
Digital Image Processing. 

Professor P. K. Biswas. 

Department of Electronics and Electrical Communication Engineering. 

Indian Institute of Technology, Kharagpur. 

Lecture-22. 

Separable Transformation. 

(Refer Slide Time: 0:40) 

 

Hello, welcome to the video lecture series on digital image processing. So let us see what we 

have done in our last lecture, in our introductory lecture on image transformations we have 

said the basics of image transformation. We have seen what is meant by an unitary transform, 

we have also seen what is orthogonal and orthonormal basis vectors. We have seen how an 

arbitrary one dimensional signal can be represented by series summation of orthogonal basis 

vectors.   

And we have also seen how an arbitrary image can be represented by series summation of 

orthonormal basis images. So when we talk about the image transformation basically the 

image is represented as a series summation of orthonormal basis images.    
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After today’s lecture the students will be able to analyze the computational complexity of 

image transform operations. They will be able to explain what is meant by a separable unitary 

transformation. They will also know how separable unitary transforms help to implement fast 

transformations and ofcourse they will be able to write algorithms for fast transforms. So first 

let us see that what we have done in the last class. In the last class we have taken one 

dimensional sequence of the discrete signal samples, say given in the form u(n), where n 

varies from 0 to some capital N-1.   
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So we have taken initially a one dimensional sequence of discrete samples like this that is 

u(n) and we have found out what is meant by unitary transformation of this one dimensional 

discrete sequence. So by unitary transformation the unitary transformation of this one 

dimensional discrete sequence is given by say v is equal to A times u, where A is an unitary 

matrix. And this can be represented expanded in the form v(k) is equal to we have a(k,n)u(n), 

where n varies from 0 to capital N-1.   

Assuming that we have capital N number of samples in the input discrete sequence. Now we 

say that this transformation is an unitary transformation, if the matrix A is an unitary matrix. 

So what is meant by an unitary matrix, the matrix A will be said to be a unitary matrix if it 

obeys the relation that A inverse, inverse of matrix A will be given by A conjugate transpose. 

That is if you take the conjugate of every element of matrix A and then the take then take the 

transpose of those conjugate elements then that should be equal to the inverse of matrix A 

itself.   

So this says that A into A conjugate transpose that should be same as A conjugate transpose 

A which will be same as an identity matrix. So if this relation is true for the matrix A, then 

we say that A is an unitary matrix and the transformation which is given by this unitary 

matrix is a unitary transformation. So using this matrix A we go for unitary matrix, unitary 

transformation.   

Now, once we have this transformation and we get the transformation coefficient say vk, or 

the transformed vector transformed sequerce sequence v. We should be also able to find out 

that how from this transformation coefficients we get back the original sequence u(n).    

  



(Refer Slide Time: 5:41)  

 

So this original sequence is obtained by a similar such relation which is given by u is equal to 

A obvi obviously it should be equal to A inverse v and in our case since A inverse is same as 

A conjugate transpose. So this can be written as A conjugate transpose v, and this expression 

can be expanded as u (n) is equal to summation v(k)a conjugate (k,n) where k varies from 0 

to N-1. And we have to compute this for all values of n varying from 0 to N-1, so 0 less than 

or equal to n less than or equal to capital N-1. So by using the unitary transformation we can 

get the coefficients the transformation coefficients and using the inverse transformation we 

can obtain the input sequence input discrete sequence from the coefficient from this sequence 

of coefficients.   

And this expression says that the input sequence u(n) is now represented in the form of a (se) 

series summation of a set of vectors or orthonormal basis vectors. So this is what we get in 

case of one dimensional sequence. Now let us see what will be the case in case of a two 

dimensional sequence.    
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So for a two dimensional sequence, see if I go for the case of two dimensional signals, then 

the same transformation equations will be of the form v(k,l) is equal to we have to have 

double summation u(m,n) into ak,l(m,n), where both m and n varies from 0 to capital N-1.   

