
Digital VLSI Testing

Prof. Santanu Chattopadhyay

Department of Electronics and EC Engineering

Indian Institute of Technology, Kharagpur

Lecture – 02

Introduction (Contd.)

 (Refer Slide Time: 00:22)

So, the design verification stage, so what we do we verify whether the system has been

designed properly or not. So, how do we verify? So, there can be 2 approaches for that,

one is by means of some formal verification tool that will be proper be verifying some

properties on the design system. And another easier technique for doing it is via

simulation. So, simulation so this will be applying some stimulus to the description, and

it will see whether the result that is produced is as per the desired one. So, simulation

tools are available and simulation is much easier to do, because formal verification so we

need some formal logic background, so that all the designer may not be having. But the

simulation is more or less now the standard technique for doing this thing.

So, design errors in behavior or the register transfer level description, they can be decide

found out by the simulation. So, at this behavioral level and the register transfer level, so

they are actually we simulators are run, and the same stimulus is fade to both the

stimulus both the stages as a result we can get the response from them, and check

whether the responses do match between the 2 stages. So, that if the response is match

that means this translation from behavior to register transfer level that has been done

correctly. If it is not then there is some problem in this translation process, so that has to

be rectified. So, that way these design errors can be detected.

Similarly, after this rejecter transfer level. So, we have got this gate level description,

where this if the total RTL description is flatting into gates and we have got a gate level

net list for the system. So, for this gate level net list, so we can again the run the

simulator and see whether the system behavior is matching or not. And finally, at the

physical level the transistor. So, there are some transistor level simulator like spice, so

that can be run at the lowest level, and then we can see whether it meets the requirements

of the system or not. So, that way at every level the simulators are used wildly for getting

confidence about correctness of the system. But still up to this much we have got only

descriptions. So, it is at the physical level also this nothing, but a transistor level

description of the system, this is not the actual chip that is manufactured.

(Refer Slide Time: 02:54)

So, as a result when we go to the manufacturing stage at that point at after each level of

manufacturing, we need to test whether the manufacturing process is correct or not. So,

design this simulators they can catch the design errors, and this testing processes they

can catch manufacturing errors. So, we have got some parameters like yield. So, it is

defined as the number of acceptable parts to the total number of parts that are fabricated.

So, this ratio is called yield; naturally we will expect as in the manufacturing process

thus that yield should be maximized.

Now; so, the number of chips that we discard that you had to discard as faulty, they

should be minimum. Now there are 2 types of yield loss that can happen Catastrophic;

catastrophic they are due to some random defect. So, it maybe some defect in the vapor

at some point. So, that cannot be avoided. So, that is one type of problem and the

parametric problem because some parts may not be fabricated properly as a result there

is the gate of a transistor might not be the of exact link that we were looking for, as a

result it leads to some problems. So, these are known as parametric variations. So, they

are the process variation and they come under this parametric yield loss. So, the result

undesirable result during testing. So, these are the problems; like if my testing process is

not proper then these things can happen. If faulty chip may appear to be good; so if it is

happens then a faulty parts, so that will be shipped as a good chip and when this chip will

be put into field operation, at that point of time at system level it will give problem.

So, at a system level we have to take care and by the rule of tense we know that by the

time the cost of this miss testing will be very high; because that will be our that may

cause rejection of the full system. So, this is the reject rate. So, this number of faulty part

passing final test that is they declared falsely as correct, and the total number of parts

passing the final test. So, it is the number of faulty part that are passing, the ratio of

faulty parts that are passed, that has passed the final test. So, that is the reject rate and

another problem that can occur is some good chip that may appeared to be faulty.

So, chip is actually good, but they failed the test. It can happen due to various reason

major problem is with power and temperature by issues like say maybe that it consumes

good amount of power as a result that temperature also goes up and that delay variation

occur. So, and also some points in the circuit if. So, it may not be very easy to test and

we may try to taste it and we may fail. So, as a result we that may also be taken as some

good chip appearing to be faulty; so this is also an undesirable thing. So, that should not

happen.

