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Hello, welcome to the video lecture series on digital image processing. Now in today’s 

lecture, or in a number of lectures starting from today, we will talk about image restoration 

techniques. So we will talk about image restoration techniques, and we will see what is the 

difference between image enhancement and image restoration, we will talk about image 

formation process and the degradation model involved in it, and we will see the degradation 

model and the degradation operation in continuous functions and how it can be formulated in 

the discrete domain.   

Now when we have talked about the image enhancement, particularly using a lowpass filter 

or using smoothings masks in the spatial domain, we have seen that one of the effect of using 

a lowpass filter or the effect of using a smoothing mask in the spatial domain is that the noise 

content of the image gets reduced. The simple reason is the noise content leads to high 

frequency components in the displayed image. So if I can remove or reduce the high 

frequency components that also leads to reduction of the noise.    

Now this type of reduction of the noise is also a sort of restoration. But these are not usually 

termed as restoration, rather a process which tries to recover or which tries to restore an 

image which has been degraded by some knowledge of a degradation method which has 



degraded the image. This is an operation which is known as image restoration. So in case of 

image restoration, the image degradation model is very very important. So we have to find 

out what is the phenomenon or what is the model which has degraded the image and once 

that model the degradation model is known, then we have to apply the inverse process to 

recover or restore the desired image.    

So this is the difference between an image enhancement or simple noise filtering in terms of 

image enhancement and image restoration, that is in case of image enhancement or simple 

noise filtering, we do not make use of any of the degradation model or we do not bother 

about what is the process which is degrading the image. Whereas in case of image 

restoration, we will talk about the degradation model, we will try to estimate the model that 

has degraded the image and using that model we apply the inverse process and try to restore 

the image.   

 

So the degradation modeling is very very important in case of image restoration. And when 

we try to restore an image, in most of the cases we define some goodness criteria. So using 

this goodness criteria, we can find out an optimally restored image which more or less which 

is almost same as the original image. And we will see later that image restoration operations 

can be applied as in case of image enhancement both in the frequency domain as well as in 

the spatial domain.   
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So first of all, let us see that what is the image degradation model that we will consider in our 

subsequent lectures. So let us see the image degradation model first, so here we assume that 



our input image is image f(x,y) it is a two dimensional function as before and we assume that 

this f(x,y) the input image f(x,y) is degraded by a degradation function H. so we will put it 

like this, that we have a degradation function H which operates on the input image f(x,y).   

 

Then the output of this degradation function is added to an additive noise, so here we add a 

noise term which we represent by, say eta(x,y) which is added to the degradation output, and 

this finally gives us the output image g(x,y). So this g(x,y) is the degraded image which we 

want to recover, so from this g(x,y) we want to recover the input image the original input 

image f(x,y) using the image restoration techniques. So for recovering, this f(x,y) what we 

have to do is, we have to perform some filtering operation and we will see later that these 

filters, they are actually derived using the knowledge of the degradation function that is H. 

And output of the filters is our restored image and let us put it as f hat(x,y) and we put it as f 

hat(x,y) because in most of the cases, we are unable to restore the image exactly. That means 

it is very difficult to get the exact image f(x,y).   

 

Rather, by using the goodness criteria that we have just mentioned, what we can do is, we can 

get an approximation of the original image f(x,y). So that is this reconstructed image f 

hat(x,y) which is an approximation of the original image f(x,y). So the blocks from here to 

here, that is up to obtaining g(x,y) this is actually the process of degradation. So you find that 

in the degradation, we first have a degradation function H which operates on the input image 

f(x,y), then the output of this degradation function block that is added with an additive noise 

which in this particular case we have represented as eta(x,y) and this degradation function 

output added to this additive noise, that is what is the degraded image that we actually 

observed.   