So here u(m,n) is the input image it is the two dimensional image, again we are transforming 

this using the unitary matrix A and in the expanded form the expression can be written like 

this v(k,l) is equal to double summation u(m,n)ak,l(m,n), where both m and n varies from 0 to 

infinity. And this has to be computed for all the values of k and l where k and l varies from 0 

to N-1. So all k and l will be in the range 0 to N-1.   

In the same manner we can have the inverse transformation so that we can get the original 

two dimensional matrix from the transformation coefficient matrix and this inverse 

transformation in the expanded form can again be written like this. So from v(k,l) we have to 

get back u(m,n) so you can write it as u(m,n) again is equal to double summation v(k,l) into 

a*k,l(m,n), where both k and l will vary in the range 0 to capital N-1. And this we have to 

compute for all values of m and n in the range 0 to capital N-1.   

Where this image transform that is ak,l(m,n), this is nothing but a set of complete orthonomal 

normal discrete basis functions. So this ak,l(m,n) this is a set of complete orthonormal basis 

functions. And in our last class we have said what is meant by the complete set of 

orthonormal basis functions. And in this case this quantity, the v(k,l) what we are getting 

these are known as transformed coefficients.   



Now let us see that what will be the computational complexity of these expressions. If you 

take any of this expressions, say for example the forward transformation where we have this 

particular expression v(k,l) is equal to double summation u(m,n)ak,l(m,n) where m and n 

vary from 0 to capital N-1, that means both m and n, m will vary from 0 to capital N-1, n will 

also vary from 0 to capital N-1.   

So to compute this v(k,l), you find that if I compute this particular expression. For every 

v(k,l) the number of complex multiplication and complex addition that has to be performed is 

of the order of capital N square, ok. And you remember that this has to be computed for every 

value of k and l, where k and l vary in the range 0 to capital N-1, that is k is having capital N 

number of values, l will also have capital N number of values.   

So to find out v(k,l), a single coefficient v(k,l) we have to have of the order of capital N 

square, number of complex multiplications and additions. And because this has to be 

computed for every v(k,l) and we have capital N square number of coefficients because both 

k and l vary in the range 0 to capital N-1. So there are capital N square number of 

coefficients. And for computation of each of the coefficient we need capital N square number 

of complex addition and multiplication.   

So the total amount of computation that will be needed in this particular case is of the order 

of capital N to the power 4, ok. Obviously this is quite expensive for any of the practical size 

images because in practical cases we get images of the size of say 256 by 256 pixels or 512 

by 512 pixels, even it can go upto say 1k by 1k number of pixels or 2k by 2k number of 

pixels and so on.   

So if the computational complexity is of the order of capital N to the power 4, where the 

image is of size n by n you find that what is the tremendous amount of computation that has 

to be performed for doing the image transformations using this simple relation. So what is the 

way out? We have to think that how we can reduce the computational complexity. Obviously 

to reduce the computational complexity we have to use some mathematical tools and that is 

where we have the concept of separable unitary transforms.   
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So we find that we have the transformation matrix which is represented by matrix A or we 

have represented this as ak,l(m,n) and we say that this is separable if ak,l(m,n) can be 

represented in the form so if I can represent this in the form ak(m) into say bl(n) or 

equivalently I can put it in the form a(k,m) into b(l,n). So if this ak,l(m,n) can be represented 

as a product of ak(m) and bl(n) then this is called a then this is called separable.   

So in this case both ak(m), where k varies from 0 to capital N-1 and bl(n), where l also varies 

from 0 to capital N-1. So these two sets ak(m) and bl(n) they are nothing but one dimensional 

complete orthogonal sets of basis vectors. So both ak(m) and bl(n) they are one dimensional 

complete orthonormal basis vectors. Now, if I represent this set of orthonormal basis vectors 

both ak(m) and bl(n) in the form of matrices, ok.   

That is we represent A as ak(m) as matrix A and similarly bl(n) the set of this orthonormal 

basis vectors if we represent in the form of matrix then both and both A and B themselves 

should be unitary matrices. And we have said that if they are unitary matrices then AA 

conjugate transpose is equal to A transpose A conjugate which should be equal to identity 

matrix. So if this holds true in that case we say that the transformation that we are going to 

have is a separable transformation.   

