patterns that we have the test pattern with may be different 

and all that. So, it may be there may be some gaps here like this. 

So, this way we have got the test times and this test times are plotted here. And the 

maximum test time is given by this one; this TAM 4 this TAM of with 14 and that has 

got the test time of 187712. In the entire schedule that actually constitute the maximum 

time, so the total time needed for testing is 187712. 

You take some other schedule. So, may be here on TAM 2 we have got on the first TAM 

we have got this core 2, on second TAM we have got all this cores and rest of the TAM 

so they are lightly populated. So, you can see that that test times that we have, so that is 

two here for the 2; 2 it takes this much time. For other cores they are taking some 

different amounts of time, but you see that the total test time needed in this case becomes 

176900. So, it is less than this one. 

So, that is what it is said the architecture they are going to determine the schedule, and as 

a result it is going to determine the test time that will be needed in the process. 



(Refer Slide Time: 04:49) 

 

So, what is the test scheduling problem? Test scheduling it determines the sequence of 

core test on the tams. So, tams are there, so which core will be assign to which TAM and 

in which sequence they will be tested. At what time that particular core will be tested? 

Ever test resource conflicts. So, this is another issue that is if you have putting two cores 

on the same TAM so you cannot put that test times over lapping, because in that case the 

there is a TAM resource conflict. So, this resource conflict has to be avoided and then we 

want to minimize the testing time. So, this TAM distribution and this scheduling should 

be done in such a fashion that this test time is minimized; that in effective scheduling can 

increase test are data volume or idle bits. 

So, if you have some gaps, so in this case you see that in the total time. So, you have got 

suppose the one schedule generated is like this that initially core 1 and core 2 they are 

being tested in parallel, then after sometime core 1 finishes but this available TAM width 

is not sufficient for testing any of the remaining cores core 4 and core 5 either of this. So, 

it is not possible to test them. So, what we have? We have got some blank squares. So, 

core 4 can be tested only with this much of TAM width. So, with this much of TAM 

width this can be tested only after core 2 has finished. And core 5 can be tested after this 

core 4 has finished as a result; so these two regions. So, they are actually some blanks 

that are coming so they are known as idle bits. 



But you see in the test from the tester we are sequentially sending the test bits for 

individual cycles. So, you can think of it like this as if tester initially it has given me the 

test pattern for the first cycle to be shifted into the system, there it giving me the second 

test pattern second test pattern part to be shifted in the second tests cycle. So, that way it 

was progressing fine. So, here also I cannot ignore this time because I am going to same 

some valid data for core 2 in this time and some valid data for core 4 at this time and 

some valid data for core 5 at this time. 

So, this bits from the tester it will be transmitted, but will not be used for testing. In the 

tester memory, so these bits will occupy some space that cannot be avoided. So, this 

actually gives rise to idle bits. And as we already know that this 80 cost is determined by 

partially by the memory requirement that it has. So, this memory requirement will make 

this idle bits to be very costly; so its idle bits storage that will become costly. So, any 

schedule that we make; another idea behind generating this schedule should is that it 

should be compact there should not be such many such idle port portions or blank 

portions in my schedule. 

(Refer Slide Time: 07:59) 

 

So, one technique for reducing these gaps in the schedule is by means of another 

scheduling policy where this test, this each core is assumed to be presented by a set of 

rectangles. So, says that you have seen previously that if a core is in that wrapper design 

phase, so if a core is tested by say this WPI equal to say 5, then it is w WPI equal to 5 



then it is going to say take some amount of test times. So, that let the corresponding test 

time be T 1 and if WPI equal to 10 it is going to take some other test time T 2. 

So, that way it can be represented by a rectangle. It can be represented by a rectangle like 

this; on the one side we represent the number of WPI lines that we have kept. So, this 

side is say 5 and this side is say T 1 equal to say 100 this side is a 100. So, if I give it 

TAM of width 5, so it gives me rectangle whose length is 100 and width is 5. So, this is 

as if on the tester on the schedule; so on the schedule it is going to occupy some part of 

the schedule and that part of the schedule will be filed up by means of this rectangle. So, 

you can think of this whole thing as if there is a bin where this bin height is fixed. So, 

this total bin height is given by W. So, that is fixed, and in that bin we are trying to put 

the rectangle. So, if I put this rectangle at this point, so this is the situation. So, this is 

100 and this is this side is 5. So, this side is 100 this side is 5. 

