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Capacity of Deterministic MIMO Channels 

 

Welcome to the course of fundamentals of MIMO wireless communications we have 

seen the expression of mutual information and we have also tried to understand the 

intuitive meaning of why that particular expression yields the expression of capacity. So, 

what we have last discussed is capacity can be expressed in terms of maximization of 

mutual information between source and the destination over all possible distributions at 

the source.  

So, with that we move forward towards waveform channels and we would be interested 

in looking at the Gaussian channel. So, as to get the expression which is most commonly 

known and using that or equipped with all these things we will be able to easily 

understand the expression of typically flat a frequency flat MIMO channel. 
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So, let us begin our discussion with that. So, if we take the Gaussian channel. So, for the 

Gaussian channel we have the source which generates symbols x I and this symbols go 

through the channel where z I noise gets added and what is received is y I and this noise 

z I we will say that distributed according to normal distribution with 0 mean and certain 



noise power. So, which you can write it as n or n naught or n noise and we also have the 

constraint that if a codeword is designed in a way that the sequence of symbols x n that is 

transmitted we have the constraint that one upon n I equals to 1 to n x I squared is less 

than or equal to p. So, this is basically a power constraint this is a very, very important 

because most of the communication systems that we deal with they have a some 

constraints and these constraints amongst many constraint one of the most commonly 

understood constraint is a power constraint; that means, that there is limited amount of 

power available at the transmitter there can be many kinds of power constraints1of the 

most power constraint is a average power constraint. 

So, what we are considering over here is average power constraint between the particular 

form. So, moving forward, this is the expression this is the one which constraints the 

power and if we have to find the capacity of the information theoretic capacity of this 

channel we would write c as max I x y. So, this is we have to explain over p of x such 

that e x square is less than or equal to p, given this constraint over all possible 

distributions due to maximize the capacity. 

Now, if we consider b p s p channel we will just digress a little bit. Now if you consider 

b p s p modulation. So, this is let say minus s1and this is plus s1or plus a n minus a or if 

we consider plus minus a and plus a when signal is transmitted the when a is transmitted 

the probability of the received signal in PDF can be drawn in this way, because of noise 

when minus a is transmitted the PDF or the received amplitude can be drawn in this 

manner and if we consider a has been transmitted and find the area under this curve we 

are going to get the probability of error when, plus a is transmitted similarly when this 

particular when minus a is transmitted we could find the area under this tale and we 

could find what is the error probability. 

So, basically what we can calculate is probability of error under this condition. So, if we 

would be able to calculate a probability of error then, we can say that suppose, if this is 0 

and this is 1 because 0 is sent with the probability of error it becomes a one or rather with 

the probability of error p e it becomes 1 and with 1 minus pe it remains 0. If a one is sent 

it goes to one and 0 it goes to 0 with probability p n with one minus p becomes 1. So, 

basically waveform channel can be converted to a binary symmetric channel or vice-

versa. 



So, we this is suggest keeping in our mind. So, that when we are translating from discrete 

to ware form channels we can easily do in in this particular fashion, coming back to our 

expression over here if we would write the expression of I x y what we get is H of y 

minus of H y given x. So, this expression is what we have derived earlier as the 

expression of capacity. So, H of y minus H of y given x basically y I as we over here is x 

I plus z i. So, basically minus H of x plus z condition on x H of x condition on x is 0. So, 

basically it is H of z conditioned on x. So, z that is noise is independent of the source. So, 

basically each of z conditioned on x is basically H of z. 

So, all we said is x conditioned on x is 0 H of z conditioned on of on x is basically H of z 

because these 2 are independent and H of z as we all know in case of real constraint we 

are going to have this as log base 2, 2 pi e n, n is the power of the noise component. So, 

this is what we have derived the entropy of Gaussian of a Gaussian distribution the 

differential interfere of Gaussian distribution all we have to do is now calculate this. So, 

if we look at e of y squared; that means, the variance or the power of y squared we could 

write it as e of x plus z squared which is e of x squared plus e of z squared plus2e x times 

e z. 

Now, e of x is 0 it is a 0 mean symbol e of z is 0 because it is add a divide Gaussian 

noise with 0 mean. So, we are left with e x squared plus e z squared. So, e x squared we 

could restricted to p and e z squared is n. So, basically e of y squared is p plus n or this is 

the variance of Y you can say. So, if we have to calculate H of y we could say that it is 

less than or equal to half log 2, 2 pi e p plus n. So, we have this term now we have this 

term now. So, we have to calculate this. So, I of x y would be half log 2 pi e p plus n 

minus half log 2 pi e of n. 

