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Hello, welcome to the video lectures series on digital image processing. In the last two 

classes, we have seen the basic theories of unitary transformations and we have seen uhh we 

have analysed the computational complexity of the unitary transformation operations 

particularly with respect to the image transformations. We have explained the separable 

unitary transformation.   

We have explained how separable unitary transformation helps to implement the fast 

transformations and fast transformation implementation as we have seen during our last class. 

It reduces the computational complexity of the transformation operations. After giving the 

general unitary introduction to the general unitary transformations, in today’s lecture, we are 

going to discuss about the Fourier transformation which is a specific case of the unitary 

transformation.     
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So during today’s lecture, we will talk about the fourier transformation and we will talk about 

fourier transformation both in the continuous domain as well as in discrete domain. We will 

see what are the properties of the fourier transformation operations and we will also see that 

what is meant by Fast Fourier Transform that is fast implementation of the fourier 

transformation operation.   

Now this Fourier Transformation operation, we have discussed in brief when we have 

discussed about the sampling theorem that is giving given an analog image or continuous 

image while discretisation. The first stage of discretisation was sampling the analog image. 

So during uhh discussion on sampling, we have talked about the Fourier Transformation and 

there we have said that Fourier Transformation gives you the frequency components present 

in the image.   

And for sampling, we must meet the condition that your sampling frequency must be greater 

than twice the maximum frequency present in the continuous image. In today’s lecture, we 

will discuss about the Fourier Transformation in uhh greater details. So first let us see what is 

meant by the Fourier Transformation. As we have seen earlier, that if we assume, a function 

say f(x).     
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So we will first talk about the Fourier Transformation in the continuous domain, and if we 

assume that f(x) is a continuous function, so this f(x) is a continuous function of some 

variable say x, then a fourier transformation of this function f(x), we normally write it as, the 

fourier transformation of the function f(x). This is also written as capital F of u. This is given 

by the expression, integral expression f(x) e to the power minus j 2 pi u x dx.    

Here the integration is carried over from minus infinity to infinity. Now this variable ux, this 

is the frequency variable. So given a function f(x), a continuous function f(x), by using this 

integration operation, we can find out the fourier transformation of the fourier transform of 

this continuous function f(x) and the fourier transform is given by f u.   

Now for doing this continuous fourier transformation, this function f(x) has to meet some 

requirement. The requirement is, the function f(x) must be continuous, it must be continuous 

and it must be integrable. So if f(x) meets these two requirements, that is f(x) is continuous 

and integrable then using this integral operation, we can find out the fourier transformation of 

this continuous function f(x).   

Similarly, we  can also have the inverse fourier transformation, that is given the fourier 

transform F(u) of a function f(x) and if F(u) is integrable, f(u) must be integrable, then we can 

find out the inverse fourier transform of F(u) which is nothing but the continuous function 

f(x) and this is given by a similar integration operation and now it is F(u) integral e to the 

power j 2 pi u x dx and the sorry du and this integration again has to be carried out from 

minus infinity to infinity.    



So from f(x) using this integral operation we can get the fourier transformation which is the 

F(u) and if F(u) is integrable then using the inverse fourier transformation, we can get back 

the original continuous function f(x) and these two expressions that is F(u) and f(x), the 

expressions for F(u) and expression for f(x), these two expressions are known as fourier 

transform pairs.   

So these two are known as fourier transform pairs. Now from this expression, you find that 

because fr being the (express-) uhh fourier transformation, what we are doing is we are taking 

the function f(x) multiplying it with an exponential e to the power minus j 2 pi u x dx and 

integrating this over the interval minus infinity to infinity. So naturally this expression F(u) 

that you get in general complex because e to the power minus j 2 pi u x , this quantity is a 

complex quantity.    
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So in general, the function F(u), it is a complex function, in general it is a complex function 

and because this F(u) is a complex function so you can write this F(u) or you can break this 

F(u) in the real part; so the real part we write as R(u), and the imaginary part so it will be I(u). 

