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Hello, welcome to the course on Digital Image Processing. The first phase of the image 

digitization process, that is quantization and we have also seen through the examples of these 

reconstructed image that if we vary the sampling frequency below and above the Nyquist 

rate, how the quality of the reconstructed image is going to vary. So now let us go to the 

second phase that is quantization of the sample values  
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Now this quantization is a mapping of the continuous variable u to a discrete variable u prime 

where u prime takes values from a set of discrete variables. So if your input signal is say u, 

after quantization the quantized signal becomes u prime where u prime is one of the discrete 

variables as shown in this case as r 1 to r l. So we have l number of discrete variables from r 1 

to r l and u prime takes a value of one of these variables.  

Now what is this quantization?  
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You find that after sampling of a continuous signal, what we have got is a set of samples. 

These samples are discrete in time domain, Ok.  
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But still every sample value is an analog value. It is not a discrete value. So what we have 

done after sampling is, instead of considering all possible time instants, the signal values at 

all possible time instants, we have considered the signal values at some discrete time instants.  
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And at each of these discrete time instance, I get a sample value. Now the value of this 

sample is still an analog value. Similar is the case with an image.  
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So here, in case of an image the sampling is done in two-dimensional grids where at each of 

the grid locations, we have a sample value which is still analog. Now if I want to represent a 

sample value on a digital computer, then this analog sample value cannot be represented. So I 

have to convert this sample value again in the discrete form. So that is where the quantization 

comes into picture.  
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Now this quantization is a mapping which is generally a staircase function.  

 

So for quantization what is done is you define a set of decision or transition levels which in 

this case has been shown as transition level t k where k varies from 1 to l plus 1. So we have 

defined a number of transition levels or decision levels which are given as t 1, t 2, t 3, t 4 up 

to t l plus 1, l plus 1, Ok and here t i is the minimum value and t l plus 1 is the maximum 

value. And you also define a set of the reconstruction levels that is r k. So what we have 

shown in the previous slide that the reconstructed value r prime, u prime takes one of the 

discrete values r k so the quantized value will take the value r k if the input signal u lies 

between the decision levels t k and t k plus 1. So this is how you do the quantization.  
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So let us come to this particular slide.  
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So it shows the input output relationship of a quantizer. So it says whenever your input signal 

u, so along the horizontal direction we have put the input signal u and along the vertical 

direction we have put the output signal u prime which is the quantized signal. So this 

particular figure shows that if your input signal u lies between the transition levels t 1 and t 2, 

then the reconstructed signal or the quantized signal will take the value r 1. If the input signal 

lies between t 2 and t 3, the reconstructed signal or the quantized signal will take a value r 2. 

Similarly if the input signal lies between t k and t k plus 1, then the reconstructed signal will 

take the value of r k and so on. So given an input signal which is analog in nature, you are 

getting the output signals which have, which is discrete in nature. So the output signal can 

take only one of these discrete values. The output signal cannot take any arbitrary value.  
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Now let us see that what is the effect of this? So as we have shown in this second slide that 

ideally we want that whatever is the input signal, the output signal should be same as the 

input signal and that necessary for the perfect reconstruction of the signal. But whenever we 

are going for quantization, your output signal, as it takes one of the discrete set of values, is 

not going to be same as the input signal always. So in this, in this particular slide, again we 

have shown the same staircase function  
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where along the horizontal direction we have the input signal and in the vertical axis we have 

put the output signal.  

 



So this pink staircase function shows what is the quantization function that will be used and 

this green line which is inclined at an angle of 45 degree with the u axis, this shows that what 

should be the ideal input output characteristics. So if the input output function follows this 

green line, in that case, for every possible input signal I have the corresponding output signal. 

