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So, particle updation, this starts with the local best and global best information of the 

generation. So, local best as we have seen local best is the based over the entire 

generation for entire generations for which the particle has evolved so over its own 

history. And global best is the global best of the current population. So, if v i k is the 

velocity of the particle i at kth iteration, so at kth iteration the velocity of the particle was 

v k i. So, that is updated to v k plus 1 i using this formula. So, there are 3 factors in it, the 

first part of it is inertia, so there is an inertia factor w plus there is, so this is the 

difference in the intelligence, this is the current position of the particle and this is the 

local best intelligence of the particle. So, difference between them, so that gives the local 

knowledge like how far am I from the best position that I have known over the number 

of generations. 

And this second part is the is coming from the difference from the global best that 

current prop generations of this is the global best estimation, and this is the current 

position of the particle. So, over the so in the current generation among the number with 



 

 

the best position what is the position difference. So, this multiplied by this c 1 and c 2 

they are called confidence factors. And this r 1 and r 2, they are 2 random numbers 

between 0 and 1. C 1 is called self-confidence because this is actually contributing to the 

confidence that I have on my own history, and this c 2 is known as the swarm confidence 

or the social confidence because that gives the confidence over the global situation the 

global best situation. And this r 1 and r 2, so they are having some values so, they are 

randomly generated otherwise what will happen is that this c 1, c 2 values, so they 

multiplication factors they will remain constant, so that is not desirable for a 

evolutionary algorithm, so it is because of that. And w is the inertia factor. 

Basically a particle, so even if it wants to change, so when a bird is flying in certain 

direction, it cannot change its velocity all on a sudden, so that is because of that is giving 

contribution to the inertia factor. And based on its local intelligence and global 

intelligence, it tries to change its position by modifying the velocity. So, these are the 

other 2 factors. Now, once we have completed the velocity, since we are assuming the 

time is advancing in unit steps, so this next position of the particle x k plus 1 i is given by 

x k i plus v k plus 1 i. So, the first term in the first equation it represents the effect of 

inertia of the particle. Second term represents the particle memory influence. Third term 

represents the swarm influence. 

The velocity is now it may so happen that did you in some application, the velocity may 

become too large at some point of time. So, they have to be clamped at some times. So, 

velocities of the particles on each dimension, it may be claimed by a to a maximum 

velocity v max. So, if you compare the genetic algorithm with PSO, it is generally seen 

that GA has it has lesser number of tuning parameters and it is also faster than GA. And 

because of this main loop, it is just going over number of generations and number of 

particle, so that way the complexity is less. And it has been seen that in many 

optimization problems this particle swarm optimization it gives better result than this 

genetic algorithm based approaches. 
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So, what about this test vector reordering problem that we were looking into, and for that 

how can we make the particle swarm optimization formulation. So, suppose the number 

of test vectors is equal to n, so a particle is an ordering of this test vectors. So, if the text 

vectors are numbered from 0 to n minus 1, so the particle any particle is a permutations 

of numbers from 0 to n minus 1, so that is the particle structure that is taken for this 

reordering problem. 
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Next part is how can we change, how can one particle get modified. So, for that purpose, 



 

 

so one swap operator is used; so if this is the particles say particle P 1 is t 1, t 3, t 5, t 7, t 

4, t 2, t 6, so I have got this test patterns t 1 to t 7. So, in this example that pattern 0 has 

been excluded it has been taken from 1 to 7 that way. But whatever so if it is so to 

generate a new particle from this, so one possibility is to swap between 2 entries. Like I 

can have a swap operator that swaps between the entries 2 and 3, if entries 2 and 3 are 

swapped then you see it is the entry number 0, 1, 2, 3. 

So, t 5 and t 7 they will be swapped and as a result it can generate a new particle t 7, t 5, 

now so that is by a that is a single swap operator. So, we can have a sequence of such 

swap operators which you call a swap sequence like say swap of first operator is 

swapping between 2 and 3, second operator swapping between 0 and 4. So, like that I 

can have a sequence of operations, so that is called a swap sequence. So, on a particle 

you can apply a swap sequence to generate a new particle P new. 
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So, with this, what we can do when one particle tries to align with the global best or local 

best, it can find out what are the swap, swap sink to be done in this in this particle to 

align it to the local best or global best. So, as we are telling that in this case, here it is a 

pbest i minus x k i. So, this formulation is modified, because it is no more a velocity, but 

it is some sort of discrete operation. So, what you will try to do is that we try to directly 

align a particle with its local best. And for that purpose, so we find out how many if this 

operation is not a negation, but rather it is finding out like what is the swap sequence, so 



 

 

that this x k gate align to pbest. Similarly, in this minus operation is basically finding the 

swap sequence that will change this x k to the global best. So, that way this definition of 

this minus has to be modified. 