So the F(u)  which in general is a complex quantity in now broken into the real part and the 

imaginary part.   

Or the same F(u) can also be written in the form of modulus of F(u) into e to the power j of 

phi u where the modulus of F(u) which gives you the modulus of this complex quantity F(u), 

this is nothing but R R(u) square plus I(u) square and square root of this. Ok? And this is 



what is known as fourier spectrum of f(x). So this we call as fourier spectrum of the function 

f(x) and this quantity phi of u which is given by tan inverse I(u) upon R(u).   

This is what is called the phase angle. This is the phase angle. So from this, we get what is 

known as the fourier spectrum, fourier spectrum of f(x) which is nothing but the modulus of 

magnitude of the fourier transformation F(u) and the tan inverse of the imaginary component 

I(u) by the real component R(u) this is that is what is the phase angle for this particular for a 

particular value of u.   

Now there is other term which is called the power spectrum. So power spectrum of the 

function f(x) which is also represented as P(u). this is nothing but F(u) magnitude square and 

if you expand this, this will be simply R square u plus I square u. So you get the power 

spectrum, we get the fourier spectrum and we also get the phase angle from the fourier 

transformation coefficients.  

And this is what we have in case of 1 dimensional image because we have because we have 

taken a function f(x) which is a function of single variable x. Now because in our case, we are 

discussing about the image processing operations and we have already said that the image is 

nothing but a 2 dimensional function which is a function of two variables x and y, so we have 

to discuss about the fourier transformation in 2 dimension rather than in single dimension.      

(Refer Slide Time: 10:46)  

 

So when you go for 2 dimensional fourier transformation, so you talk about 2D Fourier 

Transform. The 1 dimensional fourier transform that we have discussed just before can be 



easily extended to 2 dimension in the form that now in this case, our function is a 2 

dimensional function f(x,y) which is a function of two variables x and y and the fourier 

transform of this f(x,y) is now given by a F(u,v) which is equal to, now we have to have 

double integral f(x,y) e to the power minus j 2 pi u x plus v y dx dy and both these 

integrations have to be taken over the interval minus infinity to infinity.   

So find that from a 1 dimensional we have easily extended that to 2 dimensional fourier 

transformation and now this integration has to be taken over x and y because our image is a 2 

dimensional image which is a function of two variables x and y. So the forward 

transformation is given by this expression F(u,v) is equal to f(x,y) e to the power minus j 2 pi 

u x plus v y dx dy and integration has to be taken over from minus infinity to infinity.   

In the same manner, the inverse fourier transformation, so you can take the inverse fourier 

transformation to get f(x,y), that is the image from its fourier transform coefficient F(u,v) by 

taking the similar integral operation and in this case it will be F(u,v) e to the power j 2 pi u x 

plus v y du dv and the integration has to be taken from minus infinity to infinity.     
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So in this 2 dimensional signal, the fourier spectrum F(u,v) is given by R square (u,v) so as 

before this R gives you the real component plus I square (u,v) where I gives you the 

imaginary component and square root of this.     

So this is what is the fourier spectrum of the 2 dimensional signal f(x,y). We can get the 

phase angle in the same manner. The phase angle phi(u,v) is given by tan inverse uhh I (u,v) 



by R (u,v)  and the power spectrum in the same manner we get as P(u,v) is equal to F(u,v) 

squared which is nothing but R squared (u,v) plus I square (u,v).    

So you find that all these quantities which we had defined in case of the single dimensional 

uhh signal is also applicable in case of the 2 dimensional signal that is f(x,y). Now to 

illustrate this fourier transformation, let us take an example.     
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Suppose we have a continuous function like this, the function f(x,y) which is again a function 

of two variables x and y and the function in our case is like this that f(x,y) assumes a value, a 

constant value say capital A, for all values of x lying between 0 to capital X and all values of 

y lying between 0 to capital Y. So what we get is uhh a rectangular function like this where 

all values of x greater than capital X, the function value is zero and all values of y greater 

than capital Y, the function value is also zero.   