So the output signal should be able to take every possible value. But when you are using this 

staircase function, in that case, because of the staircase effect, whenever the input signal lies 

within certain region, the output signal takes a discrete value. Now because of this staircase 

function, you are always introducing some error in the output signal or in the quantized 

signal. Now let us see that what is the nature of this error.  
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Here we have shown the same figure. Here you find that when this green line which is 

inclined at 45 degree with the u axis crosses the staircase function, at this point whatever is 

your signal value, it is same as the reconstructed value. So only at these crossover points, 

your error in the quantized signal will be 0. At all other points, the error in the quantized 

signal will be a non-zero value. So at this point the error will be maximum which will, 

maximum and negative, which will keep on reducing. At this point, this is going to be 0, and 

beyond this point again it is going to increase. So if I plot this quantization error, you find 

that the plot of the quantization error will be something like this, between every transaction 

levels. So between t 1 and t 2 the error value is like this. Between t 2 and t 3, the error 

continuously increases. Between t 3 and t 4, error continuously increases and so on. Now 

what is the effect of this error on the reconstructed signal?  
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So for that let us take again a one-dimensional signal f t which is a function of t as is  
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shown in this slide  

 

 and let us see that what will be the effect of quantization on the reconstructed signal.  
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So here we have plotted the same signal, Ok. So here we have shown the signal is plotted in 

the vertical direction so that we can find out what are the transition levels or the part of the 

signal which is within which particular transition level. So you find that this part of the signal 

is in the transition level say t k minus 1 and t k. So when the signal, input signal lies between 

the transition t k minus 1 and t k, the corresponding reconstructed signal will be r k minus 1. 

So that is shown by this red horizontal line. Similarly the signal from this portion to this 

portion lies in the range t k and t k plus 1. So corresponding to this, the output reconstructed 

signal will be r k so which is again shown by this horizontal red line. And this part of the 

signal, the remaining part of the signal lies within the range t k plus 1 and t k plus 2 and 

corresponding to this, the output reconstructed signal will have the value r k plus 1. So to 

have a clear figure  
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you will find that in this, the green curve, it shows the original input signal and this red 

staircase lines, staircase functions it shows that what is the quantization signal, quantized 

signal or f hat, f prime t.  

 

Now from this, it is quite obvious that I can never get back the original signal from the 

quantized signal, because within this region the signal might have, might have had any 

arbitrary value. And the details of that is lost in this quantized form, quantized output. So 

because from the quantized signal I can never get back the original signal so we are always 

introducing some error in the reconstructed signal which can never be recovered. And this 

particular error is known as quantization error or quantization noise. Obviously the 

quantization error or quantization noise will be reduced if the quantizer step size that is the 

transition interval say t k to t k plus 1 reduces. Similarly the reconstruction step size, r k to r k 

plus 1, that interval is also reduced.  



(Refer Slide Time 11:42) 

 
So for quantizer design the aim of the quantizer design will be to minimize this quantization 

error. So accordingly we have to have an optimum quantizer and this Optimum Mean Square 

Error quantizer known as Lloyd-Max Quantizer, this minimizes the mean square error for a 

given a given number of quantization levels.  

 

And here we assume that let u be a real scalar random variable with a continuous probability 

density function p u of u. And it is desired to find the decision levels t k and the 

reconstruction levels r k for an l level quantizer which will reduce or minimize  
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the quantization noise or quantization error Let us see how to do it.  



Now you remember that u is the input signal and u prime is the quantized signal. So the error 

of reconstruction is the input signal  
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minus the reconstructed signal So the mean square error is given by the expectation value of 

u minus u prime square, Ok and this expectation value is nothing but, if I integrate u minus u 

prime square multiplied by the probability density function of u d u and I integrate this from t 

1 to t l plus 1, you find that, you remember that t 1 was the minimum transition level and t l 

plus 1 was the maximum transition level. So if I just integrate this function u minus u prime 

square “p u” u d u over the interval t 1 to t l plus 1, I get the mean square error. This same 

integration can be rewritten in this form as u minus “r i” square because r i is the 

reconstruction level of the reconstructed signal in the interval t i to t i plus 1. Sorry there is an 

error, it is not t l to t l plus 1, it should be t i to t i plus 1. So I integrate this u minus r i square 

p u u d u over the interval t i to “t I” plus 1 then I have to take a summation of this for i equal 

to 1 to l, Ok. So this modified expression will be same as this and this tells you that what is 

the square error of the reconstructed signal. And the purpose of designing the quantizer will 

be to minimize this error value.  
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So obviously from school level mathematics we know that for minimization of the error 

value, because now we have to design levels and the reconstruction levels which will 

minimize the error, so the way to do is, to do that is to differentiate the error function, the 

error value with t k and with r k and equating those equations to 0. So if I differentiate this 

particular  
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error value  
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u minus r i square p u d u integration from t i to t i plus 1, in that case what  
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I get is, zeta is the error value, del zeta del t k is same as t k minus r k minus 1 square p u t k 

minus t k minus r k square p u t k and this has to be equated to 0.  

