
Digital VLSI Testing 

Prof. Santanu Chattopadhyay 

Department of Electronics and EC Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 11 

Logic and Fault Simulation 

 

Next, we will start with Logic and Fault Simulation. So, this is basically some software 

tool that has to be designed for checking the; for getting confidence about the goodness 

of this module, the test pattern set that we have generated or that we are using for testing 

some system. 

(Refer Slide Time: 00:44) 

 

It will go through this flow; first we will have an introduction, then the simulation 

models, then logic simulation, fault simulation and the concluding remarks. 



(Refer Slide Time: 00:52) 

 

Logic simulation; it predicts the behavior of a design prior to its physical realization. So, 

what happens is that suppose we have got a circuit to be designed, we have generated 

some test pattern set for that and now how do I judge the quality of this test pattern set? 

One possibility is that once the design has been obtained once the design has been 

fabricated, if the chip has been manufactured, we can apply those test patterns and see 

whether it is detecting some faults that might have crept into the system and crept into 

the chip and do I get a confidence, it is able to detect those failures. 

If it is true that for all the chips that are detected by this process, they are really faulty 

then we are happy, our tool, our test pattern generator could generate test patterns for this 

purpose or it may so happen that for all the defective chips our tool also; our testing 

process also tells that they are faulty. So that is the other avenue and in which we can say 

that our test patterns are good, but that is far away and in fact, that is after the chip has 

been manufactured, but can we do something so that before this manufacturing is done, 

we can get confidence about the goodness of the test pattern set that we are using.  

So, this predicts the behavior, this logic simulation problems; this predicts the behavior 

of a design prior to its physical realization. So, this is basically the problem of design 

verification thus specification is there. So, it goes into manual design or via synthesis. 

So, it may be manual design or may be by synthesis tool. So, it gives the circuit 

description. When this manual design is going on, side by side it also goes into a 



Testbench development. So, in the Testbench development, it will figure out like what 

are the; what may be the possible input patterns that that will be applied to this system 

and what are their correct responses? 

They are actually forming this input stimuli and expected responses. So, this Testbench 

development process comes up with these 2 output input stimuli and Testbench 

responses. Now after this circuit has been synthesized or this circuit, the system has been 

synthesized, you have the circuit description. So, this circuit description, we simulate 

with respect to this input stimuli. So, till now I do not have the actual chip manufacture. 

So, I have got only the description of it after the synthesis has been done. So, the 

description is simulated with that input stimuli and accordingly we get the simulated 

response.  

Now this simulated response we compare with the expected response and if these 2; from 

these 2, we do a response analysis. Now if these 2 responses are not matching; that 

means there is a bug. So, if there is a bug that so we need to correct. So, what do we need 

to correct? We need to correct this design process and that way again this it will go 

through the modification, it will do the synthesis and it will go on like this; however, if 

there is no bug then of course, we can go to the next design stage that may be the actual 

implementation of the circuit and all that, but what about the quality of the Testbench 

that we have developed.  

With respect to a given set of Testbench, we are getting the confidence that there is no 

bug in the system, but it is actually the system does not contain any bug which could 

have been detected by this particular Testbench, only this much is the confidence level. 

So, we have a better confidence the Testbench development should also be judged. So, 

they need to be judged like how good or bad is this Testbench. 



(Refer Slide Time: 05:00) 

 

This fault simulation; it predicts the behavior of faulty circuit as a consequence of 

inevitable fabrication process imperfections. So, it tells like if this particular fault has 

occurred in the circuit then if you apply this particular pattern, you will get this type of 

output. So, that is the fault simulation. So, this is a very important tool for test and 

diagnosis purpose because it can tell us like what is the fault coverage like if I apply this 

test patterns set how much is the confidence that my circuit does not have any of those 

modeled faults as we have said that if there are n lines and you are considering single 

stuck at fault model then there are 2 n possible faults. Out of this 2 n possible faults how 

many of them are getting detected by my test pattern set?  

