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Hello, welcome to the video lecture series on digital image processing. Now we start 

discussion on the frequency domain processing techniques. Now so far, you must have 

noticed that these mask operations or the spatial domain operations using the masks whatever 

we have done that is nothing but a convolution operation in two dimension.   
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So what we have done is we have the original image f(x,y), we define a mask corresponding 

to the type of operation that we want to perform on the original image f(x,y) and using this 

mask, the kind of operation that is done, the mathematical expression of this is given on the 

bottom, and if you analyze this, you will find that this is nothing but a convolution operation.   

So using this convolution operation, we are going for spatial domain processing of the 

images. Now we have seen, we have already seen during our earlier discussions that a 

convolution operation in the spatial domain is equivalent to multiplication in the frequency 

domain. Convolution in the spatial domain is equivalent to multiplication in the frequency 

domain. Similarly a convolution in the frequency domain is equivalent to multiplication in 

the spatial domain.    
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So, what we have seen is that if we have a convolution of, say two functions f(x,y) and h(x,y) 

in the spatial domain. The corresponding operation in the frequency domain is multiplication 

of F(u,v) and H(u,v), where F(u,v) is the Fourier transform of this spatial domain function 

f(x,y) and H(u,v) is the Fourier transform of the spatial domain function h(x,y). Similarly, if 

we multiply two functions f(x,y) and h(x,y) in the spatial domain, the corresponding 

operation in the frequency domain is the convolution operation of the Fourier transforms of 

f(x,y) which is F(u,v) that has to be convolved with H(u,v).   

So these are the convolution theorems that we have done in during our previous discussions. 

So to perform this convolution operation, the equivalent operation can also be done in the 

frequency domain, if I take the Fourier transform of the image f(x,y) and I take the Fourier 

transform of the spatial mask, that is h(x,y). So the Fourier transform of the spatial mask 

h(x,y) as we have said that this is nothing but H(u,v) in this particular case.   

So the equivalent filtering operations, we can do in the frequency domain by choosing the 

proper filter H(u,v), then after taking the product of F(u,v) and H(u,v) if I take the inverse 

Fourier transform, then I will get the processed image in the spatial domain. Now to analyze 

this further, what we will do is, we will take the cases in one dimension and we will consider 

the filters based on Gaussian functions for analysis purpose. The reasons we are choosing 

these filters based on Gaussian function is that, the shapes of such functions can be easily 

specified and easily analyzed.     
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Not only that, the forward transformation, the forward Fourier transformation and the inverse 

Fourier transformation of Gaussian functions are also Gaussian. So if I take a Gaussian filter 

in the frequency domain, I will write a Gaussian filter in the frequency domain as H(u) = 

some constant A e to the power minus u square by 2 sigma square, where sigma is the 

standard deviation of the Gaussian function. And if I take the inverse Fourier transform of 

this, then the corresponding filter in the spatial domain will be given by h(x)= root over 2 pi 

A e to the power minus 2 pi square, sigma square x square.    

Now if you analyze these two functions, that is H(u) in the frequency domain and h(x) in the 

spatial domain, you find that both this functions are Gaussian as well as real. And not only 

that, both these functions they behave reciprocally with each other, that means, when H(u) 

has a broad profile, this particular function H(u) in the frequency domain, it has a broad 

profile, that is it has a large value of standard deviation sigma.     

The corresponding h(x) in the spatial domain will have a narrow profile. Similarly, if H(u) 

has a narrow profile, h(x) will have a broad profile. Particularly, when this sigma tends to 

infinity, then this function H(u), this tends to be a flat function, and in such case the 

corresponding spatial domain filter h(x) this tends to be an impulse function. So, this shows 

that both H(u) and h(x) they are reciprocal to each other. Now let us say what will be the 

nature of these functions nature of such lowpass filter functions.   
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So here, on the left hand side we have shown the frequency domain filter H(u) as a function 

of you and on the right hand side we have shown the corresponding spatial domain filter h(x) 

which is a function of x. Now from these filters, it is quite obvious that all the values once I 

specify filter H(u) as a function of you in the frequency domain, the corresponding filter h(x) 

in the spatial domain, they will have all positive values, that is none h(x) never becomes 

positive negative for any value of x.     