 

Similarly the second equation, del zeta del r k will be same as twice into integral u minus r k 

p u d u d u equal to 0 where the integration has to be taken from t k to t k plus 1. Now by 

solving these two equations  
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and using the fact that t k minus 1 is less than t k we get two values, one is for transition level 

and other one is for the reconstruction level. So the transition level t k is given by r k plus r k 

minus 1 by 2 and the reconstruction level r k is given by integral t k to t k plus 1 u p u d u, u p 

u u d u divided by integral from t k to t k plus 1 p u u d u. So what we get from these two 

equations? You find that these two equations tell  
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that the optimum transition level t k lie halfway between the optimum reconstruction levels 

So that is quite obvious  
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because t k is equal to r k plus r k minus 1 by 2 So this transition level lies halfway between r 

k and r k minus 1.  

And the second observation is that,  
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the optimum reconstruction levels in turn lie at the center of mass of the probability density in 

between the transition levels. So which is given by the second equation  
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that is r k is equal to u p u u d u integral from t k to t k plus 1 divided by p u u d u integral 

again from t k to t k plus 1. So this is nothing but the center of mass of the probability density 

between the interval t k and t k plus 1.  

So this optimum quantizer  
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or the Lloyd-Max Quantizer gives you the reconstruction value, the optimum reconstruction 

value 
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and the optimum transition levels in terms of probability density of the input signal.  

Now you find these two equations are non-linear equations  
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and we have to solve these non-linear equations simultaneously given the boundary values t 1 

and t l plus 1 and for solving this one can make use of the Newton method, Newton iterative 

method to find out the solutions. An approximate solution or an easier solution will be when 

the number of quantization levels is very large. So if the number of quantization levels is very 

large you can approximate p u u, the probability density function as piecewise constant 

function. So how do you do this piecewise constant approximation?  
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So in this figure you see that is a probability density function has been shown  



(Refer Slide Time 18:58) 

 
which is like a Gaussian function So we can approximate it this way that in between the 

labels t j and t j plus 1, we have the min value of this as t j hat which is halfway between t j 

and t j plus 1, and within this interval we can approximate p u u where p u u is actually a non-

linear one, we can approximate this as p u t j hat. So in between t j and t j plus 1, that is in 

between every two transition levels, we approximate the probability density function to be a 

constant one which is same as the probability density function at the midway, halfway 

between these two transition levels. So if I do that, this continuous probability density 

function will be approximated by staircase functions like this. So if I use this approximation 

and recomputed those values, you will find  
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that this t k plus 1 can now be computed as p u u cubic root of that du integral from t 1 to z k 

plus t 1 multiplied by a divided by again p u u to the power one third, minus one third d u 

integration from t 1 to t l plus 1 plus t 1 where this a, the constant a is t l plus 1 minus t 1 and 

we have said that t l plus 1 is the maximum transition level and t 1 is the minimum transition 

level and z k is equal to k by l into a where k varies from 1 to l. 

 

So we can find out t k plus 1 by using this particular formulation when the continuous 

probability density function was approximated by piecewise constant probability density 

function.  
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And once we do that, after that we can find out the values of the corresponding reconstructed, 

reconstruction levels. Now for solving  
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this particular equation, the requirement is that we have to have  
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t 1 and t l plus 1 to be finite That is the minimum transition level and the maximum transition 

level, they must be finite. At the same time, we have to assume t 1 and t l plus 1 apriori 

before placement of decision and reconstruction levels. This t 1 and t l plus 1 are also called 

as overload points and these two values determine the dynamic range a of the quantizer.  
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So if you find that when we have a fixed t 1 and t l plus 1 then any value less than t 1 or any 

value greater than t l plus 1, they cannot be properly quantized by this quantizer; so this 

represents that what is the dynamic range of the quantizer  

 

Now once we get the transition levels then we can find out the reconstruction levels by 

averaging the subsequent transition levels. So once I have the reconstruction levels and the 

transition levels, then the quantization mean square error can be computed as this, that is the 

mean square error of this designed quantizer will be 1 upon 12 l square into p u u to the 

power one third d u integration between t 1 to t l plus 1, this and cube of this whole 

integration. And this expression gives an estimate of the quantizer error in terms of 

probability density and the number of quantization levels.  
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Normally two types of probability density functions are used. One is Gaussian where the 