Now at no point of time I can put rectangle so that I cannot put a rectangle like this, 

cannot put a rectangle like this because it exceeds the width W, but this side there is no 

restriction. So, this side if I proceed further then what will, so t also if we if there is only 

this core in the system and this is my test time. Now if I put another core which is going 

like this another rectangle like this rectangle of another core like this then I have got the 

test time extended to this much. 

But that is also a valid schedule, but may not be a good one but that is also a valid 

schedule. So, what is required is that for every core we have got a set of test rectangle. 

So, this are the different cases like, we have got one rectangle its width represents W j 

that is the number of timelines that are allocated to it in the wrapper design. And this T i 

W j is the corresponding test time. So, from the wrapper design will know what is the 

corresponding test time, so this will be the T i W j. 

Similarly another case may be this is the W j value and accordingly we have got this as 

the T i W j. Third case; so this is the W j value and this is the T i W j value. So, testing 

time T i W j for core i and TAM width W j so that is taken. So, that represents the 

rectangle R ij. In general I can say that any core can be represented by a set of rectangles 

capital R i. So, for the testing purpose I can represent any core by a set of rectangles. and 

if we take all this sets then we get the collection capital R of this sets. 



Now the situation becomes like this; this capital R is a set of this R 1, R 2; suppose I 

have got 100 cores, so R 1 R 2 up to R 100. Now this each of this R i’s. So, they are 

basically again R set. So, it is again represented by say rectangle 11, rectangle 12. So, 

suppose it has got 10 rectangles in it then the second core it has got say 5 rectangles in it 

R 21, R 22, R 25. So, like that 100th core it has got rectangles R 100, 1; R 100 2; like 

this. 

Now in the test scheduling process what I have to do is I have to select exactly one 

rectangle from each of this sub sets. Like from this one may be I take I pick up this one, 

from this one I pick up say this one and from this one I pick up say this one. Now these 

three rectangles are have been fixed now, they are to be put into this structure such that 

the total test time is minimum fine. So, I have got choice in the sense that I can choose 

different rectangles from this individual sets and I can pack those rectangles into this 

structure in a in different fashions. 

So, we have got the options for doing the optimization. So, we first generate this 

collection of rectangles R for the SOC and the next part will be to do selection of core 

rectangles and placing them. So, this is the collections. So, this is the set of cores for the 

set of rectangles the first core, these are the second core, third core, 4th core. So, it is not 

mandatory that all of them will have equal number of rectangles it can be different 

numbers as well. 

(Refer Slide Time: 13:46) 

 



So, this gives rise to a version of the problem which is known as rectangle packing 

problem. So, this schedule problem is now translated into something called a rectangle 

packing problem. In a rectangle packing problem it is like this the general statement of 

the problem is like this that you are given a set of rectangles and those rectangles are to 

be; you have to put maximum number of rectangles in to a given bin. So, bin has got a 

fixed width and the height is infinite or if you want to pack all of them then you have to 

pack them in such a fashion then the that the height is minimized. 

So, here also I have got a similar version of the problem, but the problem is likely more 

complicated, because now I have got choice. So, in the original bin packing problem I do 

not need to consider any choice of rectangles, so all those rectangles are to be packed. 

But here I have a choice from each set I can choose a single rectangle to be packed. So, 

that gives rise to this rectangle packing problem. 

So, given collection R of rectangles set for the SOC cores select one rectangle R ij for 

each core I and pack the selected rectangles in a bin of fixed height such that bin width is 

minimized. So, this height is fixed which is given by the TAM width and then the bin 

width has to be minimized which is basically the maximum test time for any core. 

So, this is the collection that we have. And then this is the height; so height is fixed. So, 

height is given by the TAM width and the width is variable. So, I have to pack one 

rectangle from each set such that this width is minimized. So, maybe first we pick up 

core 1 and we put this rectangle here, then we take core 2 we put another rectangle here, 

then this core 3 it requires more TAM width that that does not fit here. So, it has to be 

kept at the end of core 2, so that is the thing. 

So, the total test time is given by this one. So, this is the bin packing problem. 