And between 0 to capital X and 0 to capital Y, the value of the function is equal to capital A. 

Let us see, how we can find out the fourier transformation of this particular 2 dimensional 

signal.     
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So to compute the fourier transformation, we follow the same expression. We have said that 

F(u,v) is nothing but double integration from minus infinity to infinity f(x,y) e to the power 

minus j 2 pi ux plus vy dx dy. Now in our case, this f(x,y) is equal to constant which is equal 

to A as long as x lies between 0 to capital X and y is in between 0 to capital Y.    

And outside this region, the value of f(x,y) is equal to zero. So you can break this particular 

integral in this form. This will be same as capital A then take the integration over x which 

will be in this particular case e to the power minus j 2 pi u x dx. Now this integration over x 

has to be from zero to capital X multiplied by e to the power minus j 2 pi y dy where this 

integration will be in the range zero to capital Y.  

So if I compute this, these two integrations, these two integrals, you will find that it will take 

the form something like this. And if you compute these two limits, you will find that, it will 

take the value A capital X into capital Y into sine pi u x into e to the power minus j pi u x 

upon pi u x into sine pi v y into e to the power minus j pi v y upon pi v y. So after doing all 

these integral operations I get an expression like this.    
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So from this expression, if you compute the fourier spectrum, the fourier spectrum will be 

something like this. So what we are interested in is the, fourier spectrum. So the fourier 

spectrum, that is modulus of F(u,v) will be given by A capital X capital Y into sine pi u x 

upon pi u x into sine pi v y upon pi v y. So this is what is the fourier spectrum of the fourier 

transformation that we have got.    
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Now if we plot to the fourier spectrum, the plot will be something like this. So this is what is 

the plot of this fourier spectrum. So the fourier spectrum plot is this one. So you find that this 



is again a 2 dimensional function. Of course in this case the spectrum that has been shown is 

shifted, so that the spectrum comes within the range for its complete visibility.    

So for a rectangular function, rectangular 2 dimensional function, you will find that the 

fourier spectrum will be something like this and you can find out that if I say that this is the 

x-axis and this is the y- axis and assuming the center to be at the origin, you will find that 

along the x-axis at point 1 upon capital X. similarly 2 upon capital X. The value of this 

fourier spectrum will be equal to 0. Similarly along the y-axis, at values 1 upon capital Y, 2 

upon capital Y, the values of this spectrum will also be equal to 0.     

So what we get is the fourier spectrum and the nature of the fourier spectrum of the particular 

2 dimensional signal. Now so far what we have discussed, is the case of the continuous 

functions or analog functions. But in our case, we have to be interested in the case for 

discrete images or digital images where the functions are not continuous but the functions are 

discrete.    
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So all these integration operations that we are doing in case of the continuous functions, they 

will be replaced by the corresponding summation operations. So when you go for the 2 

dimensional uhh signal, ok? So in case of this uhh discrete signals, the discrete fourier 

transformation will be of this form F(u,v), now this integrations will be replaced by 

summations.     



So this will take the form of 1 upon m into n then double summation f(x,y), the expression 

remains almost the same minus j 2 pi u x by capital M plus v y by capital N and now the 

summation will be for y equal to 0 to N minus 1 capital N minus 1 and x equal to 0 to capital 

M minus 1. Because our images are of size M by N and the frequency of variables u, because 

our images are discrete, the frequency variables are also going to be discrete.   