So, this can happen due to poorly design test, maybe the test pattern that we test pattern

that we apply. So, they are not sufficient to they can they have the problem with the good

responses for some fault, even if the fault is not present. So, it sometime maybe creating

difficulty and lack of this design for testability mechanism. So, that may also cause some

good chip to appear as faulty. So, these are the 2 things that we would like to avoid.

(Refer Slide Time: 06:39)

Now, in the system manufacturing process; a system consist of PCB’s that consist the

PCB will again contain this boards. So, that board will be they are actually the boards so

on that board will have the VLSI devices of the chips. So, PCB fabrication is similar to

VLSI fabrication, because in the VLSI fabrication we are putting several layers of

polysilicon and diffusion and all that. So, here also we are doing same thing at different

parts we are putting the chips, and then we are making copper connection between them.

So, they are susceptible to defect like 2 lines running parallely on the PCB, so there may

be cross talk. So, there may be interference between them. So, as a result it may create

problems, so at some point of time that copper line that we are drawing, so there maybe

some break etcetera.

So, this is this is necessary. Similarly assembly process so that also susceptible to

defects, so testing process has to be there in all these stages. So, PCB fabrication level,

PCB assembly level, unit level assembly and system level assembly at all this state

stages we have to do this testing. So, at PCB level board test, PCB assembly level also

we have got board test, now then at unit level unit test, and system level system test. So,

if we can detect fault early then we can avoid the losses.

(Refer Slide Time: 08:11)

So, at a system level, so faults will occur during system operation. So, if say this is the; if

we plot the time the lifetime of a system. So, over the lifetime maybe from 0 to time t 1,

from t 0 to t 1 there was no problem with the system that is normal operation. Then a

time t 1 some problem occurred and it required some time t 1 to t 2 for its recovery. So, it

may recovery maybe from various angles, it may be some transient fault or it may be that

there is some fault mitigation technique incorporated into the system so that takes care.

Again from t 2 it starts operator or maybe the maintenance person, so take some measure

by which this is corrected the system is corrected and then from t 2 to t 3 again it works

normally then a time t 3 it fail. So, this is the; so these times t 1 to t 2 then t 3 to t 4, so

these are the failure time, so at this time the system is not available.

So, there is an exponential failure law. So, it says the interval of normal system operation

is a random number exponentially distributed. So, if we want to find the probability that

the system will operate normally till time t, then we have got this probability expression

that after till time t it will be this if time of failure is more than t. So, this is given by e to

the power minus lambda t; by this exponential failure law, so the failure rate. So, since

my system may consist of a number of chips. So, for the portal system, so I can say the

failure rate is the sum of individual failure rates. So, total lambda is given by some of

these lambda is. So, if I have got k number of components, so this sum of these k

components.

(Refer Slide Time: 10:09)

Then there is mean time between failure and MTBF. So, we to find it, so we can say that

this repair time is also assumed to be it will follow this now exponential distance. So,

MTBF is given by this expression. So, it is in integration of that failure time, e to the

power minus lambda TDT. So, if we integrate over 0 to infinite times. So, this is 1 by

lambda. So, this meantime between failure is 1 by lambda; and repair times. So, this is

also assume to be exponentially distributed, and if mu is the repair rate then the

meantime to repair MTTR is 1 upon mu. So, system availability that how much time the

system is available, so this is between basically the meantime between failure divided by

the total time for the system. So, these MTBF divided by MTBF plus MTTR.

So, this is a fraction of time system is operating normally. So, that is system availability.

So, high reliability systems, so they should have these availabilities more than 0.9999.

So, it is a very high requirement that we have, that a system must be available almost

99.99 percent times. So, this is referred to as law of four 9s because 0.99999 that is why.

(Refer Slide Time: 11:31)

So, at a system level testing so testing is required to ensure that the system is available.