(Refer Slide Time: 15:59) 

 

So, packed bin that gives us the TAM design plus test schedule; you see suppose after 

doing this packing and all that we see that this is the distribution, fine. So, core 1 is tested 

in this TAM, core 2 is tested at this TAM, core 3 is tested here, core 8 tested here. And 

this width are also known, so how many bits we have assigned for the rectangle that we 

have chosen from for core 1 that gives me the width of this TAM that is used here. 

Similarly, this here core 2, so that this one gives me the width of the TAM that is used 

for testing core 2; so like that. So, there are some empty spaces; you see here there is an 

empty space and this empty space. So, this empty space is giving me the wasted tester 

memory. So, bin height is equal to the total TAM width, so that constraint is always 

maintained here. 

So, you have got some empty spaces which is the wasted tester memory. And this 

rectangular area, so these gives me the tester memory for core test; because in each of 

this bits that means over time steps so the time is test time is advancing and for every 

time step I have to give 1 bit to core a number of bits to core 8 whatever be the TAM 

width allocated to core 8 the bits had to be given, similarly bits had to be given for. 

Actually for every time instant you can say that this entire set of bits had to be given. So, 

you can find out what is the total TAM memory requirement which is given by this TAM 

width multiplied by this total test time SOC test time or bin width. So, bin height into bin 



width, so that will give us the total tester memory requirement for the thing. And the test 

time is also obtained from this one. 

So, getting this; so there are many heuristics for this bin tacking problem so we will not 

go in detail for them; any book on optimization that will discuss on this bin packing 

problem heuristics and all that. So, this is an empty hard problem, so you cannot 

guarantee to get an optimum solution planning a polynomial time algorithm, but there 

are many good heuristic that are been developed and any of them can be used for this 

one. 

So, the some of the heuristics that we have; so they actually try to figure out say best feet 

decreasing heuristic; so the large rectangles they try to put fast like this here in this case 

also you see that core 2 is a very large rectangle; so that has been packed. Then somehow 

in the remaining part you see the core 2 could be pack, so core 2 has been selected. Then 

core 8 was selected by the heuristic and then ideally you try to put core 4, but core 4 

could not be fitted because core 4 does not come into this case whatever we do. 

So, some heuristics can be done and none of the heuristics can give us optimum result, so 

that is true. And there are techniques based on this evolutionary algorithm like genetic 

algorithm particles from optimization. So, all those techniques are been tried for solving 

this bin packing problem and particularly this core SOC testing version of the problem. 

(Refer Slide Time: 19:18) 

 



Now, sometimes so if you look into this the test times have a particular core as the TAM 

width varies. So, you see that it shows some sort of Pareto-optimal behavior. Like you 

see when the TAM width is equal to 1 may this is the test time when TAM width 

increases then the test time starts decreasing. Now you see that there is a significant 

decrease up to this point and then after this TAM width decreases, but the decrease may 

not be that high. So, if it is so then we say that that is this is going to be the preferred 

TAM width for the particular core, because here the width is also not that high, but test 

time is quite low. 

And after this point you see that even if you increase your TAM width, so it is not going 

to increase decrease the test TAM further. So, that is called a Pareto-optimal point. So, 

beyond this point the test time is not decreasing. Only Pareto-optimal test width TAM 

width need to be considered. So, it is not required to consider all this TAM width. So, 

where this Pareto-optimal width is coming, so that has to be considered. Again if there 

are a number of points actually this, so some set of staircase behavior you have seen 

previously that at maybe for some time the TAM increasing TAM width does not 

decrease the test time, but after some step again there may be improvement in the test 

time with decrease increasing TAM width. So, that can happen. So, all those staircase 

points they are actually the Pareto point. 

So, we have to we have to considered the testing with respect to those Pareto-optimal 

points only. So, tests are scheduled at current time in decreasing order of preferred TAM 

width until no TAM width remains. You see that for every core we have seen, we have 

got this preferred TAM width. So the procedure, this is this is the heuristic actually for 

this bin packing of this SOC testing problem. 

So, here what is done at current time we try to see what are the preferred TAM width and 

then we try to allocate the core with the preferred TAM width till no width TAM width 

remains available. 



(Refer Slide Time: 21:41) 

 

Suppose this is the situation. So, this is the current time; so core 1 and core 1 preferred 

time is this one because that is because of the Pareto-optimality and all that suppose this 

is the thing. So, this one is put into the TAM. 