And similarly this plus operator, they are nothing but some concatenation of those swaps; 

like this one says that there is no change. So, that is here the he particle remained 

unaltered, so I can say that swapping is basically identity swapping where every position 

is swapped to itself, so that is a that is the first sequence swap sequence for this. For this 

part, I have got a swap sequence; and for the third part also, I can find a swap sequence. 

And then c 1 and c 2 multiplied by r 1 and r 2 respectively they can determine the 

probability with which this swap sequence will be applied on the particle. So, based on 

that, so it remains identical for this much of probability, it becomes align to this local 

best based on this probability and it gets align to global best with the probability of c 2 r 

2. So, that is how this formulation is slightly modified compared to a continuous PSO. 

So, this is basically a discrete particle swarm optimization that has been used here, where 

the swap sequence actually determines how one particle get aligned to the another 

particle. So, the swap sequence is actually the velocity part that we are talking about. 

Now, we can have now the second part of it is to find out this fitness function. So, how 

can we find the fitness function. So, one possibility is that we use a thermal metric for 

this fitness function. So, how can we find a metric. So, it is like this. Suppose, we are 

trying to find the criticality of a block Bi to be optimized thermally, its temperature needs 

to be reduced. So, we define the neighborhood of Bi, so neighborhood of Bi, it maybe 5 

neighborhood it may be 7 neighborhood. 
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Like, if this is the block, so you can take these as the neighboring blocks. So, all of them 

this constitutes a 5 neighborhood. So, all these if this is the block B, so these are all the 

neighbors. And you can also take 9 neighborhoods like including this. So, whatever we 

do now it may so happen here the blocks are very uniform in nature, but it may so 

happened that this block is like this, there is another block like this, and there is another 

block like this. So, these 2 also become neighbors for this block. 

So, if it is very regular if the block demarcation is very regular then you will get 5 

neighborhoods, 9 neighborhoods like that, but if the block demarcation is not that regular 

then you can get different types of neighborhood. But anyway, so we find out actually 

the blocks which are surrounding the block Bi, so that is the neighborhood of Bi then we 

find out. So, for every block we had previously computed some weight of the blocks. So, 

weight of the block was computed by applying a sequence of random patterns and 

finding out like what is the criticality of this block, what is the weight of this block by 

finding the temperature of this block and the maximum temperature. So, here that weight 

factor is those weights are added, so this weight of this for each block we find out this we 

take those weights sum them up and take the average. So, W bi is the average weight of a 

block. 

So, the once we have found out this average weight of a block, now criticality is defined 

as 1 plus W b minus W average i to the power minus 1. So, basically what we are doing, 



 

 

for a particular block, we are determining what is for a particular block we are 

determining, what is its average? So, average in the sense that if this block says very hot 

and this block is relatively low cool, this temperature is relatively cool, then there is a 

high chance that in actual operation, the heat will go in this way as a result this block will 

no more remain that much hot. Whereas, if his block is hot as well as its neighbors are 

hot then there is a very high chance that this block will remain a hot, and it will 

contribute a lot to the damage of the circuits. So, it may cause the circuit to be damaged. 

So, what is done we compute this parameter. So, if we look into this criticality value, so 

it is said that it is 1 upon 1 plus W b minus W average. So, average is the average heat 

that average temperature some measure of average temperature that we have in the 

neighboring blocks. So, if this difference is low that means, if this difference is low that 

means, this locks they are very high, their temperature values are very close to each other 

as a result their cooling chances are less. On the other hand, if this value is pretty high 

that means, though this block may be hot, but it surroundings are rather cool. So, it will 

not have that much effect in the heat generation process. So, it not build up that much of 

temperature. 

So, what we do, we find out the criticality measure, this block is critical to be optimized 

provided its surroundings are also hot, so based on that this criticality measure has been 

defined. So, it is 1 upon 1 plus W b minus W average i. So, this is one this factor one has 

been added because this value may become 0 or close to 0. So, just to avoid that 

calculation error, so this one has been added. Now, finally we have define the cost 

function that is for a entire test set, so that is for every block we take the weight of the 

block that is how hot it is, how important it is to be optimized with respect to the; so all 

other blocks in the circuit. So, they are the W bi is calculated previously multiplied by C 

i that is a criticality value multiplied by T i minus T bi initial. So, T i is the temperature 

of the block that is resulting from by that is resulting from applying the test pattern set; 

and T bi initial is the initial temperature set. So, based on this, we can compute the 

fitness. 
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Another way for computing the fitness function is to call the thermal is to call the 

thermal simulator within the particle swarm optimization itself. So, for a particular 

ordering, block level power test will be generated and fed to the hotspot to get the actual 

temperature trace. So, and then we find the peak block temperature. So, fitness is the 

fitness function that will try to minimize block peak block temperature, so fitness 

function is the maximum peak block temperature that we get and we try to optimize it. 