And the narrower the frequency domain filter, more it will attenuate the lowpass frequency 

components resulting in more blurring effect. And if I say make the frequency domain filter 

narrower, that means the corresponding spatial domain filter or spatial domain mask will be 

flatter, that means the mask size in the spatial domain will be larger.  
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So this slide shows two such masks that we have already discussed during our previous 

discussion. So this is a mask where all the coefficients are positive and same, and in this 

mask the coefficients are all positive, but the variation shows that it is having some sort of 

Gaussian distribution in nature.         

And we have already said that if the frequency domain filter becomes very narrow, it will 

attenuate even the low frequency components leading to a blurring effect of the processed 

image. Correspondingly in the highpass correspondingly in the spatial domain, the mask size 

will be larger and we have seen through are results that if I use a larger mask size for 

smoothing operation, then the image gets more and more blurred. Now, in the same manner 

as we have said the lowpass filter, we can also make the highpass filters again in the Gaussian 

domain.    
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So in this case, in case of Gaussian domain, using the Gaussian function a highpass filter 

H(u) can be defined as A(1 - e to the power – u square by 2 sigma square). So this is the 

highpass filter, which is defined using the Gaussian function. If I take the inverse Fourier 

transform of this, the corresponding spatial domain filter will be given by h(x) = A(delta (x) – 

the same square root of 2 pi into A into e to the power minus 2pi square sigma square x 

square). So if I plot this in the frequency domain, this shows the highpass paltar filter in the 

frequency domain, so as it is quite obvious from this plot that it will attenuate the low 

frequency components, whereas it will pass the high frequency components.    

And the corresponding filter in the spatial domain is having this form which is given by h(x) 

as a function of x. Now as you note, from this particular figure, from this particular function 



h(x) that h(x) can assume both positive as well as negative values. And an important point to 

note over here is, once h(x) becomes negative, it will remain negative it does not become 

positive any more. And in the spatial domain, the laplacian operator that we have used earlier, 

the laplacian operator was of similar nature.    
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So the laplacian mask that we have used, we have seen that the center pixel is having a 

positive value, whereas all the neighboring pixels have the negative values, and this is true 

for both the laplacian masks if I consider only the vertical and horizontal components or 

whether along with vertical and horizontal components, I also consider the diagonal 

components. So these are the two laplacian masks where the center coefficient is positive and 

the neighboring coefficients once they become negative, they will remain negative.    

So this shows that using the laplacian mask in the spatial domain, the kind of operation that 

we have done is basically a highpass filtering operation. So now first of all we will consider 

the smoothing frequency domain filters or lowpass filters in the frequency domain. Now as 

we have already discussed, that edges as we as sharp transitions like noises, they lead to high 

frequency components in the image. And if we want to reduce these high frequency 

components, then the kind of filter that we have used is a lowpass filter.   
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For the lowpass filter, we will allow the low frequency components of the input image to be 

passed to the output and it will cut off the high frequency components of the input image 

which will not be passed to the output. So our basic model for this filtering operation will be 

like this that we will have the output in the frequency domain, which is given by G(u,v) 

which is equal to H(u,v) multiplied by F(u.v), where this F(u,v) is the Fourier transform of 

the input image and we have to select a proper filter function H(u,v) which will attenuate the 

high frequency components and it will let the low frequency components to be passed to the 

output.   

Now here we will consider an ideal lowpass filter, where we will assume the ideal lowpass 

filter to be like this, that H(u,v) = 1, if D(u,v), where D(u,v) is the distance of the point u,v in 

the frequency domain from the origin of the frequency rectangle. So if D(u,v) is less than or 

equal to some value say D0, than H(u,v) H(u,v) will be equal to 1 and this will be equal to 

zero if the distance from the origin of the point u,v is greater than D0.   

So this clearly means, that if I multiply F(u,v) with such an H(u,v), than all the frequency 

components lying within a circle of radius D0 will be passed to the output and all the 

frequency components lying outside this circle of radius D0 will not be allowed to be passed 

to the output.   