So the frequency variables u will vary from 0, 1 upto M minus 1 and the frequency variable v 

will similarly  vary from 0, 1, upto capital N minus 1. So this is what is the forward discrete 

fourier transform. Forward 2 dimensional discrete fourier transformation. In the same manner 

we can also obtain, the inverse fourier transformation for this 2 dimensional signal.  
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So the inverse fourier transformation will be given by f(x,y) will be double summation F(u,v) 

which is the fourier transformation of f(x,y), e to the power j 2 pi u x by M plus v y by N and 

now the integration will be formed v equal to 0 to capital N minus 1 and u equal to 0 to 

capital N minus 1. So the frequency variables v varies from 0 to capital N N minus 1 and u 

varies from 0 to capital M minus 1. 

And obviously, this will give you give you back the digital image f(x,y), the discrete image 

where x will now vary from 0 to capital M minus 1 and y will now vary from 0 to capital N 

minus 1. So we have formulated these equations, in  a general case where the discrete image 

is represented by a 2 dimensional array of size capital M by capital N. Now as is said, that in 

most of the cases, the image is mostly represented in the form of square array where M is 

equal to N.   



(Refer Slide Time: 26:15)  

 

So if the image is represented in the form of square array, in that case these transformation 

equations will be represented as F(u,v) will be equal to 1 upon capital N, double summation 

f(x,y) and now because M is equal to N so the expression becomes e to the power minus j  2 

pi by N u x plus v y where both x and y will now vary from 0 to capital N minus 1.   

And similarly, the inverse fourier transform f(x,y) will be given by 1 upon capital N 

summation double summation F(u,v) e to the power j 2 pi by N u x plus v y but the variables 

u and v will now vary from 0 to capital N minus 1. So this is the fourier transformation pair 

that we get in discrete case for a square image where the number of rows and the number of 

columns is same.   

And as we have discussed earlier, that e to power j 2 pi by N ux plus vy this is what we have 

called the basis images. This we have discussed with when we have uhh discussed about the 

unitary transformation. And we have said, we have shown that time that these basis images 

will be like this.     
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So as the fourier transformation as we have seen that it is a complex quantity, so uhh for the 

fourier transformation we will have two basis images. One basis image corresponds to the 

real part, the other basis image corresponds to the imaginary part and these are the two basis 

images, one for the real part and the other one for the imaginary part.   

Now as we have defined the fourier transform uhh the fourier spectrum, the phase the power 

spectrum in case of analog image. All these quantities can also be defined are also defined in 

the case of discrete image in the same manner.     
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So in case of this discrete image, the fourier spectrum, is given by similar (ex-)  expression 

that is F(u,v) is nothing but R square (u,v) plus I square (u,v), square root of this.   

Phase is given by phi (u,v) is equal to tan inverse I (u,v) upon R (u,v) and the power spectrum 

P(u,v) is given by the similar expression, uhh which is nothing but F (u,v) modulus square 

which is nothing but R square (u,v) plus I square (u,v) where R is the real part of the fourier 

coefficient and I (u,v) is the imaginary part of the fourier coefficient. So after discussing 

about this fourier transformation both in the forward direction and also in the reverse 

direction. Let us look at how these fourier transform coefficients look like.     
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So here we have the result on one of the images and you find that this is a popular image, a 

very popular image which is uhh cited in most of the image processing textbooks that is the 

image of  (())(30.40). So if you take the discrete fourier transformation of this particular 

image, the right hand side, this one shows that DFT which is given in the form of an intensity 

plot and the bottom one that is this particular plot is the 3 dimensional plot of the DFT 

coefficients. Here again when these coefficients are plotted, it is shifted so that the uhh the 

origin is shifted at the center of the plane so that you can have a better view of all these 

coefficients.    

Here we find that at the origin the intensity of the coefficient or the value of the coefficient is 

quite high compare to the values of the coefficients as you move away from the origin. So 

this indicates that the fourier coefficient is maximum at least for this particular image at 



origin that is when u equal to 0 or v equal to 0 and later on we will see that u equal to 0 v 

equal to 0 gives you what is the DC component of this particular image.    

And in most of the images the DC component is maximum and as you move towards the 

higher frequency components, the energy of the higher frequency signals are uhh less 

compared to the DC component. Thank you.      

 


