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Hello. Welcome to the video lecture series on Digital Image Processing. Now Rotation 

property. Rotation property of the discrete fourier transformation. So to explain this rotation 

property, we will introduce the polar coordinated coordinate system, that is we will now 

replace x by r cosine theta, y will be replaced by r sine theta. Ok? u will be replaced by 

omega cosine phi and v will be replaced by omega sine phi.   

So by this, now our original 2 dimensional signal, 2 dimensional array in the plane f(x,y) gets 

transformed into f(r,theta) the fourier transformation F(u,v) the fourier transform coefficients 

F(u,v) now gets transformed into F(omega, phi). Now using these polar coordinates, if e find 

out compute the fourier transformation, then it will be found that, f(r,theta + theta naught), 

the corresponding fourier transformation will be given by capital F(omega, phi + theta 

naught).    

So this will be the fourier transformation there in the polar coordinate system. So this 

indicates our original signal was f(r,theta), if I rotate this f(r,theta) by an angle theta naught 

then the rotated image becomes f(r,theta + theta naught) and if I take the fourier transform of 

F(r,theta + theta naught) that is the rotated image which is now rotated by an angle theta 



naught, then the fourier transform becomes F(omega,phi + theta naught) whereF(omega, phi) 

was the fourier transform of the original image f(r,theta).  

So this simply says, that if I rotate image f(x,y) by an angle say theta naught, its fourier 

transformation will also be rotated by the same angle theta naught and that is what is obvious 

from this particular expression because f(r,theta + theta naught) gives rise to the fourier 

transformation F of capital F((omega +-) omega, phi + theta naught) where if omega uhh phi 

was the fourier transformation of f(r,theta).     
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So by rotating an input image, by an angle theta naught, the corresponding fourier transform 

is also rotated by the same angle theta naught. So we will illustrate this, let us come to this 

particular figure, so here we find that we had a rectangle, an image where we have all values 

uhh we have, pixel values equal to 1 within a rectangle and outside this, the pixel values are 

equal to 0.   

And the corresponding fourier transformation is this, so here the fourier transformation 

coefficients are uhh or the fourier spectrum is uhh a represented in the form of intensity 

values in an image. The second pair shows, that the same rectangle, is now rotated by an 

angle 45 degree, so here we have rotated this rectangle by an angle 45 degree and here you 

find that if you compare the fourier transformation of the original rectangle and the fourier 

transformation of this rotated rectangle.   



Here also you find that the fourier transform coefficients, they are also rotated by the same 

angle of 45 degree. So this uhh illustrates the rotation property of the discrete fourier 

transformation. The next property that we will talk about is what is called distributivity and 

scaling property.   
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The distributinvity property says that if I take two signals, two arrays f1(x,y) and f2(x,y). So 

these are two arrays. Take the summation of these two arrays f1(x,y) and f2(x,y) and then you 

find out the fourier transformation of this particular result that is f1(x,y) + f2(x,y) and take the 

fourier transform of this. Now this fourier transformation will be same as the fourier 

transformation of f1(x,y) + fourier transformation of f2(x,y).  

So this is true under addition that is for these two signals f1(x,y) and f2(x,y), if I take the 

addition, if I take the summation and then take the fourier transformation. The fourier 

transformation of this will be uhh the summation of the fourier transformation of individual 

signals f1(x,y) and f2(x,y). But if I take the multiplication, that is if I take f1(x,y) into f2(x,y) 

and take the fourier transformation of this product, this in general is not equal to the fourier 

transform of f1(x,y) into the fourier transform of f2(x,y).   

So this shows, that the discrete fourier transformation and same is true for the inverse fourier 

transformation; so this shows that the discrete fourier transformation and its inverse is 

distributive over addition but the discrete fourier transformation and its inverse is in general 

not distributive over multiplication. So that distributivity property is valid for addition of the 

two signals but it is not in general valid for multiplication of two signals.   
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So the next property of the same discrete fourier transform that we will talk about is the 

scaling property. The scaling property says that if we have two scalar quantities a and b. Now 

given a signal f(x,y) multiply this by the scalar quantity a, its corresponding fourier 

transformation will be F(u,v) multiplied by the same scalar quantity a and the inverse is also 

true.  