That may be the type of confidence that gives us. So, that is the fault coverage and also it 

gives us some way to do to diagnose the problem like it may so happen that some test; 

some test has failed, in the sense that we applied some pattern to a to a circuit for 

simulation or at the manufacturing stage. So, we apply the pattern and we see that the 

fabricated chip it has failed that test, but why has it failed? So, from the faulty response 

we should be able to trace back and see where exactly is the fault? So, that is actually the 

problem of diagnosis. So, at the fault simulation, you can tell us like if you get this type 

of behavior then possibly the fault is somewhere here, if you get for this pattern so if you 

get some other response then possibly the fault is somewhere else. So, that helps us in 

pinpointing the fault location, locating the faults. 



They help us in estimating the fault coverage; this fault simulation it helps us to tell give 

us the confidence how many faults are come? What is the percentage of faults covered 

then fault simulator like it is simulating the faults like what type of faults we can 

simulate? Single stack at fault, multiple stack at fault, Beijing fault, etcetera, it can also 

help us in test compaction because we know that for the one particular fault may be 

detected by a number of patterns. So, it may be true that I do not need to apply all those 

test patterns for testing a particular fault.  

Can we select a subset of test patterns from a given set so that all faults are covered, but 

we do not apply all the patterns? So, that is actually the process of compaction. So, that 

can be done to reduce the test application time and test data volume and fault diagnosis 

that we have already discussed. So, if the manufacturing process if there is some problem 

then this fault simulation it can tell us like where exactly the fault may be located. 

(Refer Slide Time: 08:02) 

 

Simulation models; the first one is the log gate level network. So, we can we can think 

that my circuit is at gate level. So, it interconnection of logic gates, like this here we have 

got this circuit with 4 gates. So, that maybe gate level network. 



(Refer Slide Time: 08:19) 

. 

For sequential circuits, output will depend both on current and past in past value. So, this 

may be the model. So, we have got this primary input, primary output, pseudo primary 

input through this Y i lines and pseudo primary output to this capital Y lines. 

(Refer Slide Time: 08:40) 

 

This maybe the model for the sequential circuit a positive edge triggered D flip flop. So, 

it may be the actual circuit may be like this, but in terms of block diagram, you may look 

at it like this that if the clear line is high, clear line is low then this Q will become low 



this preset line is low then this Q will become high . So, this logic gate circuit actually is 

modeling that. 

(Refer Slide Time: 09:04) 

 

Most of the time will be using these symbols 0 1 u and Z. So, 1 and 0, they are known 

from our binary logic. So, they are true and false of that Boolean algebra then u; u is 

unknown at when we are trying to see like what may be the value of some input, what 

the value of some point in the logic circuit? So, that may be unknown for example, say if 

we consider this circuit and all on a sudden, we ask what is the value of H without telling 

explicitly what are the values of A, B and C and simulate and trying to figure out the 

value of L and E. So, at that point of time the value of H is unknown, that unknown is 

sometimes used to represent that to be the unknown logic state it maybe 1 or it may be 0 

and there is another logic state which is Z high impedance. So, they are not neither 

connected to V dd nor connected to ground. So, they are neither 1 nor 0, but u means it is 

either of them, but it is unknown Z means it is high impedance, but it is not connected to 

either of them V dd or ground. 



(Refer Slide Time: 10:15) 

 

In terms of ternary logic, we can define this AND OR and NOT functions like say in a 

AND gate; 2 input AND gate, if one of the input is 0 then the output is definitely 0. So, 

one of the input being 0 output is 0, similarly one input being 0 output is 0. 

If one input is u then the output depends on the other input. So, if other input 0 it is u, if 

it is 1 or u then it is u, similarly here also it is like this. Similarly for the OR gate, we can 

make the corresponding to a logic table. So, 0 and u is u, 1 and u is 1 because whatever 

be the value of u, it will become 1. So, like that we can do it, similarly not 0 converts to 

1, 1 converts to 0, but u remains u only. 