 

And this degraded image is filtered by using the restoration filter, so this filters that we use 

they are actually restoration filters. So this g(x,y) is passed through the restoration filters 

where we get the filter output as the reconstructed image f hat (x,y). And we as we have just 

said that this f(x,y) is an approximation of the original image f(x,y). So this particular block 

which represents an operation this is a restoration operation and as we have said that the 

process we call as restoration, in that the knowledge of the degradation model is very very 

essential.   

 



So one of the fundamental task, one of the very important task in the restoration process is to 

estimate the degradation model of, the degradation model which has degraded the input 

image. And later on we will see various techniques of how to estimate the degradation model, 

that is how to estimate the degradation function H. And we will see in a short while from now 

that this particular operation, that is the conversion from f(x,y) to g(x,y) this can be 

represented in spatial domain as g(x,y) = h f(x,y) convolution with f(x,y) +  the noise eta(x,y).    

 

So this is the operation which is done in the spatial domain and the corresponding operation 

in frequency domain will be represented by G(u,v) = H(u,v) into F(u,v) + N(u,v), where 

H(u,v) is the Fourier transformation of h(x,y), F(u,v) is the Fourier transformation of the 

input image f(x,y), N(u,v) is the Fourier transform of the additive noise eta(x,y) and G(u,v) is 

the Fourier transform of the degraded image g(x,y).    

 

And this operation is the frequency domain operation and the equivalent operation in the 

spatial domain it is the upper one and here you see that in the spatial domain we have 

represented this operation as a convolution operation and we have said earlier that a 

convolution in the spatial domain is equivalent to multiplication in the frequency domain. So 

that is what this second term that is G(u,v) = H(u,v) into F(u,v) + N(u,v). So here the 

convolution in the spatial domain is replaced by the multiplication in the frequency domain. 

So these two are very very important expressions and we will use, make use of this 

expressions subsequently more or less throughout our discussion or image restoration 

process.    
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Now before we proceed further, let us try to recapitulate some of definitions. So first we will 

look at some of the definitions that will be used throughout our discussion on image 

restoration. So here what we have is, we have a degraded image g(x,y) which now let us 

represent it like this, H of [f(x,y)] + eta(x,y), where in this particular case, we assume that this 

H is the degradation operator which operates on the input image f(x,y) and that when added 

with the additive noise eta(x,y) gives us the degraded image g(x,y). Now here if we assume 

or for the time being, if we neglect the term eta(x,y), or we set eta(x,y) = 0 for the time being 

for simplicity of our analysis, then what we get is g(x,y) = H [f(x,y)] and as we said that here 

this H we assume that this is the degradation operator.    
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Now the first term that we will define in our case is what is known as linearity. So what do 

we mean by the linearity? Or we say that this degradation operator H is a linear operator. So 

for defining linearity, we know that if we have two functions, say f1(x,y) and f2(x,y), then we 

say that if H[k1 f1(x,y) + some constant k2 f2(x,y)] this is equal to k1 H[f1(x,y)] + k2 H[ 

f2(x,y)]. So if for this two functions f1(x,y) and f2(x,y) and for these two constants k1 and k2, 

this particular relation is true, that is H k1 f1(x,y) + k2 f2(x,y) = k1 H f1(x,y) + k2 H f2(x,y) 

if this relation is true, then the operator H is set to be a linear operator..   

 

And we know very well from our linear system theory that this is nothing but the famous 

superposition theorem, so this is what is known as the superposition theorem and as per our 

definition of a linear system, we know already that the superposition theorem must hold true, 

if the system is a linear system. Now using this same equation, if I set say k1 = k2 = 1 then, 

the same equation leads to H[f1(x,y) + f2(x,y)] this is nothing but = H[f1(x,y)] + H[f2(x,y)].  

Simply we have replaced k1 and k2 by 1, and this is what is known as additivity property.    