Now core 2: core 2 preferred core preferred rectangle is this one so it is put here. Now 

comes core 3s, can core 3s preferred time is this one, preferred rectangle is Pareto-

optimal point is this one, but it cannot be put here so I have to go to the next time. So, 

core 3, so this is the other rectangle. So, we see that this fits, so if we decrease that TAM 

width from here it has been decreased; so when you decrease it fits in to the thing, so it is 

put here. 



(Refer Slide Time: 22:34) 

 

Now, sometimes we need to increase the current TAM width. So, modify current 

rectangle that will benefit the most from an increase in the TAM width. So, this example 

let us see, so core 1 is put here core 1 preferred, core 4 preferred put here. Now we see 

that this is the current test time this is the current test time. Now they are I can put this 

core 2 preferred that rectangle. So, this much of TAM is now available. Now there I can 

put this core 3 preferred rectangle if necessary, but you see here this was the thing but 

here the remaining TAM width is not sufficient for putting any new core so we try to 

utilize this much of TAM using some other TAM of core 3. So, you see that here it 

change it so that it uses more amount of TAM line more number of TAM lines, but the 

test time is reduced. So, this is basically deviating from that preferred one. So, preferred 

one was given less TAM width, now this one is given higher TAM width but essentially 

the test time improves. 

So if idle time is inevitable; like at this point of time it may so happen that idle time is 

inevitable then we advance current time and repeat the procedure from the start. So, then 

the current time will be advanced, so it is here. Now you see that this cannot be modified 

further. So, it advances to the next point and from that point onwards again the 

scheduling will start. 



(Refer Slide Time: 24:10) 

 

Now in this situation; so this is the basic rectangle packing procedure. If you look into 

one thing that here you see that TAM width is not partitioned properly. So, you see that a 

typical example of this one; say this one- so here you see that there is no partitioning, no 

I cannot partition TAM into different partition. So this is basically the TAM width is 

going to be redistributed as we go to different cores. So, there is no partitioning of the 

TAM. So, partitioning is based solutions are not suitable for this bin packing approach. 

So, there we have to use the previous version that p w, p a w, p n p a w like that. 

Now after this we look into this the modern modifications in the ATE. So, so current 

generation ATE is, so they have got many interesting features like; port scalability, so 

the port can increase the speed of operation then the speed of up to 2.5 GBPS. So, these 

there are ATEs that can operate at a very high frequency and there is application 

flexibility. So, application flexibility means I may do some testing for some time then 

put some idle time, then again do some testing. So, like that there are application 

flexibility. 

So, every port of a tester it may consist of multiple channels and each of those channels 

can be configured at a particular data range. So, the same ATE it can send data at two 

different rates. So, if we can send data to a core at a high data rate and the core supports 

high frequency testing then we can transfer more amount of data to that core but, 

whereas for a slow core we cannot transfer all those test data to that core because that 



core will not be able to utilize those test data. So, then we have to send put them on the 

on the slower lines. 

So, that way we can think about different modifications to the basic test scheduling that 

we have done using bin packing or using partitioning so that it can take help of this tester 

features. 

(Refer Slide Time: 26:44) 

 

So, the first one in that category is known as virtual TAM. So, virtual test access 

mechanism. As the name virtual means that the actually the TAM lines are not more, but 

it gives an illusion that the TAM lines have been increased. 

So, embedded core test frequency is limited by scan frequency. So, this is known 

because these cores scan; so I cannot test at a core at a frequency higher than the scan 

frequencies suggested by the core vendors you cannot go beyond that. And this scan 

frequencies are kept low so that this power budget is made and the clock skew is 

avoided. So, this core is going to be tested at a lower frequency because that is guided by 

the designer specified scan frequency. And scan testing is normally done at a lower 

frequency because the scan will create large number of ripples in the chain, so if you do 

a test do testing at a lower it you can do testing at a lower frequency then this 

corresponding power consumption will be less. 



But this embedded that the ATE may operate at a higher frequency. So, we can use this 

virtual TAM to allow use of high frequency ATE pins. So, so we will see how can we 

match fast ATE data rates to slow scan frequencies. So, ATE is transferring data at a 

very high rate, but the core is doing the testing at a lower frequency. So, in that type of 

situation how we can improve the test time, so that is actually this virtual TAM 

philosophy. 