Now if the Fourier transform F(u,v) is centered, is the centered Fourier transform, that means 

the origin of the Fourier transform rectangle is set at the middle of the rectangle, then this 

D(u,v) the distance value instantly computed as [(u -M by 2 square)+(v -N by 2) square] 



square root of this, where we are assuming that we have an image of size M x N. So for an M 

x N image size, D(u,v) will be computer like this, if the Fourier transform F(u,v) is the 

centered Fourier transformation.   
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A plot of this kind of function is like this, so (he) here you find that in the left hand side 

shows the prospective plot of such an ideal filter, whereas on the right hand side we just show 

the cross section of such an ideal filter. And in such cases, we define a cut off frequency of 

the filter to be the point of transition between H(u,v)=1 and H(u,v)=0. So in this particular 

case, this point of transition is the value D0 so we consider D0 to be the cut off frequency of 

this particular field.   

Now it may be noted that such a sharp cut off filter is not realizable using the electronic 

components. However using software, using computer program it is different, because we are 

just letting some values to be passed to the output and we are making the other values to be 

zero. So this kind of ideal lowpass filter can be implemented using software, whereas using 

electronic components, we may not be, we are not able to implement such ideal lowpass 

filters.    
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So a better approximation of this is a filter which is called a Butterworth filter. So a 

Butterworth filter, a Butterworth low pass filter is the response, the frequency response of this 

is given by H(u,v)=1 upon 1+[D(u,v) by D0] to the power 2 n. So this is a Butterworth filter 

of order n.   
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The response of or the plot of such a Butterworth filter is shown here, so here we have shown 

the Butterworth Butterworth filter the prospective plot of the Butterworth filter, and on the 

right hand side we have shown the cross section of this Butterworth filter. Now if I apply the 

ideal lowpass filter and the Butterworth filter on an image, let us see what will be the kind of 



the output image that we will get. So in all these cases, we assume that first we take the 

Fourier transform of the image, then multiply that Fourier transformation with the frequency 

response of the filters, then whatever the product that we get, we take the inverse Fourier 

transformation of this to obtain our processed image in the spatial domain.   

(Refer Slide Time: 18:59)  

 

 

So here we use two images for test purpose, on the left hand side we have shown an image 

without any noise, and on the right hand side we have shown an image where we have added 

some amount of noise. Then if I process that image, using the ideal lowpass filter, and using 

the Butterworth filter, the top row shows the results with ideal lowpass filter when the image 

is without noise and the bottom row shows the result by applying the Butterworth filter again 

when there is no noise contamination in the image.   



Here you find, as the top row shows that if I use the ideal lowpass filter, for the same cut off 

frequency, say 10, the blurring of the image is very high compared to the blurring which is 

introduced by the Butterworth filter. If I increase the cut off frequency, when I go for cut off 

frequency of twenty, in that case you find that in the original image, in the ideal lowpass 

filtered image, the image is very sharp but the disadvantage is that, if you simply look at 

these locations, say along these locations you find that there is some ringing effect. That 

means there are a number of lines undesired lines which are not present in the original image.    
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Same is the case over here, so the Butterworth filter, Butterworth lowpass filter, it introduces 

the ringing effect, the ringing effect which are not visible in case of Butterworth filter. Now 

the reason why the ideal lowpass filters introduces the ringing effect is that, we have seen that 

for an ideal lowpass filter, in the frequency domain the ideal lowpass filter response was 

something like this, so if I plot u versus H(u) this was the response of the ideal lowpass filter. 

Now if I take the inverse Fourier transform of this, corresponding h(x) will have a function of 

this form. Like this.   

So here, you find that there is a main component which is the central component and there are 

other secondary components. Now the spread of this main component is inversely 

proportional to D0 which is the cut off frequency of the (butter) of the ideal filter, ideal 

lowpass filter. So as I reduce D0, this spread is going to increase and that is what is 

responsible for more and more blurring effect of the smoothed image. Whereas all the 



secondary components, the number of these components again over an unit length is again an 

inverse function, inversely proportional to this cut off frequency D0.   

