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In PODEM algorithm, the basic idea is that instead of this G frontier of this D algorithm, 

we take it to the primary input. 
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For a particular point to be justified, we figure out the primary inputs that are responsible 

that can control the value at that point and then try to set the primary input to some 

appropriate value. So, for example, in this particular circuit, the target fault is f stuck at 

0, those, the first objective will be to set f to be equal to 1 so that to achieve the target 

fault, the f should be the line, f should be set to equal to 1. So, if we back trace from this 

point, we come to the point c. So, it generates the back trace routine. So, it generates 

another objective which is c to be set to be equal to 0. So, since it is a primary input. So, 

it can be easily set to 0. 

Now, we simulate the case c equal to 0. So, when c equal to 0 is simulated then this D 

frontier becomes this line g, the D frontier can proceed to g and some gates have been 



assigned like as you have proceed, as you are simulating c to 0. So, c, d, e, h, all these 

lines; they get the value 0 and the line f it gets the value d. 

Now, we have to advance this D frontier further that is the second objective that comes 

up you have to advance D frontier further. So, if you want to progress this D frontier 

from f to g, I have to set the corresponding objective that comes up is setting a equal to 1. 

Now, we back trace from the object. So, a equal to 1, this is nothing to be back traced, 

we just simulate for a equal to 0. So, simulate a equal to 1, it simulate for a equal to 0 

and this will make it this line to for progress sorry, this should be a equal to 1, simulate 

for a equal to 1 and then that will propagate this f to g and that that g to z. So, that way 

fault will be get fault will get detected at z. 
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Another example that we can look into is that we target that b stuck at 0. So, at to a to 

excite the fault we have to have b equal to 1 that is the first objective. So, if we back 

trace, we get a equal to 0 to be the objective. Now you simulate for the event a equal to 

0, now we see that b becomes equal to d because that is the point to be fault has to be 

traced and then since a equal to 0, c becomes equal to 0 and d becomes equal to 0. So, D 

frontier becomes empty. So, you have you have to backtrack, we backtrack now we have 

tried with a equal to 0 decision we backtrack and try to consider a equal to 1 decision, 

now if you simulate for a equal to 1 then also b becomes equal to 0, c equal to 1, d equal 

to 1 and the D frontier still empty D frontier vanishes. In fact so that see that there is no 



more backtracking that can be done. So, it is a this fault become untestable. So, that is 

the operation of the PODEM algorithm. 
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And improvement of PODEM algorithm is the fan algorithm. So, what it does is that it 

extends the PODEM algorithm. So, there is a concept of headline. So, headline is that 

whenever we come to the point where the; we come to the fanout free cone. So, that is 

called the head line. 

That is 1 advancement we do because if we have got a prior combinational cone; that 

means, all those the output can easily we satisfied like if I have got say a cone like this a 

cone like this. 
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Then to get a value at this point since it is a combinational logic. So, it is very much 

possible that I will be able to set this primary inputs to some values for that either 0 or 1 

whatever we are looking for can be set at this point so; that means, if we are ca if you 

have reached this particular point in this entire circuit when we are back tracing. So, if 

we reach in this particular point. So, there is no necessity to trace back and we are try to 

justify at the primary input knowing fully well that this part can easily be done and there 

exist a solution for this part. 

That is, this once we reach this headline we do not need to backtrack further another 

thing is that multiple objectives maybe for multiple objectives will be pursued 

simultaneously because what happens is that if we pursue with one objective. So, it sets 

some of the primary inputs some to some value later on we have to pursue some other 

objective and that may give rise to conflict. So, if we can pursue more than one objective 

simultaneously then possibilities of conflicts are less. So, these 2 are the extensions in 

the fan algorithm compared to PODEM. 
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As I was telling that headlines output signals of fanout free cones like in this particular 

circuit. So, this point x is a headline point y is also a headline because they are the output 

of this particular fanout cones. So, x fanout cone is consisting of these nodes a, b, c and d 

primary inputs and y’s fanout fan in cone consist of e, f, g and h. So, this all the fanout 

free cone, this is a fanout free cone. So, there we have got the headline any value on 

headlines can always be justified by the primary input since it is a combinational logic. 