And we are going to see next that how this separable transformation helps us to reduce the 

computational complexity. So in the original form we had the computational complexity of 

the order capital N to the power 4. And we will see that whether this computational 

complexity can be reduced from capital from the order capital N to the power 4. Now in most 



of the cases what we do is we assume these two matrices A and B to be same and that is how 

these are divided decided.   
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So if I take both A and B to be equal to same then the transformation equations can be written 

in the form v(k,l) will be double summation a(k,m) u(m,n) a(l,n), so compare this with our 

earlier expressions where in the expression we had ak,l(m,n). So now this ak,l(m,n) we are 

separating it into two components one is a(k,m) the other one is a(l,n) and this is possible 

because the matrix A that we are considering is a separable matrix.   

So because this is a separable matrix, we can write v(k,l) in the form of a(k,m) u(m,n) into 

a(l,n), where again in this case both m and n will vary from 0 to capital N-1. And in matrix 

form this equation can be represented as v equal to AUA transpose. Where U is the input 

image of dimension capital N by capital N and V is the coefficient matrix again of dimension 

capital N by capital N. And the matrix A is also of dimension capital N by capital N.   

In the same manner the inverse transformation that is what we what we have got is the 

coefficient matrix and by inverse transformation we want to have the original image matrix 

from the coefficient matrix. So in the same manner the inverse transformation can now be 

written as u(m,n) equal to again we have to have this double summation a*(k,m) v(k,l) 

a*(l,n), where both k and l will vary from 0 to capital N-1.   

So this is the expression for the inverse transformation, and again as before this inverse 

transformation can be represented in the form of a matrix equation where the matrix equation 



will look like this U equal to A (tra) conjugate transpose V into A conjugate. And these are 

called two dimensional separable transformation. So we find that from our original 

expressions, we have now brought it to an expression in the form of separable 

transformations.   
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So we find that this particular expression that is V, when we have written this V equal to 

sorry so here we have written V equal to so if you go back to our previous slide you find that 

V equal to AUA transpose. So if I just write in the form AUA transpose, so I get the 

coefficient matrix V, from our original image matrix U by using the separable 

transformations.   

The same equation we can also represent in the form of V transpose equal to A[AU] 

transpose. Now what does this equation mean, you find that here what it says that if I 

compute A the matrix multiplication of A and U take the transpose of this then pre multiply 

that result with the matrix A itself then what we are going to get is the transpose of the 

coefficient matrix V.   

So if I analyze this equation it simply indicates that this two dimensional transformation can 

be performed by first transforming each column of U with matrix A and then transforming 

each row of the result to obtain the rows of the coefficient matrix V. so that is what is meant 

by this particular expression. So A into U, what it does is it transforms each column of the 

matrix A with of the input image A with the input image U with the matrix A.   



And this intermediate result you get, you transform each row of this again with matrix A and 

that gives you the rows of the transformation matrix or the rows of the coefficient matrix V. 

And so if I take the transpose of this final result what we are going to get is the set of 

coefficient matrix that we want to have. Now if I analyze this particular expression you find 

that A is a matrix of dimension capital N by capital N.   

U is also a matrix of the same dimension capital N by capital N. And then from matrix 

algebra, we know that if I want to multiply two matrices of dimension capital N by capital N, 

then the complexity or the number of additions or multiplications that we have to do is of 

order capital N cube.   

So here to perform this first multiplication we have to have of order N cube number of 

multiplications and additions. The resultant matrix is also of dimension capital N by capital 

N. And the second matrix multiplication that we want to perform that is A with A u 

transpose, this will also need of order N cube number of multiplications and additions. So the 

total number of addition and multiplication that we have to perform when I implement this as 

a separable transformation is nothing but of order 2N cube.   

And you compare this with our original configuration when we had seen that the number of 

addition and multiplication that has to be done is of order N to the power 4. So what we have 

obtained in this particular case is the reduction of computational complexity by a factor of 

capital N. So this simply indicates that if the transformation is done in the form of a separable 

transformation, thank you.   


