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Lecture – 10 

Generation Mechanism of ML Sequence 

 

Hello students, we have at in the last module, we were actually learning about the 

spreading sequences. And in this module, we will mainly consider inside the generation 

mechanism of the maximal sequences based on the linear feedback shift register 

architecture. 
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We saw this architecture in the last module, we discussed about it that we consider that 

we are having a three stage linear feedback shift register where there are three memory 

stages. And the output of the stage number three and stage number two are added, this is 

the modulo 2 operation which is basically an XOR operation is going on. So, it is 

modulo 2 added and we fed the output of this adder as an input to the stage number 1. 

The clock pulse was helping and between the arrival on each and every clock pulse, the 

stored data was moving from the one stage to the next. The output we took from the 

stage number 3. 

We also saw the generation table spreading sequence table generation table in the last 

module, we are not going to repeat the table once again, rather we will try to give a 



general form of any linear feedback shift register. And we will try to give a mathematical 

equation for generation of the shift register sequence at the output. Let us start slowly. 

Any state be of a linear feedback shift register after the clock pulse i has arrived we will 

be given by this. So, this is the total vector, vector is talking about the combination of 

what are the combination of all the stage values, the value of the each and every stage is 

written inside the brackets. I will say that it will not s 1 i if it is generalized then it should 

be s j i, where your j is the name of the stage, and i is the number of the clock pulse for 

which you are writing the value of the stage. 

Of course, if I write capital s 0, he will tell what are the initial condition of each and 

every stage. So, with that concept remember the clock pulse can never have a negative 

value because we had starting at t equal to 0. So, I should have always value greater than 

or equal to 0. So, if this is the situation of at any moment after the arrival of the ith clock 

pulse, if I wish to see what are the values of the stage is storing then I will be able to see 

this. 

Now if I try to give mathematical formulation of the stage value of a independence stage, 

which is equal to s j i, what the way the way the value is stored in this typical stage is 

something like this. The value of s j at the i th clock pulse is nothing but the value which 

was stored in j minus k th stage at the moment of i minus k th time for i minus kth clock 

pulse. It means what; if I take an example if I wished to see what is the value stored in 

the stage number two. So, here it will be value of the stage number two say for after the 

arrival of the second clock pulse arrival of the second clock pulse, what will be it. Then I 

will get here it will be the value stored in the second minus k is actually the value kth 

timed if we I am thinking at is the instantaneous time earlier. So, whatever the value was 

here, and whatever the value was here during the clock pulse time of the first one. 

So, what you are getting here is if you see at the second clock pulse, what am I getting 

here it is nothing but whatever was stored in the ith the earlier stage at the during the k 

minus during the k stage back during the kth clock pulse back. And situation is this 

equation holds good, if the k value is greater than 0; and definitely it should be less than 

i. So, when I am talking about the ith clock pulse I can gave the value stored between I 

minus k th clock pulses they can be never be greater than i, but k also it should be less 

than the j the number of the stages you are having. And definitely the stages where you 



are asking that should be less than the maximum number of stages you are having in 

your design. 

So, again s 0 i, it denotes that the input that this coming to the stage number one after the 

arrival of the clock pulse i. If I think that a i is the output that I am getting at the output 

of the whole structure at the bit time i, then the output a i is always equal to the value 

stored here in the last stage. So, it is always equal to s m i, I hope it is clear. So, we have 

already defined, what is that instantaneous value stored in each and every stage on the 

arrival of ith pulse. And we have also related this value with the preliminary stages and 

they are with the occurrence of the corresponding clock pulses going back in which is 

giving actually the trace of the previous clock pulses of the previous timing instance. 

Also we are getting what is the value stored in the ith, 0th position, and also what exactly 

is the output value how the output bits are related with the last stored value. We will 

relate all this points in the next derivation. 
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And see if we are having that the state of the feedback shift registers, they are uniquely 

determining the subsequent sequences of the states and the shift register sequences. If we 

consider that there are the period of the generated sequence a i, it is the period is equal to 

capital N then the smallest positive integer then the period can be defined as the smallest 

positive integer for which the value a i plus N is depicting a i value that we have seen in 

the last table. That if for the value of 7 for a three stage linear feedback shift registers, 



after the seventh clock pulse, the value has been repeated in all the stages the value has 

been repeated. So, the period is defined as the smallest positive integer for which the a i 

plus N th value is repeating it is a i’s value. 

Now, if the m-stages shift registers, there are m number of the stages involved remember 

as we have already discussed, the period can never be greater than 2 to the power m, it 

should be always less than equal to 2 to the power m. If we are having a Galois field 2 

elements that means, the symbols can have either 0 or 1, then we can have the operations 

like the modulo-2 addition or the modulo-2 multiplication. The binary operations would 

look like this. It is a XOR table we all understand that is the 0 XOR, 0 is equal to 0, 0 

XOR 1 is 1, 1 XOR 0 will be 1, and 1 XOR 1 will be 0. And this the multiplicative 

operation that we understand that it will give equal to 1 when both inputs are equal to 1. 