(Refer Slide Time: 11:05) 

 

Now, simulation based on ternary logic is pessimistic why a signal value a signal maybe 

reported as unknown when it is value can be uniquely determined as 0 or 1. 

Here it is say this 1; say if we follow this circuit and suppose the value is 1 u and 0. So, 

this is unknown as a result by the OR logic, since this is unknown, I have to make it 

unknown and in this AND gate, one input is 1 another as unknown. So, this is also 

unknown since this is as an inverter and one input is unknown. So, output is also 

unknown and this NOR gate. So, that is also unknown. So, if we follow a pure ternary 

logic based simulation of this circuit then this is the situation that many of the points are 

remaining unknown, now you see that unknown is basically 0 or 1.  

What we can say, instead of u if you write 0 or 1, so at this G 1, I cannot say what it is? 

So, it is it remains at 0 or 1 that is unknown; similarly at this point, one of the input is 

one. So, whatever it is 0 or one. So, that 0 or one comes here similarly at this point one 

or 0 comes. So, if this happens to be 0 then this is 1 and this if this happens to be 1, this 

is 0. So, from this I can find out that these 2 values are never same. So, as a result, this 

NOR gate output will always be 0. So, that way, we say that the ternary logic simulation 

is a bit pessimistic, but accepting that. So, it helps in many cases where the values of 

logic different signal lines are not known. 



(Refer Slide Time: 12:55) 

 

Doing a simulation at that point of time, we have to go for ternary logic, another is the 

high impedance state. So, tri-states gates, they permit several gates to time share a 

common wire like this. So we have got say this G 1, G 2, G 3. So, these are all tri-state 

gates. So, this if e 1 is high then this x 1 will be coming to the output o 1 and this o 1, o 

2, o 3, they are actually connected in a fashion. Now o i equal to x i if e i equal to 1 and o 

i is Z, if e i equal to 0. So, that is the thing now this whole operation, there may be, this is 

connected here, now when more than one of these devices are on more; more than one of 

these buffers are on. So, what happens at this point? So, that is defined by the resolution 

function if all of them are high, if all of them are disabled. So, e 1, e 2, e 3, all of them 

are 0 then we may have a pull up or pull down mechanism by which this bus will be high 

or low. So, pull up will make it high, pull down will make it low then it may be fade to 

some d flip flop or it may be fade to some other combinational element. So, anything can 

happen. So, it will go like this. So, the sequential it may go to some other circuit input. 

This pull up or pull down elements may be there, now resolution function will tell us like 

how do you get the logic at this point if multiple drivers are active. So, there are wired or 

wired and we have seen many such models. So, any of those models can be followed and 

it depends on the technology that we are using like what will be the resolution function. 



(Refer Slide Time: 14:43) 

 

Bus conflict occurs if at least 2 drivers drive the bus to opposite binary values. So, this is 

the bus conflict to simulate this tri state bus behavior one may insert a resolution function 

for each bus wire. So, we can say that this wire will be resolved using wired and function 

other some other place you may say that it this will be resolved by using wired or 

function depending upon the type of implementation that will finally have. 

(Refer Slide Time: 15:38) 

 

This simulation; it may report only occurrence of bus conflict and they may utilize multi 

valued logic to represent intermediate logic states as well including logic signal values 



and strengths. So, that can also be done like if we instead of having this 2 level logic if 

you have got multi level logic then we can have a simulation with this intermediate logic 

states. 

Now, this logic element evaluation method like how do you evaluate a particular logic 

element by for example, a particular logic gate or flip flop like that. So, it depends that 

the which is evaluation technique that we will use it depends on the type of logic 

symbols the logic symbol that we have considering and the type of logic elements that 

we have in our case like if all are um say logic gates and say and flip flops they maybe 

will be following some we can we maybe following some simple evaluation strategy like 

say using AND or NAND nor functions like that if it is driven by some other bus 

resolution function at some point of time maybe we have to use that. So, commonly used 

techniques are this one the truth table based approach input scanning approach input 

counting approach and parallel gate evaluation approach. So, you will see them one by 

one. 