So, it must be justifiable, otherwise this is only the reverse or the non justification can 

occur only if the circuit is not design properly, but assuming that we when we are going 

to the testing phase the circuit has been circuit is well design. So, naturally we can 

always find some primary input combination which will make the headline point to be 

true or false as per our requirement. 

If you are doing some fault test pattern generation then we can for example, if we are 

trying to generate some test pattern for z. So, once you come to the point x and y, we 

know that rest of the thing can be done easily. So, we can reduce the number of back 

traces to the headlines only we do not need to go further. 
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Multiple objectives like in this particular case suppose we have got 2 objectives, k is to 

be set equal to 0 and m to be set equal to 1. So, these are the 2 objective. So, if we 

proceed with 1 objective at a time for example, if we try with k equal to 0, this objective 

has to be satisfied. So, if we come, maybe we will choose b to be equal to 0 though there 

are other options by going through the inputs of this or gate and all that, but suppose the 

algorithm picks up the b input first and it justifies k equal to 0 by setting b equal to 0, but 

when is simulate b equal to 0 we see that this m becomes equal to 0. So, there they give 

rise to a conflict. So, it conflicts violates the second objective m equal to 1. So, we have 

to make the back trace algorithm more intelligent. So, that this future conflicts can be 

avoided. 
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This fan algorithm is actually doing that. So, it is a having; it is a progressing with 

multiple objective simultaneously. So, that it can avoid those future conflicts to a great 

extent. So, the detail of fan is same as the other algorithm the basic cracks of the 

algorithm we have discussed. Now apart from these algorithms say test generation 

algorithms there are certain procedures which helps in the test generation process there 

are certain techniques that have been introduced into this a test generation process. So, 

that this ATPG algorithms they can be made faster. 

The first of the first one of them in that category is the static logic implication. So, it can 

help ATPG make better decisions because it will have the ATPG algorithm will be fad 

with some information. So, that it can take quick decision on the on the selecting the 

inputs to be justified, it avoid conflicts reduced number of backtracks. So, these are the 3 

outcome, if I can do some sort of logic implications calculated. So, we will see what is 

the logic implication? So, the idea is that what is the effect of asserting a logic value to a 

gate on other gates in the circuit? So, we randomly pick up 1 gate and try to see that if I 

want to set this particular gate point to be equal to 1 then what is the implication on other 

gates that are there in the circuit? So, other gates in the circuit means some maybe if it is 

if this output is feeding an OR gate then irrespective of other inputs to the OR gate. So, 

OR gate output will become equal to 1. 
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That way we can figure out the certain values for the logic gate outputs whenever a 

particular gate input or some other gate output is set to be some proper value. So, first we 

will consider the direct implication. So, direct implication, this is an example circuit 

consisting of many inputs flip flops, etcetera, now you see that if we are, if we force this 

line f to be equal to 1 then what happens if we force this f line, f to be equal to 1 then we 

immediately get d must be 1, e must be 1, g must be 1, j must be 1 and k must be 1. So, if 

an ATP, this competition is done before and that is if I said f to be equal to 1, these are 

the things that are going to happen, these are the different line status that are going to 

happen. So, how does it help? So, if in my ATPG process, if it is some at some point of 

time we need to set f to be equal to 1, we immediately know some of the other signal 

lines what are their value? So, whether it gives rise to conflict or not? So, that can be 

checked very easily. So, we do not need to do a simulation for f equal to 1 or both in the 

forward direction and backward direction. 

They are these are called the direct implication because by doing 1 step we can get the 

implication of it direct, similarly if I say j equal to 0 then it direct implications are h 

equal to 0, g equal to 0, f equal to 0, w equal to 1, w then w should be equal to 1, sorry, 

this should be x not w, x is equal to 0 and z equal to 0. So, that will be the implication. 