Here this operation is a modulo-2 operation. 
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And the Galois field, so it is the field will be closed under this modulo-2 addition and 

modulo-2 multiplication and both the operations will be associative as well as the 

commutative. So, this property comes holds actually or can comes from the fundamental 

concept of the field and it is the closeness of that field. All that point we will be 

discussing when we will be go ahead with the Galois field mathematics. It also follows 

that this additive identity element for this Galois field-2, it will be the 0; multiplicative 

identity is equal to 1. If it is a Galois field-2, they are the identity element multiplicative 



identity element and additive identity element. And by the virtue of the distributive law 

we understand that if we are having the elements a, b and c drawn from that field, if the 

field supports the distributive law then they are definitely a into b XOR c will be equal to 

a b XOR a c; and b XOR c into a it will be also given by b a XOR c a. 

If there a, b, c can be either 0 or 1 and equality holds good between the subtraction as 

well as the addition, so you can also write that a XOR b is equal to c can be also holds 

also good for a is equal b XOR c. The input stage to the stage number one linear 

feedback shift register, we can write it that it is the combination of all the stages their 

independent c k into s k into i summation over all k to m is given you the s 0 i, why is it 

like so, c k is the feedback component. I mean if the stage is contributing to the feedback 

logic, then the value of the c k will be equal to 1; if the output of this s k is not 

contributing to the feedback logic then the value of that c k will be is equal to 0. 

For example, if I go back to our earlier figure, here actually the stage number three and 

the stage number two are contributing to the feedback logic. So, c k value for c 3 and the 

c 2 they will be equal to 1, where the c 1 value will be 0. And every cases for each and 

every stage you are looking into the independent value of it getting multiplied with the 

corresponding contribution towards the feedback multiplying it and you are adding up 

such values from k is equal to 1 to k is equal to n, I mean one-by-one stage. The total 

combination is coming back as a feedback to the 0th stage, we are writing though writing 

it as s 0 basically it is the stage number 1 and the input to the stage number one, we are 

adding as S 0. 
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Once we have understood this fundamental concept, let us enter little bit in detail. As I 

have already mentioned the value of the c k is a contribution to the feedback it is a 

feedback coefficient we call, its value is either 0 or 1 depending upon whether that 

typical stage is contributing or not. Remember by default for the last stage which is the 

feedback coefficient always kept 1. If you do not keep it one then the final stage, you do 

not have any contribution to the generation of the shift register, it will have simpler delay 

one stage delay and that can be proved actually in the last figure that we were talking 

about in the slide number one. Where, as I showed that c 1 value is 0, c 2 and c 3 values 

are 1, and this hence your feed back to the input stage is the combination of the XOR 

operation of the stage number two and stage number three. 

If your c 3 or last stage value is not supposed to be in 1, then you try to do the exercise at 

home, you will see that the final output is just shifted version. And there is no 

contribution of that final stage in the generation of the code happening. Now, the general 

representation of this linear feedback shift register with when we are giving general form 

of the mathematics, so the general form of the shift register we can also show. 
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In the next slide, we have shown the two different structure of the linear feedback shift 

registers, let us first concentrate on the upper one. So, now we have increased the stages 

up to the numbers small m. And here we are seeing that the c m value is always 1; and 

depending upon the logic scenario you wish to add some of the switches who are actually 

now controlling the contribution of the corresponding stage in the feedback architecture, 

they are either closed or they are opened. If they are closed, their value will be 

corresponding c values will be 1; and if they are opened that means, their corresponding 

value will be 0. And the corresponding stage will be contributing as XORed it will be 

XORed with the next previous one the final XORed output will be feedback as a input to 

the stage number 1. 

Going by this expression and explanation also we can come back now. Now ready to 

develop slowly the output sequence, we understand the output value, output is equal to a 

m and which is basically the direct value stored in the s m i or the last stage of the value 

stored for the ith pulse in the last stage of feedback shift register. And this holds good 

always whenever the i is greater than or equal to m. When i is less than equal to m, you 

are basically getting the values which was stored in the initial situation. So, one-by-one 

the initial value will first come out, when i will go the number of the clock pulse will 

cross the number of stage is involved in the design definitely you can think that whatever 

last value stored is coming at the last stage last memory stage that will come out. 



And if I try to see the structure then whatever the value coming in the equation coming at 

the output, so it will be also getting stored in the input to the first stage also. How is it 

coming, the concept of this comes from the fact that this upper figure is not 

implementable easily, and not hardware friendly. In order make the figure hardware 

friendly and to increase the speed of this implementation and processing of the data 

through the feedback shift register, we come down to this high speed firm. Where all the 

feedback path it is typically one value, and all the modulo-2 operators they are shifted 

towards the inside between the path of the processing between one stage to the next. 