So, if you work it out it becomes half log p plus n upon n or half log one plus p by n this 

is the well known expression for the capacity of a Gaussian channel, if we move further 

beyond this and look at the situation when we have complex Gaussian. 
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So, again in that case we have y I equals to x I plus z I and in this case we would say that 

z I is a Gaussian complex, Gaussian distributed in that case again these expressions do 

not change these expression remain the same. 

So, here simply we would be writing log determinant of pi e pi e determinant of p plus n 

minus log pi e of n rather determinant is not there pi e p plus n because you would 

remember in the other case we had root 2 pi e to the power of n and in the other case it 

was pi e to the power of n and in real case it was k determinant of k to the power of half 

and here determinant of k. So, by virtue of that you get log p plus n upon n which is 

equal to log of one plus p upon n. So, when we have complex the expression would look 

like this which is a well known expression for capacity which we are using for Gaussian 

channel so; that means, whatever we have discussed does easily lead us to the expression 

of capacity for a Gaussian channel that is what we have just now seen. 

Now, since we have seen what is the result for a SISO channel and now we will be 

moving on to finding the expression of capacity for a MIMO channel. 
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So, as we move forward we have now almost reached our goal; that means we want to 

find the capacity of frequency flat we are saying deterministic, I will explain the reason 

why. So, we are finding the capacity we understand the expression of we understand the 

meaning of capacity that is maximization of mutual information over all possible source 

distributions. 

We have given an intuitive meaning of it when we talk about frequency flat we 

understand what is frequency flat we have described in details what leads to frequency 

flat when, we say deterministic; that means, it is given for a particular realization of a 

channel we know what are the details of MIMO channel. So, only deterministic what is 

knew in this case and all we are trying to say is it is known later on we will see when a 

channel is random channel what happens because of that. So, in this MIMO 

configuration we have m t transmit antennas we have m r received antennas and let our 

channel bandwidth the 1 hertz for simplicity or for e is equal always multiplied by the 

bandwidth to get it and it is assumed it is frequency flat over this band further, we have 

always written in capital H indicating the channel transfer matrix of size m r plus m t. So, 

we could write received signal y which is a vector m r plus1being equal to root over e x 

upon m t. When I write root over e x by m t this clearly means that the signal power is 

divided equally amongst the m t transmit antennas at this stage. 



Later on this will get modified times H is a matrix indicated by double underline s is the 

vector m t plus1this is m r plus m t plus this is noise m r plus 1. So, this equation fit is in 

m r. So, basically m r number of noise samples corresponding to m r received antennas 

m t number of symbols and this is m r plus m t channel matrix and this is m r number of 

using the antennas. 

So, basically redundant to draw this picture one to m t and again one to m r number of 

received antennas s1 up to s m t are getting transmitted y 1 up to t m r is getting received. 

So, this is the system model and e s is the total average energy at the transmitted over a 

symbol period we also need to defined R ss which is the co variance matrix of the source 

symbol s which is defined as expectation of s times s summation and because we have e 

of s is equal to 0 using this, we put the constraint the trace of R ss is equal to m t. So, this 

is important we are putting this this particular constraint because we want total average 

constraint because, if you look at it we take this particular expression when we have E of 

ss hermitian over here we basically get R ss and if the trace of it is equal to m t the total 

transmit power over here would be e s because m t and m t would cancel out and that 

would keep the total transmit power. 

So, this is the signal module which we proceed now we will assume that H is known at 

the receiver what rather what does it mean it means that ha the channel is estimated at the 

receiver and it is available and again we will make the assumptions there is perfect 

knowledge about the channel this perfect channel estimation at the receiver. 
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The MIMO channel capacity which we are talking about was given by a paper authored 

by Foschini in the year 96 and there was also wok by a Telake in 99 and there they 

discussed about this expression which is max of I between s and y. So, between s and y 

is a same expression over all possible distribution of the source symbol. 

So, the overall concept remains a same, but the things what derived in in the papers by 

these people. So, I x y is of course, the mutual information and we know all the 

definitions now. So, it should not be difficult for us at this stage to work this out given 

whatever we have done in the previous lectures. So, this is the particular way which we 

have been explaining I x y H of y minus h. So, according to our definition we should use 

a small H and not capital H indicating differential entropy; that means, for continuous 

random variable. So, H of y given s we have just derived this thing for a w g n, where we 

at seen that y given s is basically this whole thing it given s. 