So, direct implications for given any signal, if we give it some value then these are the 

various are the signal values that will occur. So, you can come to a direct implication for 



all those signals. So, you do not need to calculate them again at the time of generating 

the test pattern set. 
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Now, there are some indirect implications as well. So, direct implication. So, it is one 

step. So, basically if we are coming back to the previous example like when we are 

computing direct implication for f equal to 1, we find that these are the points, now 

indirect implications of f equal to 1 or obtained by simulating the direct implication of f 

equal to 1.  

So, if you simulate these cases a d equal to 1, if e equal to 1, g equal to 1, j equal to 1 and 

k equal to 1 then what will happen? I will get x equal to 1. So, x equal to 1 is the indirect 

implication. So, which is obtained by when we are simulating this direct implication 

because j and g both are j and k both are equal to 1. So, x will be equal to 1. So, this is an 

indirect implication of f equal to 1. So, indirect implication competition is slightly more 

complex because now we have to take all the direct implications and advanced those 

direct implications 1 step further. So, that is the indirect implication. 

Indirect implication; this direct implication and indirect implication, if we repeat this for 

all nodes in the circuits, in this case, we have shown only for the line f equal to 1. So, if 

we repeat this process for all nodes like d, e, j, k, w, x, y and z; if you repeat it for all the 

cases then for every node we have got idea about what will happen if I said that 

particular node value to 1 or if I said that particular node value to 0. 



That way it becomes easier in the test generation process. 
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Then there is extended backward implication. So, what it says is we first compute the 

direct and indirect implications for f equal to 1. So, that is here d equal to 1, e equal to 1 

up to x equal to 1. Now extended backward implications are obtained by enumerating 

cases of unjustified gates like we said that d will be equal to 1, like for setting f equal to 

1, one implication is d will be equal to 1, but its input a and b there, till unjustified. So, 

we can we can say that this is d equal to 1 is an unjustified case. 
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We need to backward back trace further. So, in order to justify this d equal to 1, we will 

need either a equal to 1 or b equal to 1. So, either of them are equal. So, we can say that 

simulate a equal to 1 with the implication of f equal to 1. So, this is the set S a and 

similarly if we simulate b the other possibility was a b equal to 1. So, if you simulate b 

equal to 1 for the implication of f equal to 1, we get the set of gates which is S b. 

Now, if we take intersection of these 2 sets S a and S b then we get that it is the set of 

extend extended backward implications for f equal to 1, we will see that if you simulate, 

this S a and S b, say a equal to 1, then b equal to 1, then this f is already equal to 1, then 

all these values be a becoming equal to 1 ultimately z becomes equal to 0. 

Similarly, if we simulate S b that is if you simulate this particular case b equal to 1 for 

implication f equal to 1, we get the set of symbols S b. So, if you take intersection of S a 

and S b, we will see that z equal to 0, will come into the thing. So, it means that f equal 

to 1 sets z, z to be equal to 0. So, you see that these, once you do first to do direct 

implication then indirect time implication then we do an extended backward 

implications. So, that way the almost entire circuit we will get covered. So, if there are 

some possibilities that some of the signal values will get some definite value. So, that can 

be obtained by doing this process. 

This process procedure will be repeated for every unjustified gate as well as for every 

node in the circuit. So, if we do that then we get a fair idea about what is what is going to 

be happen what is going to happen at various signal nodes various signal nodes in the 

circuit when we are putting a particular line to a particular value that is this whole thing 

as happened when we are a trying to push f equal to 1. So, what is the implication of f 

equal to 1? By doing this process we can figure out. 
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Another one another implication is known as dynamic logic implication. So, it is similar 

to static logic implication, but has some signals already assigned values. So, in case of 

static logic implication, we were assuming that only the one particular implication like f 

equal to 1, that is known and rest of the thing, we were trying to drive, but in this case, 

we will assume that some signals are also have some value like say suppose c equal to 1 

has already been assigned. So, c is already equal to 1 then if you want to get z equal to 0, 

b must be equal to 0. 