If this is the situation, then the value output here whatever we are seeing as a i and then a 

i will be basically whatever I am trying to see that a i will be directly connected also with 

this input. But never mind there we will come later, but currently what I am trying to see 

here is the value of the a i what we are getting at the output, when I is actually less than 

m for i less than or equal to m. What I am getting at the output is basically the initial 

value stored one-by-one in the stages. So, at the first clock pulse, the stored value in the 

last stage, initial value of the last stage will come out. Second clock pulse last, but one 

stages initial value will come out and like that it will go on till you are reaching the value 

of i is coming equal to m, then the first initial stage value initial stage value of the first 

memory or the firsts stage will come out. 

If I utilize this concept then for i less than or equal to m, a i will be always s 0 i minus m. 

And if this is the situation, if the i is like this, and hence I can substitute the value of the s 

0 because the value of the s 0 we have already seen in the last equation in the last slide. 

The value of my s 0 is given by this expression 1.13. So, if it is delayed now by i minus 

m, so it will be the same equation only changed by s k i minus m that we are substituting 

here in this place. And once this is there when we understand that the last stage value is 

basically the value of the coming output. So, s m i minus k is finally can be replaced by a 

i minus k. And now actually you are getting linear recurrence relation before i greater 

than equal to m, you are getting a linear relation always you are getting a linear relation 

that a i of this c k a i minus k. And whatever you are getting for i less than n minus 1 is 

for a i t c will be the value of the m i minus i of that stage. I hope it is clear. 

So, I repeat then when the i is greater than or equal to m, you are getting that a m value 

stored whatever was stored in the m th stage, and then I understand that m th stage value 

whatever I got it was actually the value of the which was fed as the input to the stage 



number one, m clock back from the current clock i. So, I am writing a i is equal to my s 0 

i minus m. Then I substitute a value of s 0 from the previously developed equation, 

which is c k into s k i minus m. And definitely from the last stage it is equivalent to the 

output. So, we had coming down here. And this is the situation when i will be greater 

than equal to my number of the stage clock pulses coming exceeding the number stage. 

And here if we are not exceeding the stage in between the stage is we will get the m 

minus ith stored values for the 0, whatever it was store value for the 0 th pulse, I mean 

this is the initial situation or initial condition initial value stored one by one in all the 

stages. We will refer next onwards the high-speed form of this generation, and we will 

proceed for our derivation. 
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So, I have replicated that figure once again here for easy understanding of the derivation 

that is going on here. Remember that we understood that if we are changing the structure 

like this, bringing all the modulo-2 operator in between the stages and making the 

feedback path is equal to directly connected to the input. Then at any stage s j i, I am 

getting the value of s j i by the s j i minus 1 i minus 1th stage value getting convolved 

with the corresponding switch value. This switch value is such that it is c m minus j 

minus 1, you put a value. Suppose, if your a j is equal to 2, so 2 minus 1, you are getting 

the value stored in the stage number one for 2 minus 1 for ith for the first clock pulse. So, 

whatever the value was stored in stage number one during clock pulse number one 



getting convolved with your j is equal to j is equal to 2 in our case, so c m minus 2 plus 

1, so it is c m minus 1th value and here you are getting the value of c 1 of course. 

And if you are having certain values here you are coming from this side to this side. So, 

basically you are clubbing or you are basically in taking the value of the last switch, each 

corresponding multiplication of this last s m value which was multiplied with this value 

of the switch. So, s m i minus 1, so everywhere you are computing the value of the 

second clock pulse, you are getting the input from the stage number stored in the first 

clock pulse also the value stored in the mth stage during the first clock pulse multiplied 

with the corresponding weight vector which is contributed by the switch. And then 

modulo 2 operation of this two, this equation holds good when your i is greater than 

equal to 1 and also for the j stage number stage j from the second stage onwards because 

for first stage this equation does not hold good first there is a direct coming an input from 

the last stage itself. 

So, if I start like this. So, for s 1, for stage number one and the ith value this will be 

directly from s m i minus 1, correct. If I keep on repeating this first expression, so 

suppose I am trying to follow it for s m for s m i, I will get s m i minus 1 m minus 1 th 

stage for i minus 1 th clock pulse getting convolved with the first value of the c 1 and s 

m i minus 1. So, s m i minus 1 and the multiplication of this c 1 all that will be multiplied 

and coming beside. 