Now there are the types of system level testing like online testing and offline testing. So,

online testing is the when we doing the system the system is operating and

simultaneously with we are doing the testing. So, we capture some data from the system

operation and try to analyze and see whether the system is working correctly or not. So,

that is the online system and offline testing. So, this is here also the system is operating,

but we stop the operation temporarily for some time and then we do the tasting at that

time.

So, when the system is not doing some high demand job it is doing some low demand

work then we can suspend that low demand work for some time, and we can do this

testing for that. So, this can be used for diagnosis; so of the faulty replaceable

components that we can replace and that can improve the repair time. So, this system

level testing is done both online and offline. So, there are test techniques for both of

them.

(Refer Slide Time: 12:47)

Then comes the problem of test generation. So, what is a test? A test is define to be a

sequence of test pattern that is a set of pattern, that they are also known as test vectors

that are applied to the circuit under test; and we apply the pattern of a pattern set and

then you see what is the output. So, for set of input patterns there will be a set of outputs,

now the set of output so they will be checked with the correct responses.

So, if we find that the responses are correct the same as the called correct response or

golden response, we say that the circuit under test is functioning properly, so this is

tested. Now there can be many approaches by which we can do this testing one possible

approach is exhaustive testing. So, we apply all possible test patterns to the circuit for if

a circuit got 10 inputs and assuming that all these 10 are so they are binary input, then we

have got all possible patterns. So, 2 to the power 10 different possible patterns that can

come as input to the system. So, for all this 2 power 10 patterns. So, we check whether

the output produced is as desired or not. So, that is known as exhaustive test testing. So,

all possible now test pattern are applied to the circuit and the responses are checked.

Naturally the cost of such a testing is very high like for 10 input I can apply 2 power 10

patterns. So, so if I have got 100 inputs, I have to apply 2 power 100 pattern, the 1000

input 2 power 1000 patterns. So, that takes the test cost to be enormously high. So, we

cannot go for that. So, exhaustive testing is normally done for small systems and which

are very critical. So, maybe number of input are less, but the operation is very critical.

So, you can go for exhaustive testing.

Functional testing; so testing every truth table entry for a far combinational logic cart, so

we can go for at the truth table entry, where it says that it is a 1. So, we apply those

patterns only and see whether it gives work or not. Similarly over the when the truth

table says it is 0. So, we see apply see whether it is giving a 0 or not. So, they are not

practical. So, both this exhaustive testing, functional testing, so they are not partial. So,

what is happing is functional testing we are looking at a functional level. So, it maybe

not be true at a gate level operand. So, entire combinational logic so we are testing that

way. But for exhaustive testing, so it may be testing each and every gate in the circuit

exhaustively. So, that way it we there is a difference, but in both the technique. So, they

are going to take exponential amount of time.

So, fault cover. So, what is the way out? So, way out is to apply only a subset of text

pattern not all this exhaustive pattern. So, if we apply a subset of test pattern naturally we

cannot expect that all that possible faults in the circuits they will get tested, only a part of

it will get tested. So, that gives us a measure called fault coverage. So, it that is how

many of faults can be deducted by the set of applied text vectors. So, if we want that we

this fault coverage should be as close as 100 percent, but it is very difficult to achieve.

(Refer Slide Time: 16:18)

Next we look into that test generation processor. So, fault coverage as I was telling. So, it

is defined as the number of detected faults divided by it a total number of faults. So, for a

given test vector set, so this is the measure of fault coverage. So, 100 percent fault

coverage maybe impossible due to some undetectable faults. So, we will see what is an

undetectable fault essentially what it means is that due to some redundancy in the circuit,

so some faults can never be excited by applying some patterns.

So, as a result so we cannot test those fault. So, that way there is a, it is we not get 100

percent fault converge, but even the circuit does not have redundancy. So, in those cases

also it is very difficult to get 100 percent fault coverage, because it will require a very

large test set. So, test vector set will be very large. So, that is why 100 percent is not

achieved in most of the cases. So, fault detection efficiency. So, this is de define to be the

number of detected faults to the total number of faults, minus number of undetectable

fault. So, this is basically this denominated gives us the total number of faults that can be

detected and this numerator is the number of fault detected by a particular test set. So,

this ratio gives us the fault detection efficiency of a test set.