So if I multiply a signal by a scalar quantity a and take its fourier transformation then you 

will find that fourier transformation of this multiplied signal is nothing but the fourier 

transformation of the original signal multiplied by the same scalar quantity and the the same 

is true for the reverse that is also for inverse fourier transformation.   

And the second one is, if I take f of (ax,by) that is now you scale the individual dimensions. x 

is scaled by the scalar quantity a, the dimension y is scaled by the scalar quantity b. The 

corresponding fourier transformation will be 1 upon a into b then fourier transformation u by 

a and v by b and this is the reverse. Uhh so these are the scalar scaling properties of the 

discrete fourier transformation.   

Now we can also compute, the average value of the signal f(x,y). Now the average value for 

f(x,y) is given by, if I represent it like this, this is nothing but 1 upon capital N square into 

summation of f(x,y) where the summation has to be taken for x and y varying from 0 to 

capital N - 1. So this is what is the average value of the signal f(x,y). Now we find that for the 

fourier coefficient, the transform coefficients F(0,0).      



What is this coefficient? This is nothing but 1 upon capital N then double summation f(x,y) 

because all the exponential terms will lead to a value 1 and this summation has to be taken for 

x and y varying from 0 to capital N - 1. So you find that there is a direct relation, between the 

average of the 2 dimensional signal, f(x,y) and its zero-eth fourier coefficient DFT 

coefficient.   

So this clearly shows that the average value, f(x,y), the average value is nothing but 1 upon 

capital N into the zero-eth coefficient  zero-eth discrete fourier transformation coefficient and 

this is nothing but because here the uhh frequency u equal to 0, frequency v equal to 0. So 

this is nothing but the DC component of the signal. So the DC component divided by N, that 

gives you the average value of the particular signal.   
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The next property, this we have already discussed in one of our earlier lectures when we have 

discussed about sampling and quantisation that is the convolution property. In case of 

convolution property you have said that if we have say two signals f(x), multiply this with the 

signal g(x). Then the fourier transform in the frequency domain, this is equivalent to F of (u) 

convolution with G of (u).   

Similarly, if I take the convolution of  two signals f(x) and g(x), the corresponding fourier 

transformation in the fourier domain, it will be the multiplication of a F(u) and G(u). So the 

convolution of two signals, in the spatial domain is equivalent to multiplications of the 

fourier transformations of the same signals in the frequency domain. On the other hand 



multiplication of two signals in the spatial domain is equivalent to convolution of the fourier 

transforms of the same signals in the frequency domain.   

So this is what is known as the convolution property. The other one is called the correlation 

property. The correlation property says that if we have two signals f(x,y) and g(x,y), so now 

we are taking 2 dimensional signals and if I take the correlation of these two signals f(x,y) 

and g(x,y), in the frequency domain this will be equivalent to the multiplication F*(u,v) uhh 

where this star indicates the complex conjugate into G(u,v).    

And similarly, if I take the multiplication in the spatial domain, that is f*(x,y) into g(x,y), in 

the frequency domain, this will be (equiv-) equivalent to F(u,v) correlation uhh correlation 

with G(u,v). So these are the two properties which are known as the convolution property and 

the correlation property of the fourier transformations. So with this we have discussed, the 

various properties of the discrete fourier transformation.  
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Now let us see an implementation of the fourier transformation because if you look at the 

expression of fourier transformation, the expression we have told many times. This is F(u,v) 

which is same as uhh f(x,y) e to the power - j 2 pi by capital N ux + vy where both x and y 

vary from 0 to capital N - 1 and this divided by 1 upon N. So if I compute, if I analyse this 

particular expression, which we have done earlier also in relation with unitary transformation, 

you will find that this text N to the power uhh 4 number of computations.   



In case of 1 dimensional signal, F(u) will be given by f(x) e to the power - j 2 pi by capital N 

u x, summation of this over x equal to 0 to capital N - 1 and you have to scale it by 1 upon N. 

This particular expression takes N square number of computations. So obviously the number 

of computations and each of these computations are complex addition and multiplication 

operations.   

So we find that a computational complexity of N square for a data set of size capital N is 

quite high. So for implementation, we have discussed earlier that if our transformations are 

separable in that case we can go for fast implementation of the transformations. Let us see 

how that fast implementation can be done in case of this discrete fourier transformation. So 

because of the separability property, we can implement uhh this discrete fourier 

transformation in a faster way.    