Similarly, if you proceed for s m minus 1, it will be giving the same way the connection 

between m minus 2 and every time with the s m minus 2, you are getting the input from s 

m for the previous clock pulse and getting multiplied with the c 2. So, like that it is 

proceeding. And at last whenever you are ending up, whenever you are ending up you 

are coming with the expression like this. And if I keep on substituting the values here, 

suppose in the equation of s m, I am substituting from s m minus 1; and the inside that s 

m minus 1, I have the values s m minus 2.  

And from s m minus 2, I have having values from s m minus v, if we go on like that you 

will be ending up with s m minus I getting substituted the value of s 1 i minus m plus 1 

finally. And all these values will be added up. So, there is a XOR operation with the 

summing up term of the c k and s m i minus k. With c k and s m i minus k and then this 

guy it is moving from k equal to 1 to m minus 1. So, you are having the contributions 



from c 1 to c n minus 1, k is varying from 1 to m minus 1. So, c k and s m i minus k, so 

that is way the whole part is getting formed. 
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So, for each and every stage now I know how actually the data is getting accumulated. 

And it is processed also slowly one by one. We understand that a i will be the final stage 

output will be from s m i only. And if I now substitute from 1.17 like this from here and 

then you utilize, so a i will be always coming out from last stage, and if I substituted this 

value in the last developed equation here. So, where I will be ending up with this, this a i 

where what I have done this is s m i, I have substituted with a i because that is the 

understanding because the a i here is directly coming out from s m i. And this expression 

also can be substituted by some term of a i; and this is the another portion remaining in 

terms of a i minus k. 

So, finally, I can relate the last state equation with the output sequence. And since I 

understand the c m is always should be equal to 1, so this equation basically is coming 

same as we have derived earlier. So, this is the proof that the high-speed form can also 

generate the same sequence like the previous non high-speed form, I mean this circuit 

and this circuit will give you the same sequence only difference is that this can generate 

the sequence at a very high-speed. 

So, the two implementations now they are equivalent that is the demand is and however, 

this differential initial states and the difference sequence states, they are really required 



for your successive generation. And if I keep on doing in the successive substitutions 

into the first equation one-by-one, so what we will end up with is when my clock pulse is 

varying between one to less to the number of the stages, I mean one to m, m minus 1, 

when this is varying then the expression will lead like this because you are basically 

getting XOR with the initial state values of the previous stage. And substituting a i here 

for s m, s m a i is equal to s m i and substituting a i minus k is equal to s m i minus k all 

that, so you will be ending with s j 0. And during some binary arithmetic also for j is 

equal to m minus i, we will be ending up with j 0, I mean the initial stage and this is 

equation ending up. So, s m i minus k will be governed by s m i s m minus j minus k 

with after all this substitutions, and here also I am coming m minus i. So, i to j 

transformation has happened nothing else. 
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And now in the last portion, we are trying to see whether we highlight little bit some 

properties of the generated sequence through this high-speed linear feedback shift 

registers. Suppose, you have generated two sequences from shift same shift register one 

sequence is a combination of a 0, a 1 dot dot dot; and the other binary sequence is there 

b, who is the combination of b 0 to certain value. And we define that there is a binary 

sequence which is now generated outside by doing the bit-by-bit modulo-2 operation of 

the sequence and sequence b. And we write that the newly generated sequence d is given 

by a XOR b. And the every component of the d, the ith bit is generated by the bit-by-bit 

modulo-2 operation as I told for i greater than equal to 0. 



Now, consider that sequence a and b they are generated by the same linear feedback shift 

registers, but may be the initial condition for generation of a and the generation of b they 

are not same. If that is the situation for the sequence this d, and using this associative and 

distributive law of this binary field, we can show that the value each and every any bit 

value d j can be replied can be actually obtained by taking this c k i minus k XORed with 

c k d i minus k. And as this is the associative and distribution law we are applying, so the 

sum will come out and the independents, if I takes c k i minus k will be XORed with c k 

minus k i, I can take c k common. And then it is basically the XOR operation going on 

between a i minus k and b I minus k. So, a i minus k XORed with b i minus k is basically 

d i minus k. 

What is the final observation is that we understand that any j th instant data output which 

is of this newly generated sequence is also considering and also maintaining a recurring 

relation of its previous sequences. Previous sequences means whatever you are getting at 

i minus k th clock pulse. So, fundamental j stages, if you are generating a linear feedback 

shift register, the generated sequence keeps a linear recurrence and occurrence of the 

generated sequence.  

So, generated sequence all the bits will have linear recurrence relation. Even if you are 

generating the two different set of the sequences, who are having two different initial 

conditions; both of them individually will keep a linear recurrence, and a new sequence 

which is generated by the XOR operation of these two sequence a and b, he will also 

have a linear recurrence relationship with generated bits. All the generated bits will have 

a linear recurrence relationship with the previous bits. 

Next module, we will see in detail little bit more about the properties of this maximum 

length sequences. 