So, this way we can go for this thermal optimization. 

So, we have got one technique based on this cone based hamming distance measure 

minimization then we have got 2 the PSO based techniques one is by means of some 

thermal metric that based on some criticality measure, and the third one is a more direct 

method. So, here actually it is trying to integrate the thermal simulator within the 

optimization process. So, naturally the result of third one will be the best, but it will take 

more time for computation. 
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So, if you look into this graph, so you will see that percentage reductions if these are the 

reordering techniques. So, if you are doing this hamming distance based real 

minimization then this is reducing the temperature by about 3 percent. So, this PPM is a 

power peak power minimization process, so that actually does better than this hamming 

distance based minimization approach. And here it move goes more than 3.5 percent 

reduction. This basic PSO is that criticality based blocking factor, so that gives about 6 

percent minimization and this is the about 7 percent when we directly integrate hotspot 

thermal simulator with the PSO optimization technique. So, these results are obtained 

over a benchmark set of circuit ISCAS 89 benchmark circuits. And over that the average 

results have been reported. 

Next, we look into another way of minimizing this temperature during testing is via do 

not care filling. So, you already know that this do not care filling can be utilized for 

power minimization, but this can also contribute to temperature minimization. But one 

thing we must keep in mind that, we cannot go for this scan based minimization and all 

that because this scan the weighted transition metric based power minimization, so that 

does not have any effect here, because we need to simulate the circuit because it is very 

much dependent on the floor plan. So, we cannot directly say that if weighted transition 

count is less that means, temperature will be low, so that does not happen actually. 
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So, this is the way we approach this problem. So, we define some flip-flops. So, initially 

the circuit is divided into blocks as we have discussed previously. The circuit has been 

divided into blocks, suppose these are the various blocks, so we have got 4 different 

blocks here. Now, see suppose this is the block that we are considering. So, when this 

scan transition will take place, so all these flip-flops that we have in the blocks. So, they 

will be converted into scanned flip-flops. Now, when they are converted into scan flip-

flop, so there will be transitions in these scan flip-flops, so we just take some sort of 

measure like how critical is it flip-flop for a particular block. 

So, if a transition occurs in that block then, what is going to happen in the power and 

temperature profile of the block? So, we define something called the in the flip-flops in 

the fan in cone of a gate or a block. So, this is called the critical flip-flop. So, these flip-

flops like say any flip-flop which is inside the block, so that is definitely critical for that 

block because any transition there will affect the gates in that block. And also the flip-

flops in the previous stage like from this block this flip-flop is feeding this, so naturally 

this also becomes a critical flip-flop for this block and this also becomes a critical flip-

flop for this block. So, this way all the critical flip-flops are identified. 
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Once we have identified the critical flip-flops, then we apply 10,000 random patterns. 

Now, weight of a block is defined as total power seen at the block Bi, which is known as 

P bi random divided by power at the critical flip-flops of block Bi which is C bi. So, 

basically this P bi random, so we apply 10,000 random patterns and see what is the 

power consumed by this particular block. So, we can have some sort of power simulator 

which does this gate level simulation counting number of transitions and for every type 

of gate we can have gate and flip-flop. So, we can have an estimate like if this gate 

makes a transition then what is the power that is consumed, so that type of estimates we 

may have. And then by multiplying that by number of transition, so we can get some 

estimate about the power that is that will be consumed at that gate. 

By now by summing them up, so we can get the total power seen at the block Bi. These 

divided by power at the critical flip-flops of block Bi. So, this is that is the power 

consumed by the critical flip-flops. So, that means, a higher block weight it represents 

that the block will consume more power when transitions occur at this flip-flops. So, if 

the block weight is high that means, if this flip-flops make transition then more power 

will be consumed. So, if this weight is low that means, even if this flip-flops they make 

transitions not much power will be consumed of course, the that is taking into view that 

the total power of a block, so that is more or less the fixed and we are putting more 

emphasis on this in the critical flip-flops. 



 

 

So, critical flip-flop, if they consume a lot of power; that means, and if the critical flip-

flops consume lot of power and this power consumed of the block is also high that means, 

this ratio will be close to 1. So, in that case this factor will be the value will be high, as a 

result it will be weight of the block Bi will be high so that means, the block will consume. 