(Refer Slide Time: 16:45) 

 

Truth table based gate evaluation; this is the most straight forward and easy way to 

implement. So, for binary logic we have got 2 power n entries for n input logic element. 

So, we can check whether a particular logic value has occurred. 



(Refer Slide Time: 17:05) 

 

If I have got some n input function then I may have this all 0 to all 1 cases and for each 

of them I may have these values noted here. So, what is the output there now for a party? 

So, if this is the logic block for which we are trying to for which this is the truth table. 

So, we can check what is the input and try to match with one of them and whichever 

matches we can take the corresponding value as the output and. In fact, storing this part 

may not be essential this input part may not be essential we can we can say that as if this 

is a this is a table where the I have stored only the output column only the output column 

is stored here and this input part. So, this is used as index of the table. 

This is the thing that is for we can have 2 power n entries of n input logic element now 

you may use input value as table index. So, that can directly be used as table index and 

then from there we can find out what is the value, but the problem with this Boolean 

table this truth table based approach is that the table size it increases exponentially with 

number of inputs as number of inputs increases table size also increases significantly and 

particularly when we are going for multi valued logic the situation is becomes words 

because if I have got k symbol logic system that will require a table of 2 power m n 

entries for an n input logic element or m is equal to log of k. So, for binary system, k is 

equal to 2. So, our table has got 2 power n entries, but in case of in case of k symbols if 

there are k different symbols then each of these elements they it can take up each of the 

inputs can take up any of those k values. 



As a result my truth table size will become 2 power 2 power m n where m is the log of k. 

So, that way the table in table has to be the index of the table has to be m n bit word. So, 

that it becomes more complex multi valued logic representation in truth table format will 

be more complex. 

(Refer Slide Time: 19:24) 

 

Another way of looking into this logic evaluation is via input scanning method. So, gate 

output can be determined by types of inputs if any of the inputs is the controlling value 

the gate output is c XOR i and otherwise it is the if any of the inputs is u then the gate 

output is u otherwise the gate output is c XOR i dash s c s c prime s c s c bar XOR i. So, 

for different types of gate this controlling input and the inversion values are like this for 

and gate controlling input is 0 and the inversion value is also 0; that means, if I have got 

an and gate to be simulated it has got 2 inputs. So, to see what is the output? What will 

be the output of this and gate will see, what are the inputs? 

Now, if this happens to be 0; that means, we know that this is this is this has got a 

controlling value. So, when it has got a controlling value with the output is told to be c 

XOR i, where i is the inversion value. So, inversion value is also 0. So, 0 XOR 0 so that 

is equal to 0 so whenever this any of the input is equal to 0 output is equal to 0 on the 

other hand if this is. So, suppose both the inputs are one if both the inputs are one in that 

case none of them are controlling values. So, as a result it will be coming to this part it is 

c bar XOR i. So, c bar is 1 XOR 0. So, that is equal to 1. So, in this way the logic 



functions can also be captured by means of this c and I value, this AND, OR, NAND, 

NOR. So, these gates; it is these are shown they are actually capturing the logic symbols 

the logic values by means of this controlling and inversion values. So, I do not need to 

store the truth table. So, for every type of gate I need to store the controlling value and 

the inversion value from there the by applying these 3 rules. So, we can by applying 

these 3 rules we can find out what is the corresponding value. 

(Refer Slide Time: 21:41) 

 

The input scanning method; the algorithm for evaluation is like this, first this u input is 

equal made equal to false that is we have not seen any input which is equal to u. So, then 

we take the next input. So, if there, if next input does exist then suppose this is equal to 

v, if v is the controlling value then we directly return c XOR i, if v is not a controlling 

value then we check whether v is equal to u or not, if v is equal to u then this u we have 

seen one unknown value. So, that u in is made equal to true and if it is not. So, then also 

it checks whether the next input is there or not. So, if any of the input is equal to u then 

this u in will become equal to 1.  