Gaussian probability density function is given by there is an well-known expression p u u 

equal to 1 upon root over 2 pi sigma square exponentiation of minus u minus mu square by 

twice sigma square and the Laplacian probability density function which is given by p u u 

equal to 1 upon alpha into exponentiation of minus alpha u minus mu absolute value where 

mu and sigma square denote the mean and variance of the input signal u, the variance in case 

of Laplacian density function is given by sigma square is equal to 1 upon alpha.  
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Now find that though the earlier quantizer was designed for any kind of probability density 

functions, but it is not always possible to find out the probability distribution function of a 

signal apriori. So what is in practice is you assume an uniform distribution, uniform 



probability distribution which is given by p u u equal to 1 upon p l plus 1 minus t 1 where u 

lies between t 1 and t l plus 1. And p u u equal to zero when u is outside this region t 1 to t l 

plus 1. So this is the uniform probability distribution of the input signal u. And by using this 

uniform probability distribution  
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 the same Lloyd-Max quantizer equations give r k as,  
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if I compute this then you will find that the reconstruction level r k will be nothing but t k 

plus 1 plus t k by 2 where t k will be r k plus 1 plus r k by 2 which is same as t k plus 1 plus t 

k minus 1 by 2. So I get the reconstruction levels and the decision levels for a uniform 

quantizer.  
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Now these relations leads to t k to t k minus 1 is same as t k minus 1 minus t k and that is 

constant equal to q which is known as the quantization step. So finally what we get is the 

quantization step is given by t l plus 1 minus t 1 by l where t l plus 1 is the maximum 

transition level and t 1 is the minimum transition level and l is the number of quantization 

steps. We also get the transition level t k in terms of transition level t k minus 1 as t k equal to 

t k minus 1 by plus q and the reconstruction level r k in terms of the transition level t k as r k 

equal to t k plus q by 2. So we obtain all the related terms of a uniform quantizer using this 

mean square error quantizer design which is the Lloyd Max quantizer for a uniform 

distribution.  
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So here you find that all the transactions, all the transition levels as well as the reconstruction 

levels are equally spaced and the  
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quantization error in this case is uniformly distributed over the interval minus q by 2 to q by 

2. And the mean square error in this particular case if you compute will be given by 1 upon q 

u square d u you take the integral from minus q by 2 to q by 2 which will be nothing but q 

square by 12.  
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So for uniform distribution the Lloyd Max quantizer equation becomes linear because all the 

equations that we had derived earlier, they are all linear equations giving equal intervals 

between transition levels and the reconstruction levels and so this is also sometimes referred 

as a linear quantizer.  
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Ok. So there are some more observations from this linear quantizer. The variance sigma u 

square of a uniform random variable whose range is a is given by a square by 12. So for this, 

you find that for a uniform quantizer with b bits. So if we have an uniform quantizer where 

every level has to be represented by b bits we will have q equal to a by 2 to the power b 

because the number of steps will be 2 to the power b number of steps and thus the 

quantization step will be q equal to a upon 2 to the power b and from this you find that the 

error divided by sigma u square will be equal to 2 to the power minus 2 b and from this we 

can compute the signal to noise ratio. In case of a uniform quantizer but the signal to noise 

ratio is given by 10 log 2 to the power 10 where the 2 to the power twice b where the 

logarithm has to be taken with base 10 and this is nothing but 6 b d b.  

 

So this says that signal to noise ratio that can be achieved by an optimum mean square 

quantizer for uniform distribution is 6 d b per bit that means if I increase the number of bits 

by 1. So if you increase the number of bits by 1, that means the number of quantization levels 

will be increased by 2, by a factor of 2. In that case you gain a 6 d b in the signal to noise 

ratio in the reconstructed signal.  
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So with this we come to an end on our discussion on the image digitization process. So here 

we have seen that how to sample an image or how to sample a signal in one-dimension, how 

to sample an image in two-dimension. We have also seen that after you get the sample values 

where each of the sample values are analog in nature, how to quantize those sample values so 

that you can get the exact digital signal as well as exact digital image. Thank you 