This is the intersection of having either d equal to 0 or e equal to 0, in the presence of c 

equal to 1. So, in the presence of c equal to 1 or in the presence of this c equal to 1 

assignment, we are trying to get z equal to 0. So, what is the implication of that? 

Implication of that says that that b must be equal to 0. So, that way that is a dynamic 

implication compared to static, static did not assume any other signal value for any other 

primary inputs, but in case of dynamic logic implication. So, it assumes that some of the 

input lines are already been assigned. So, in with respect to that it is trying to simulate try 

to find the implication of some sig signal lines set to some value. 
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Another example suppose b is equal to d, if you want to propagate this fault effect to z, f 

must be equal to 1, b equal to b, it this f must be equal to 1 and if you want to take this 

further, the intersection of all necessary assignments of all fault effects in the D frontier 

can be taken. So, we can take these D frontier like this is a D frontier then e is a D 

frontier. So, if you are trying to propagate them then by setting, we if you take 

intersection of them then this you can find the implication dynamic implication. 
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Another way of speeding of this fault this test pattern generation process is the 

evaluation frontiers. So, it says that evaluation frontier is like this. So, for a particular 

fault F, I suppose at some point of time we find that these are the evolve this is the 

evaluation frontier that is these lines must be set to these values this point 1, this point d, 

this point 0, this point 1, this point 0 and for this these are the inputs that have been that 

needs to be assigned to some value now for. So, this has to be forwarded because this 

fault effect, these d has to forward to some primary output similarly these 1 0, they have 

to justified and all that. 

Now, if it is found that 2 faults are same E frontier with at least 1 fault effect then the 

values on the unassigned primary inputs can be the same. So, this is a result from some 

paper. So, what it says is that if you find there are at there are 2 faults having same E 

frontier. So, if it is same, if for 2 faults in E frontiers are same; that means, we can assign 

we do not need to if we have already computed the primary inputs for the first fault we 

do not need to compute primary inputs for the second fault because for the E frontier. So, 

same set of assignments can be done. 

If we maintain the list of, if you maintain the list of E frontiers for all the fault that we 

have processed So far, whenever we are trying out with a new fault. So, you and if you 

see that E frontier is becoming same with some previously computed E frontier then we 

can directly take the input assignment part from the first test pattern. So, that way the 

process of this test generation may be made faster. 
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Another very important issue in this ATPG algorithm is to identify what which faults are 

untestable otherwise what will happen is if a fault is untestable and ATPG algorithm will 

go on running this backtrack routine and all that it will try to explode the search space in 

more and more detail, but since the fault is untestable. So, it will never be able to find the 

particular pattern any particular pattern for that. So, this is the wastage on the part of the 

this test generation faults. 

We need to identify the untestable fault. So, if we can do this untestable fault 

identification fast then we it is going to help us in the test generation process. In fact, any 

ATPG algorithm you run. So, if the circuit has got some untestable fault it reports these 

are the untestable faults in the circuits. So, we definitely does some analysis to figure out 

what are the untestable faults in the circuit. 

Untestable faults are those faults that could not be excited. So, this is one possibility. So, 

the fault could not be excited or the fault could not be propagated. So, basically what 

happens is if this is the circuit and there is a fault at this point, now one possibilities that 

the fault is such that I cannot excite this fault. So, this line stuck at 0, I can never put a 1 

value at this point. So, due to the logic that it that it is having, it is not possible to put a 1 

at this point. So, that is that way it becomes an untestable faults. 

Another possibility is that it is not possible to take this output take this observation to 

some primary output. So, it is not possible to propagate this fault to some primary output. 



So, this is another case where the fault become untestable other possibilities that is it 

cannot be simultaneously excited or propagated. So, those fault that could not be 

simultaneously excited or propagated. So, naturally they are also untestable fault. 
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Now, naturally the problem are ATPG will spend lot of time trying to generate a test for 

an untestable fault. So, if we have got a fast identification of untestable faults. So, it will 

allow the ATPG to skip those faults. So, it can try it can avoid those faults and try to 

generate test pattern for the remaining faults. 