And these are the ones which are responsible for ringing effect. When I use Butterworth 

filter, the outputs that we have shown here using the Butterworth filters, these outputs are 

obtained using Butterworth filter of order one, that is value of n = 1. So Butterworth filter of 

order 1 does not lead to any kind of ringing effect. Whereas, if go for butter Butterworth filter 

of higher order that may leads to the ringing effect. In the same manner we can also go for 

Gaussian lowpass filter.    
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And we have already said, that for a Gaussian lowpass filter, the filter response H(u,v) is 

given by, e to the power minus D square(u,v) upon 2 sigma square, and if I allow sigma to be 

equal to the cut frequency say D0, then this H(u,v), the filter response will be, e to the power 

minus D square (u,v) upon 2 D0 square. Now if I use such a Gaussian lowpass filter for 

filtering operation and as we have already said the inverse Fourier transform of this is also 

Gaussian in nature, so using the Gaussian filters, we will never have any ringing effect in the 

processed image.   

So this is the kind of lowpass filtering filtering operation or smoothing operations in the 

spatial domain that we can have. We can also have the high frequency operation or 

sharpening filters in the frequency domain. So as lowpass filters give the smoothing effect, 

the sharpening effect is given by the highpass filter. Again we can have the ideal highpass 



filter, we can have the Butterworth highpass filter, we can also have the Gaussian highpass 

filter.    
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So just in the reverse way, we can define an ideal highpass filter as, for an highpass filter, the 

ideal highpass filter will be simply H(u,v) = 0, if D(u,v) is less than or equal to D0 and this 

will be equal to one, if D(u,v) is greater than D0. So this is the ideal highpass filter. Similarly 

we can have Butterworth highpass filter, where H(u,v) will be given by the expression 1 upon 

1 + D0 by D(u,v) to the power 2n, and we can also have the Gaussian highpass filter, which is 

given by H(u,v) = 1 – e to the power – D square(u,v) upon 2D0 square.    

(Refer Slide Time: 25:53)  

 



 

And you find that in all this cases, the response, the frequency response of an highpass filter, 

if I write it thas, write it as a Hhp is nothing but 1 – the response of a lowpass filter, so the 

highpass filter response can be obtained by the lowpass filter response where the cut off 

frequencies are same. Now using such highpass filters, the kind of results that we can obtain 

is given here, so this is the ideal highpass filter response, where the left hand side gives you 

the prospective plot and the right hand side gives you the cross section.   

(Refer Slide Time: 26:41)  

 



 

 

This shows the Butterworth filter prospective plot as well as cross section of a Butterworth 

filter of order one. And if I apply such highpass filters to the image, to the same image then 

the results that we obtain is something like this. So here on the left hand side, this is the 

response of an ideal highpass filter, on the right hand side we have shown the response of a 

Butterworth highpass filter and in both this cases, the cut off frequency was taken to be equal 

to 10. This one, where the cut off frequency was taken to equal to fifty and if you close the 

look at the ideal filter output, here again you find that you can obtain, you can find that there 

are ringing effects around these boundaries.   

Whereas in case of Butterworth filter, there is no ringing effect, and again we said that this is 

a Butterworth filter of order one if I go for higher order Butterworth filters that also may lead 

to ringing effects. Whereas, if I go for a highpass filter which is a Gaussian highpass filter, 



the Gaussian highpass filter does not leads to any ringing effect. So using these highpass 

filters I can go for smoothing operation using the lowpass filters I can go for the smoothing 

operation and using the highpass filters I can go for image sharpening operation.     
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The same operation can also be done using the laplacian in the frequency domain. It is simply 

because if I take the laplacian of a function, if for a function f(x,y), I get the corresponding 

frequency domain say F(u,v) the corresponding fourier transform, then the laplacian operator, 

if I perform dell square f(x,y) and take the fourier transform of this, this will be nothing but, it 

can be shown, it will be equal to ( –u square + v square) into F(u,v). So, using this operation 

if I consider say H(u,v) = - u square + v square and using this as a filter, I filter this F(u,v) 

and after that I compute the inverse fourier transformation then the output that we get is 

nothing but a laplacian operated output which will obviously be an enhanced output.    
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Another kind of filtering that we have already done during a in connection with our spatial 

domain operation that is high boost filtering. So there we have said that in spatial domain, the 

high boost filtering operation, the high boost filtering output f(x,y) if I represented, represent 

this as fhb(x,y) is nothing but A into f(x,y) – flp(x,y) and which is can be represented as, (A – 

1) into f(x,y) + fhp(x,y). In the frequency domain, the corresponding operation the 

corresponding filter can be represented by Hhb(u,v) = (A – 1) + high pass filter Hhp(u,v). So 

this is what is the high boost filter response in the frequency domain.  