So, these flip-flop transitions will cause more power consumption in the block. So, 

during scan transition or during test application process, we have to try to reduce this 

number of transitions in these flip-flops. 
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Then you take a power estimator metric. So, we accurately measure the power behavior 

of the circuit. So, defined with respect to a particular set of fully specified test vector, so 

what is this pa power estimation metric is the weight of block Bi either is W bi 

multiplied by power of critical flip-flops of block Bi after application when a fully 

specified test set to the cut T bi. So, after apply applying this, so these weights of the 

block multiplied by this power of this critical flip-flop, so that is giving us some estimate 

about the power some estimating power of the block. 
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Now, for thermal behavior estimations, so what we do we define something called 

criticality. So, it is an index of thermal gradient between block and its neighboring ones. 

So, it is to some extent similar to what we were discussing previously. Blocks with 

higher criticality will get better attention compared to one with lower values of criticality. 

So, this will be the first function that we will consider. 

(Refer Slide Time: 22:17) 

 

So, criticality of a block is defined as, so this is the power P bi, P bi is the power 

consumed by a block Bi, and this P ne Bi is the power consumed by the neighboring 



 

 

blocks of the block Bi. So, block A has neighboring block B and C; block b has 

neighboring blocks A and D, so like that we have got this thing. So, criticality of a block 

Bi in 2 D, so this is P bi plus P ne Bi, so this is the power consumed when those test 

patterns have been applied divided by N plus 1. So, N plus 1 is the number of; N is the 

number of neighboring blocks of a block, so that is plus 1 has been added to avoid this 0 

factor. So, P ne Bi is the total power of the neighboring blocks of Bi, and this P Bi is the 

power of the current block and ne Bi is the power of the neighboring block, n is the 

number of neighboring blocks. 

Now, for 2D, we have got in only the current plane we have got neighbors. For 3D, we 

may have neighbors in the other levels as well. So, this is basically so and also the layer 

factor becomes an important issue because in 3D we have got multiplayer design and the 

layer which is close to the heat sinks, so that is the heat generated there is much less 

compared to the heat generated at the upper layers, where it is away from the heat sink. 

So, that way this layer number has got an important role. So, a block which is located a 

high, so that will be that will be consuming that criticality is high compared to a block 

which is located down words in the lower layer which is close to the sink, and then this 

layer factor layer number factor becomes an important part. So, that is why in this cost 

function this layer number part has been introduced. So, l bi is the layer number of the 

block Bi and n is the number of the neighboring block that we have already seen. So, this 

way we define the criticality. 
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Now, fitness function that we used to minimize temperature is to we try to fill the do not 

cares bit in test pattern such that it will minimize the fitness function. So, this is the 

maximum of this criticality value. So, once we have defined this criticality values for 

every block, so then we try to maximize the criticality value that will this maximum 

criticality value. So, that sorry this maximum criticality value that we try to minimize, so 

fitness function it will try to minimize this maximum criticality value. 
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So, the algorithm that is used is some sort of bit flipping. So, it says that we have a 

particular bit in the do not care in the test pattern say, so we will try to sleep it and see 

whether its effect is reducing the criticality value or not. So, to start with, we fill the test 

set using different filling techniques a 0-fill, 1-fill, random fill, empty fill. So, 0-fill 

means whenever we have got a do not care bits, so fill it with 0. So, 1-fill means fill it 

with 1; random is randomly filling. Empty fill is the minimum transition fill the 

minimum translation fill means if the neighboring bits are bit is 0, then the x bit it will be 

filled with 0; the neighboring bit is 1 it will be filled with 1, so that is the empty fill 

algorithm minimum transition fill algorithm. 

So, these are the well known techniques for do not care filling. So, we find out for every, 

so the given a test pattern set, we fill out this test patterns using this techniques and we 

calculate the criticality of every block which we call C. Now, what we do for every x bit 

that we have in the test pattern set we flip the bit from its originally filled value to the 



 

 

other one. If it originally filled value was 0; it becomes 1 and vice versa; if it is was 1, so 

it becomes 0. Then you calculate this criticality of the value again C and store it in the 

variable temp C. Now, if this new criticality is max this C is actually that maximum 

criticality among all the blocks, so this that we have seen previously that they have cost 

function. So, this temp C, if this temp C is less than this C that means this flip was 

beneficial. So, we retain the flip otherwise we change the bit to its initially filled value 

and restart the process. 

So, this way this algorithm works. So, it is it is a very greedy technique. So, starts with 

best possible filling pattern out of these well-known filling patterns 0-fill, 1-fill, random 

fill, empty fill, and then it tries to change every x bit to its complement value. And see, 

what is the effect? What is what is happening to this criticality value, the criticality value 

is improving then it is accepted. We will continue in the next class. 