So for that what I uhh do is, let us represent this particular expression F(u) is equal to 1 upon 

capital N, f(x) e to the power - j 2 pi by N ux, take the summation from x equal to 0 capital N 

- 1. We represent this expression in the form 1 upon N f(x) now I introduce a term W N to the 

power ux where x varies from 0 to capital N - 1. Now here this W N is nothing but e to the 

power - j 2 pi by capital N.    

So we have simply introduced this term for simplification of our expressions. Now if I 

assume, which generally is the case that the number of samples N is of the form say 2 to the 

power n. So if I assume that number of samples is of this form, then this capital N can be 

represented as 2 into capital M. And let us see that how this particular assumption helps us.   
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And with this assumption now we can represent rewrite F(u) as 1 upon 2M because N is 

equal to 2M, so now I can write 2M then take the summation f(x)into W 2M to the power ux 

where x now varies from 0 to 2M - 1. uhh The same expression, I can rewrite as half 1 upon 

capital M, summation f(2x) W 2M to the power u into 2x + 1 upon capital M summation f(2x 

+1) W 2M to the power u into 2x + 1 where x varies from 0 to capital M - 1. Here also x 

varies from 0 to capital M - 1.   

Now by this you see that what we have done. f(2x) as x varies from 0 to capital M - 1, this 

gives us only the even samples of our input sequence. Similarly f(2x + 1) as x varies from 0 

to capital M - 1 this gives us only the odd samples of the input sequence. So we have simply 

separated out the even samples from the odd samples.   

And if I further simplify this particular expression this expression can now be written in the 

form half into 1 upon capital M summation f(2x) into W capital M to the power ux where x 

varies from 0 to capital M - 1, + 1 upon capital M summation f(2x + 1) W M to the power ux 

into W 2M to the power u. So after simplification, after some simplification, the same 

expression can be written in this particular form. 

Now if you analyse this particular expression, you find that the first summation, this one 

gives you the fourier transform of  all the even samples, so this gives you F even (u) and this 

quantity in the second summation, this gives you the fourier transformation of all the odd 

samples, so I will write it as odd (u). And in this particular case u varies from 0 to capital M - 

1.   

Ok? So by separating the even samples and odd samples, I can compute that the fourier 

transformation of the even samples to give me F even(u), I can compute the fourier 

transformation of the odd samples to give me F odd(u) and then I can combine these two to 

give me the fourier DFT coefficients uhh of values from 0 to capital M - 1. Ok.    
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Now following some more property, so effectively what we have got is, F(u) is equal to half, 

F even(u) + F odd(u) into W 2M to the power u. Now we we can also show, that W M to the 

power u + M is same as W M to the power u. This can be derived from the definition of W M 

and also we can find out that W 2M u + M is same as - W 2M to the power u.   

So this tell us that capital F(u + capital M) is nothing but half of F even(u) - F odd(u) into W 

2M to the power u. So here again, u varies from 0 to M - 1 that means this gives us the 

coefficient from M to 2M - 1. So I get back all the coefficients. The first part, this part gives 

us the coefficient from 0 to M - 1 and this half gives us the coefficients from M to 2M - 1.   

Now what is the advantage that you have got? In our original formulation, we have seen that 

the number of complex multiplications and additions were of the order of M square. Now we 

have divided the N number of samples into two halves. For each of them, for each of the 

halves, when I compute the discrete fourier transformation, the amount of computation will 

be N square by 4 for each of the halves.   

And the total amount of computation will be of order N square by 2 taking 2 halves 

considering two halves separately. So straightway we have got a reduction in the computation 

by a factor of 2. So it is further possible that this odd half of the samples and the even half of 

the samples that we have got, we can further subdivide it. So from N by 2 we can go to N by 

4, from N by 4 you can go to N by 8 number of samples.    



From N by 8 we can go to N by 16 number of samples and so on, until we are left with only 

two samples. So if I go further, breaking the sequence of samples into smaller sizes, compute 

the DFTs of each of those smaller size samples and then combine them together, then you 

will find that we can gain enormously in terms of amount of computation.   

And it can be shown that for this first fourier transform implementation, the total number of 

computation is given by N log N, where log is taken with base 2. So this gives enormous 

amount of computation as uhh enormous gain in computation as against N square number of 

computations that is needed for direct implementation of discrete fourier transformation. 

Thank You.   