(Refer Slide Time: 31:35) 

 



So if I apply this highboost filter to an image, the kind of result that we get is something like 

this, where again on the left hand side is the original image, and on the right hand side it is 

the highboost filtered image.   
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Now let us consider another very very interesting filter, which we call as homomorphic filter, 

Homomorphic filter. The idea aims from our one of the earlier discussions where we have 

said that the intensity at a particular point in the image, is a product of two terms, one is the 

illumination term, other one is the reflectance term. That is f(x,y) we have earlier said that it 

can be represented by an illumination term i(x,y) multiplied by r(x,y), where r(x,y) is the 

reflectance term.   

Now coming to the corresponding frequency domain, because this is a product of two terms, 

one is the illumination, other one is the reflectance, taking the Fourier transform directly on 

this product is not possible. So what we do is, we define a function, say z(x,y) which is 

logarithm of f(x,y) and this is nothing but logarithm of i(x,y)+logarithm of r(x,y). And if I 

compute the fourier transform, then the fourier transform of z(x,y) will be represented by 

z(u,v) which will have two components, Fi(u,v) + Fr(u,v).    
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Where this Fi(u,v) is the fourier transform of ln i(x,y) and Fr(u,v) is the Fourier transform of 

ln r(x,y). Now if I define a filter, say H(u,v) and apply this filter on this z(u,v), then the 

output that I get is, say S(u,v) which is equal to H(u,v) times Z(u,v) which will be nothing 

but, H(u,v) times Fi(u,v)+H(u,v) times Fr(u,v). Now taking the invers fourier transform, I get 

s(x,y) = i dash(x,y) + r dash(x,y) and finally, I get g(x,y), which is nothing but e to the power 

s(x,y) which is nothing but e to the power i dash(x,y) into e to the power r dash(x,y) which is 

nothing but i0 (x,y) into r0(x,y).   

So the first term, is the illumination component, and second term is the reflectance 

component. Now because of this separation, it is possible to design a filter which can enhance 

the high frequency components and it can attenuate the low frequency components. Now it is 

generally the case that in an image the illumination component leads to low frequency 

components, because illumination is slowly varying, whereas the reflectance components 

leads to high frequency components particularly at the boundaries of two reflecting objects.    
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As a result, the reflectance term leads to high frequency components and illumination term 

leads to low frequency components. So now if we define a filter like this, a filter response 

like this, and here if I say that I will have, say gamma H greater than 1, and gamma L less 

than 1, this will amplify all the high frequency components that is the contribution of the 

reflectance and it will attenuate the low frequency components that is contribution due to the 

illumination.    
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Now using this time, type of filtering, the kind of result that we get is something like this, 

here on the left hand side is the original image, and on the right hand side is the enhanced 



image, and if you look in the boxes you find that many of the details in the boxes which are 

not available in the original image, is now available in the enhanced image. So using such 

homomorphic filtering, we can even go for this kind of enhancement or the illumination, the 

contribution due to illumination will be reduced. So even in the dark areas we can take out 

the details.    
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So with this, we come to an end to our discussion on image enhancements. Now let us go to 

some questions of our today’s lecture. The first question is a digital image contains an 

unwanted region of size 7 pixels. What should be the smoothing mask size to remove this 

region? Why laplacian operator is normally used for image sharpening operation? Third 

question, what is unsharp masking? Fourth question, give a 3x3 mask for performing unsharp 

masking in a single pass through an image. Fifth, state some applications of first derivative in 

image processing.    
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Then, what is ringing? Why ideal lowpass and highpass filters lead to ringing effects? How 

does blurring vary with cutoff frequency? Does Gaussian filter lead to ringing effect? Give 

the transfer function of a highboost filter. And what is the principle of homomorphic filter? 

Thank you.          

 

                          