Then there is something called a reject rate it is 1 minus yield to the power 1 minus fault

coverage. So, this major is known as the reject rate. So, for an example if a PCB has got

say 40 chips, each with 90 percent fault coverage and 90 percent yield. So, if you 90

percent fault coverage. So, it is 0.9.

(Refer Slide Time: 18:10)

So, the reject rate will be given by for a particular chip will be 1 minus yield. So, yield is

taken as 0.9; 1 minus 0.9 to the power 1 minus fault coverage that is 0.1. So, this whole

thing I have got 40 such chips. So, if you calculate. So, it will turn out to be. So, per

million so many chip of 419000 chips will become faulty. So, that is a huge number. So,

you see we even with say 90 percent fault coverage we have got a very large number of

defective parts, that are produced and that will get rejected after they have been shift. So,

it is necessary that our fault coverage is even higher than 90 percent. So, that gives the

challenge that we have.

(Refer Slide Time: 19:14)

So, values of all coverage say less than 95, 96 percent, so that is not going to be

acceptable. So, what is this test generation process like the goal of the test generation

process is to find efficient set of test vectors with maximum fault coverage that is the

overall goal. So, there are several technique by which we generate test vector. So, we

will see those in due course of time. Now how do we say that with the how many fault

this particular test set can detect. So, for that purpose the sudden techniques are being

developed which are known as fault simulation. So, fault simulation it will try to see like

for a given set of patterns, what are the faults that this set of patterns can detect. So, that

is that is the fault coverage what is the fault coverage.

So, naturally it will require the fault models to emulate the behavior of defects, as I was

telling the physical defects are emulated by means of fault. So, this fault models will be

used. So, we will see that what type of different fault models can be there, but a good

fault model it should be computationally efficient for simulation. So, it should not be

very difficult to compute the values of different points in the circuit duty application of a

test pattern, under that particular fault model. So, that is the one requirement, and second

requirement it is that it should accurately reflect behavior of defect. So, the difference

between the actual defect behavior and the actual fault behavior they should not be much

different they should be as close as possible.

The difficulties that no single fault model works for all possible defect; so this is another

catch, so as a result will see that different fault modules are to be used, and when you are

doing the test generation. So, you have to assume this generation process on some fault

model. So, therefore, they so one particular test generation process will not be able to

cater to all possible fault models because that is not possible. So, they will be. So, that

that we will have different fault test set generation process.

(Refer Slide Time: 21:21)

To give you an some idea about this fault models, a given fault models may have k

different types of fault. So, k equal to 2 for most faults like say, you can say that if there

is a signal line running in the chip in the system, then the signal line it were possible fault

is that this line is permanently 1 or permanently 0. So, as if there is the V c c line running

and there is a short between this line and this. So, as a result this line has to be treated as

permanently one. So, this physical defect is model test permanently one, so that is known

as stack at 1 fault. Similarly if this line is sorted with same with the ground line, so we

have got this another fault which is permanently 0.

So, when we are talking about say logic gates the inputs and outputs, then this model is a

very ideal 1 because a logic gate has got some inputs and some output, and the fault that

can occur is the line one of those lines becoming permanently one and permanent or

permanently 0. So, that way every fault in this particular case they have got 2 types of

faults. Now if a given circuit has got n possible faults sites then so depending upon the

number of lines that we have in the system, there may be n number of lines and each of

these lines may have the fault. So, as a result there are n possible faulty site. Now there

can be multiple fault model like circuit can have multiple faults like in case those apart

from single fault maybe a. So, if out of this n sites, maybe k of them are faulty, or say m

of them are faulty. So, each of these faulty site it can say. So, each of these n faulty site it

can have one of the k fault or the site maybe fault free; as a result if the line can be at a

possible in any of this possible k plus 1 states.

So, if you consider the simultaneous if you consider multiple fault occurring

simultaneously, then the total number of multiple faults is given by this expression k plus

1 to the power n, minus 1; this where this 1 is the good circuit. So, the fault free circuit.