Now if we have not seen any controlling value then what will happen this input list will 

exhaust at some point of time. So, it will come out of this no side then it will check with 

u in is true. So, if u in if none of the inputs are unknown input then it will go to return c 

bar XOR i. So, that is that is the value if it is yes then it will return to. 



So, it returns 3 possible values c XOR i, if it c is a controlling value return c bar XOR i if 

it has not seen any controlling value at the same time it has not seen any u and it returns 

u if it is seen any of the u in the system in the as the input. So, this way this input 

scanning method. So, this can compute the values of different logic elements in the 

circuit 

(Refer Slide Time: 23:23) 

 

Other approach which is similar to this input scanning method is known as the input 

counting method. So, what it does it keeps count on the controlling and unknown input. 

So, c count is the number of controlling input and u count is the number of unknown 

input. So, it will update counts during the logic simulation for example, if one input of a 

NAND gate switches from 0 to u, the c count will be decremented and u count will be 

incremented. So, that way it is, otherwise the rule remains same for evaluating the gate, 

gate output.  

The rules that we have here will be applicable in this one also; however, the point is that 

it does not do a complete simulation. So, what it will do is that suppose this NAND gate 

was simulated previously this NAND gate had got a number of inputs. So, it had 

previously this value was found out to be 1, now in this method what will happen is that 

it will c for the next input that is coming to the NAND gate, how many changes are there 

like if this it will count how many c the controlling inputs are there how many unknown 

inputs are there. So, if there is a change if there is a change from one pattern. So, this is 



suppose pattern 1 from there the next pattern, pattern 2 is applied. So, it will count how 

many controlling values are changed how many undefined unknown values have 

changed. So, that way it will be computing it. 

If it changes from 0 to u then this modification will be done. So, at the end, I by just 

looking in to this c count value I can see that if the c count value is still greater than 0; 

that means, the output will be c XOR i and if I find that it is some the u count value is 

more than um c count u count value is more than 0 and this controlling input is 0 in that 

case this output will be u and if it is c count value is 0 and u count value is also 0 in that 

case output will be that c bar XOR i. So, that way the same set of rules will follow, but 

the effort needed in doing the simulation will be less because each from one pattern to 

another pattern when you are doing we are just looking into the changes that are 

occurring in the input set. 

(Refer Slide Time: 25:56) 

 

Another possible evaluation to speed up this simulation process is by parallel gate 

evaluation. So, it exploits the inherent concurrency of the host computer. So, a 32 bit 

computer it can perform thirty 2 logical operations in parallel. So, what we mean is 

suppose I have got 2 operands A and B. 

In now this A and B can, if A is a 32 bit number both of them are 32 bit numbers, now if 

I do a logical ending of A and B. So, if I do a sorry, bitwise ending of A and B then what 

will happen? So, if this is my A register, 32 bits are there and this is the B register 32 bits 



are there then when I am doing this bitwise ending. So, these 2 bits will be ended these 2 

bits will be ended these 2 bits will be ended. So, bitwise this ending will be done. So, as 

a result it can evaluate 32 different logic operations simultaneously provided of course, 

the logic operations are similar then it can do all the 32 operations in a single shot. So, 

that is what is done here that suppose here I have got this assuming that this word size is 

4 bit wide. So I have got say the first inputs is A equal to 1, B equal to 0, C equal to 0, A 

equal to 1, B equal to 0 and C equal to 0.  

It can evaluate this one so this AND gate so, first of all this OR gate is evaluated this 0. 

So, this is 0 and then this 1 and 0. So, that evaluates to 0 simultaneously, this 0 the 

second bit is there, this one and this one. So, they are all to get this one and then I can do 

this thing, I can get this or here and then ending here. So, it can do 32 logic operations in 

parallel doing this bitwise operations. So, that way we can have much faster execution. 

So, we continue with the next class. 