The work by Iyer 1996; that is the fire is it is a tool that has been reported. So, it is based 

on conflict analysis. So, what it does let us say, S 0 is the set of faults that are untestable 

when signal line S is equal to 0 these faults required S equal to 1 to be detectable. So, 

these, when S equal to 0, I need to detect the fault, what this they will require because we 

are trying to check for 0, we must we must get a 1 at this line. So, these fault must 

required S equal to 1 to be detected. 

Similarly, S 1 is the set of faults that are untestable when signal line S is equal to 1 and 

these faults will require that S equal to 0 value must be coming to for the fault to be 

detected. Now if there are some faults which are common in both of these sets S 0 and S 

one. So, the faults which are not which become untestable with S equal to 0 maybe 

testable with S equal to 1 and vice versa the set of faults which are untestable under S is 

equal to 1 maybe testable under S is equal to 0. So, if there is some faults which is 



common in both the sets; that means, it is neither testable with S equal to 0 nor testable 

with S is equal to 1. So, these faults are simultaneously. So, they will require 

simultaneously S equal to 1 and S is equal to 0. So, they become untestable faults. So, 

these are this is the basic logic by which we compute the setup untestable faults. 
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Like say this one, if we have this line implication of b equal to 1. So, b equal to 1. So, it 

will set b equal to 1, b 1 equal to 1, b 2 equal to 1, d equal to 1, then x equal to 0 and z 

equal to 0. So, this is the implication of b equal to 1.  

Now, faults which are unexcitable when b equal to 1 you know b equal to 1, the faults 

we cannot check b stuck at 1 because this will required b line to at 0, similarly we have if 

we see if we want to check b 1 stuck at 1 that is also not possible because I need a 0 at 

this point which is not do not possible similarly b 2 is stuck at 1 d stuck at 1 x stuck at 0 

and z stuck at 0. So, these line this faults cannot be excited by when b is equal to 1. 

Now, because b equal to 1, you will always ensure we will always make z equal to 0. So, 

after computing this implications set after computing this implications set you can say 

that for b equal to 1, all these all these faults reliance which are on the implication set. 

So, they become untestable they are unexcitable. 

Similarly, we can also find out the faults which are unobservable when b equal to 1. So, 

that is a equal to 0, a equal to 1, e 1 equal to 0, e 1 equal to 1. So, this set is the faults that 



are unobservable similarly. So, naturally the faults which are undetectable when b equal 

to 1 are is the union of these 2 sets there faults that are unexcitable and faults that are 

unobservable. So, that gives us the faults which are undetectable with b equal to 1. 
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Now, if we consider the other case that is b equal to 0. So, this is the implication of b 

equal to 0, b equal to 0, b 1 equal to 0, etcetera and then faults which are unexcitable 

when b equal to 0 is basically for from this implication set faults that are unobservable 

when b equal to 0. So, if you propagate through the circuit will find the c equal to 0 and c 

stuck at 0 and c stuck at 1. So, these are the 2 faults that cannot be observed when b is 

equal to 0. So, if you take union of these 2 sets. So, you will find out the faults which are 

undetectable when b equal to 0. So, this is the set. 
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Now, we have got the set of faults which are undetectable with b equal to 1 and b equal 

to 0. So, if we take, if we take intersection of these 2 sets. So, we take intersection of 

these 2 sets,, we get b 2 stuck at 0 c stuck at 0, c stuck at 1, e stuck at 0, e one stuck at 0, 

e 2 stuck at 0 and y stuck at 1. So, these are the faults which are common in both the sets 

b equal to 1 and b equal to 0. So, these faults are actually untestable faults for these 

circuits. So, you see for this even for this small circuit there are so many faults which are 

untestable. So, if you have got a big circuit. So, you can imagine like how many faults 

maybe untestable. So, if we can detect those untestable faults fast then naturally we will 

be able to make our ATPG run faster than cases where it will try to generate test for this 

untestable faults as well. 