 

So the additivity property simply says that the response of the system to the sum of two 

inputs is same as the sum of their individual responses. So here, we have two inputs f1(x,y) 

and f2(x,y), so if I take the summation of f1(x,y) and f2(x,y), and then allow H to operate on 

eight, then whatever result we will get, that will be same as, when H operates on f1 and f2 

individually, and we take the sum of those individual responses.  
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And these two must be equal to 2 for a linear system and this is what is known as the 

additivity property. So this is what is the additivity property in this particular case. Now here, 



again if I assume that f2(x,y) = 0, so this gives H[k1 f1(x,y)] should be = k1 H[f1(x,y)], and 

this is a property which is known as homogeneity property. So these are the different 

properties of a linear system, and the system is also called position invariant, if certain 

properties hold. The system will be position invariant or location in variant, if H[f(x -alpha, y 

-beta)] is same as = g(x -alpha, y -beta).   

 

So in this case obviously, what we have assumed is g(x,y) = H[f(x,y)], so when this is true, 

that g(x,y) = H[f(x,y)], then this particular operator H will be called to be position invariant, 

if H[x -alpha, y -beta] is equal to g(x -alpha, y -beta) and that should be true for any function 

f(x,y) and any value of alpha beta. So this position invariant property, this simply says that 

the response at any point in the image, the response of H at any point in the image should 

solely depend upon the value of the pixel at that particular point, and the response will not 

depend upon the position of the point in the image.   

 

And that is what is given by this particular expression, that is H[f(x -alpha, y -beta)] = g(x -

alpha, y -beta). Now given this definition, let us see that what will be the degradation model 

for a what will be the degradation model in case of continuous functions.    
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So to look at the degradation model in case of continuous functions, we make use of an old 

mathematical expression where we have seen that if I take a delta function say, delta(x,y) and 

the definition of delta(x,y) we have seen earlier that this is equal to 1, if x=0 and y=0, and this 

is equal to zero, otherwise. So this is the definition of a delta function that we have already 



used, and we can use a shifted version of this delta function, that is delta(x -x0 and, y -y0) 

will be equal to 1, if x = x0 and y = y0, and it will be zero otherwise.   

 

So this is the definition of a delta function. Now earlier we have seen that if we have an 

image say, f(x,y) or a two dimensional function f(x,y), then multiply this with delta(x -x0, y -

y0) and integrate this product over the interval minus infinity to infinity, then the result of the 

integral will be simply equal to f(x0, y0). So this says that if I multiply a two dimensional 

function f(x,y) with the delta function delta(x -x0, y -y0) and integrate the product over the 

interval minus infinity to infinity, then the result will be simply the value of the two 

dimensional function f(x,y) at location x0, y0.   
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So by slightly modifying this particular expression, we can have an equivalent expression 

which is given by, I can formulate the two dimensional function f(x,y) as a similar integral 

operation and in this case I will take f(alpha, beta) delta(x -alpha, y -beta) dalpha dbeta and 

take the integral from minus infinity to infinity.   

 

So we find that we have an equivalent mathematical expression which is equivalent to just 

the earlier expression that we have said, and in this case we can formulate f(x,y), the two 

dimensional function f(x,y) in terms of the value of the function at a particular point alpha 

beta, and in terms of the delta function delta(x -alpha, y -beta).   

 

Now, for the time being if we consider, say the noise term ita(x,y) = 0 for simplicity, then we 

can write the degraded image g(x,y), we have seen earlier that g(x,y) we have written as 



H[f(x,y)] + eta(x,y). So for the time being, we are assuming that this additive noise term 

etat(x,y) is zero or it is negligible, then the degraded image g(x,y) can now be written in the 

form H of I replace this f(x,y) by this integral term. So this will be simply H of double 

integral f(alpha, beta) delta(x -alpha, y -beta) dalpha dbeta, but the integral has to be taken 

from minus infinity to infinity.   