So, that is excelled. So, this is the number of multiple fault that can occur. Naturally this

is impractical. So, if we have got for accepting small circuits where this n the number of

lines in the circuit is very small. So, this becomes impractical. So, normally what is done

the single fault model is used that is circuit has got only 1 fault, and it is said that though

there n potential faulty sites, it is assumed that only one of those sites may become faulty

at any point of time.

So, that way, so each of these n locations they may have a fault or may not have a fault

as a result this only one of them may become faulty. So, I have got k into n number of

single faults that are possible in the system, because this out of this n only one point will

be faulty and that one point may pick up any of the k faults. So, total number of

possibilities is k into n.

So, this type of fault model the single fault model though it is very simplistic, but this

helps in generating developing algorithms for doing this testing efficiently, and it has

been observed that good single fault coverage it generally implies would multiple fault

coverage. So, this is some experimental result that shows that if you are if you do not use

a multiple fault model where a circuit can have multiple fault. So, if you do not use that

model even in that case. So, we can have this if you use a single fault model and we have

got the test pattern set are generated using the single fault model. So, for multiple fault

also that particular test set can be applied and if we apply that test set. So, it gives

reasonably good level of detection of multiple faults as well. So, that is why in most of

our discussion, so will never be talking about this multiple fault model or multiple faults

occurring in a circuit simultaneously. So, will most of the time will be talking about

single fault model that is we will assume that the entire circuit has got a single fault.

(Refer Slide Time: 26:03)

Now, there are some faults which are equivalent; that is one or more single fault that

have identical behavior for all possible input patterns. So, some cases it is not possible to

detect such fault, because they are be becoming equivalent like see if I have got an and

gate if I have got an and gate, now you see that suppose this line I want to check whether

this is stuck at 0 or not. So, what will happen? I will apply to check whether this line is

stuck at 1, so I will apply a pattern 1 1 and I will see the output. If at the output I get a 1,

I know that this line is not stuck at 0 so, but if I get a 0, so assuming that these 2 lines are

correct because under that single fault model only 1 line can be faulty. So, knowing that

these 2 lines are correct, so I will conclude that this line has got a stuck at 0 fault by

applying the pattern 1 1 I get it.

Now, considered the situation that this line is ok, but this line is I want to check whether

this line is stuck at 0 or not. In this case also I have to apply the pattern 1 1 and see what

is the response. So, if I get a 1, I will say that they know the line is not stuck at 0, but if I

get a 0 then I will say that this line is stuck at 0. Now for both the faults like this line

stuck at 0 and this line stuck at 0 the response of the AND gate is same for all the test

cases. So, as a result I cannot distinguish between these 2 faults; a same is true for the

other input as well. So, one or more single faults that have identical behavior for all

possible input patterns. So, they become equivalent fault. So, we cannot have a test

generation process that can distinguish between occurrences of these 2 faults.

So, from this entire set I need to consider only one fault knowing that all others are

equivalent. So, they need not be tried out. So, that any test pattern that can detect this

fault will also detect the other faults in that equivalent set; so way I do not need to have

separate test generation process for each fault in this equivalent class. So, that is one

thing. So, this is the definition of an equivalent fault. So, now, knowing that there are

equivalent faults, so we can do we can do fault collapsing, fault collapsing means we

want to reduce the number of faults that we need to consider for the text generation

process, we remove this equivalent fault except for one to be simulated. So, or we keep

only a single fault from the entire equivalency class and remaining all we collapse into

that particular faults. So, this will reduce the total number of fault as a result this will

reduce the fault simulation time, it will also reduce the test generation time.

So, for this is the first state that is done under the particular fault model, so we will find

out the equivalent faults for a circuit; for each of the equivalent class we will take only

one fault, and that they will do for collapsing and then the set of faults that we get

finally, they are all nonequivalent faults and for those nonequivalent faults so we have to

run our test generation process, and our fault simulation process. So, we will continue

this in the next class.