 

So I can write, I can get an expression of the degraded image g(x,y) in terms of this integral 

definition of the function f(x,y) which is operated by the degradation operator H. Now once I 

get this kind of expression, now if I apply the linearity and additivity property of the linear 

system, then this particular expression gets converted to g(x,y) is equal to, I can take this 

double summation outside it becomes H of [f(alpha, beta) delta(x -alpha, y -beta)] dalpha 

dbeta, take the integral from minus infinity to infinity.   

 

And this is what we have obtained by applying the linearity and additivity property to this 

earlier expression of this degraded image. Now here you find that this term f(alpha, beta) this 

is independent of the variables x and y. So because the term f(alpha, beta) is independent of 

the variables x and y, this same expression can now be rewritten in a slightly different form.    
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So that form gives us that g(x,y) can now be written as, same double integral we take f(alpha, 

beta) outside the scope of the operator H, so this simply becomes f(alpha, beta) then 

H[delta(x -alpha, y -beta)] dalpha dbeta, take the integral over minus infinity to infinity.   

 



Now this particular term H of [delta(x -alpha, y -beta)] we can write this as = h(x, alpha, y, 

beta) and this is nothing but what is known as the impulse response of H. So this is what is 

known as the impulse response. That is the response of the operator H when the input is an 

impulse, given in the form delta(x -alpha, y -beta). And in case of optics, this impulse 

response is popularly known as point spread function or PSF. So using this impulse response, 

now the same g(x,y), we can write as double integral again f(alpha, beta) h(x, alpha, y, beta) 

dalpha dbeta integral from minus infinity to infinity.   

 

And this is what is popularly known as superposition integral of first kind, now this particular 

expression is very very important, it simply says that if the impulse response of the operator 

H is known, then it possible to find out the response of this operator H to any arbitrary input 

f(alpha, beta). So that is what has been done here, that using the knowledge of this impulse 

response h(x, alpha, y, beta), we have been able to find out the response of this system to an 

input f(alpha, beta).   

 

And this impulse response is the one which uniquely or completely characterizes a particular 

system, okay. So given any system, if we know what is impulse response of the system, then 

we can find out what will be the response of that system to any other arbitrary function. Now 

in addition to this, if the function H, this operator H is position invariant, so we use H to be 

position invariant.   
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So if H is position invariant, then obviously H [delta(x -alpha, y -beta)] as per our definition 

of position invariance will be same as h(x -alpha, y -beta) this is as per the definition of 

position invariance of a system. Now using this position invariance property, now we can 

write g(x,y) that is the degraded image as simply, double integral f(alpha, beta) into h(x -

alpha, y -beta) dalpha dbeta take the integral from minus infinity to infinity. And if you look 

at this particular expression, you find that this expression is not, is nothing but the 

convolution operation, this is nothing but the convolution operation of the two functions 

f(x,y) and h(x,y).   

 

And that is what we said that when we have drawn our degradation model, we have said that 

input image f(x,y) is actually convolved by the degradation process that is g(x,y). So this is 

nothing but that convolution operation. And now if I take you find that earlier we have 

considered this noise term eta(x,y) to be equal to zero. So now if I consider this noise term 

eta(x,y), then our degradation function, or the degradation model becomes simply g(x,y) = 

f(alpha, beta) h(x -alpha, y -beta) dalpha dbeta take the integral from minus infinity to infinity 

plus the noise term eta(x,y).   

 

So this is the general image degradation model, and you find that here we have assumed that 

the degradation function H is linear and position invariant. And it is very important to note 

that many of the degradation operations which are, which we encounter in reality can be 

approximated by such linear space invariant or linear position invariant models. The 

advantage is, once a degradation model is can be approximated by a linear position invariant 

model.   

 

Then the inter mathematical rule of linear system theory can be used to find out the solution 

for such image restoration process, that means we can use all those tools of linear system 

theory to estimate what will be the restored image f(x, y) from given degraded image g(x,y) 

provided we know we have some knowledge of the degradation function, that is h(x,y) and 

we have some knowledge of what is the noise function eta(x,y). Thank you.                 