Now, H is deterministic H is known. So, this is the random component at this time of 

point. So, H of s given s is 0 and it is H of the noise given s. So, basically what it leads us 

to is this particular 1 we could write as H of noise given s. Now again since noise and 

symbols are independent since these 2 are independent we could write this as H of n and 

this1would be H of y. So, we have this expression which we derived for the SISO case 

the expression at this stage looks similar. 



So, in this case if you see H of n is defined nobody can do anything with it because it is 

about the noise characteristics. All you can do is to work with H of y and if you see the 

expression of capacity it has maximize this overall possible source distributions. So, 

when we say maximize I overall possible source distributions what you basically do is 

try to maximize I over I of s y and maximize this expression. Where you cannot do 

anything of H and n, what you can do is maximize this expression. So, to maximize this 

expression we need to look at the details of it. So, we begin with the covariance matrix of 

y right. So, covariance matrix of y is R YY which is equal to E of YY hermitian, E of 

YY hermitian. 

So, E of YY hermitian to get E of YY hermitian we have to look at these so; that means, 

expectation of root over e s upon m t times H s plus noise times root over e s upon m t 

and H s plus noise hermitian. So, when I have a hermitian it could write it has root over e 

s by m t. I am just writing this part this part s hermitian H hermitian plus the noise 

hermitian. So, basically what we have is e of if I take the product e s upon m t because it 

is under square root sign and you have H s s hermitian H hermitian. So, that is a first 

product between this component and this component the we have a next component plus 

root over e s upon m t H s noise hermitian; that means, this and this component is done 

we have next this component root over e s upon m t times noise s hermitian H hermitian. 
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Now, we have the last component plus e of n n hermitian sorry e of n n hermitian. So, 

when we use the e operator inside; that means, we being the e operator inside what you 

have is you bring e inside. So, e s by m t would remain as it is since H is deterministic e 

operates only on s, H s s hermitian. Now you can see why we need the covariance matrix 

plus when I bring the e operation inside e of s is 0 e of n is 0. So, this term goes to 0 

again e of n s are both 0. So, these are 0 and they are independent. So, what we are left 

with this this e of n n hermitian right. 

So, this is the variance. So, we could write it in more convenient form H instead of 

writing E s s hermitian we would write R ss H hermitian plus this is the noise 

component. So, n one n 2 dot, dot up to n m r times n one conjugate n 2 conjugate up to n 

m r conjugate expectation of operator of this, if you take this product we will be getting n 

one squared n 2 squared up to n m r squared at the diagonal rather mod squared and the 

other terms of the cross terms n I n j conjugate I not equals to j and you are going to get 

expectation of these you can get expectation of these terms. So, all these terms would be 

0 because noise in independent branches is are independent and each of these would give 

the same value. So, it is basically n naught or n. So, what you have is basically n naught 

times identity matrix because all these would be 0 of size m r. 

So, we could as good as write this as n naught times I m r right. So, we have our 

expression of R YY and we now know how to write the expression of H y and we also 

have the expression of H n the expression of H of y in that case we could write it as log 2 

determinant of pi E R YY. So, we have changed little bit over here we have said pi e and 

brought it inside the determinant this is as good as bringing pi e outside and raising it to 

be power of n because determinant of e times a matrix is basically that a raise to the 

power of n times the dimension or the size of the matrix. 

So, this is no different equation this is all the same and H of n is log 2 determinant of pi e 

n naught I m r and rather this is a little bit more convenient form of writing this is bit is 

per second per hertz you could write it as way. So, I of s y we could write it as H y minus 

H n. So, basically log this minus log of this. So, it is basically log base 2 determinants of 

if you look at the size of this is m r plus m r this is also m r cross m r. So, basically pi e 

to the power of m r pi e to the power of m r they would cancel out we would have 

determinant of R YY upon determinant of n naught I m r right. 



So, R YY let us expand it. So, I m r 1, 1 would be log base 2 that is I what we have here 

yeah we have over here e s by m t H R ss H hermitian plus this is n naught I m r right 

upon n naught I m r. So, what you have is basically determinant of this upon determinant 

of n naught I m r. So, this would lead to log base 2 determinant of I because of this1plus 

e s by m m t e s by m t times n naught times H R ss H hermitian. So, this would be 

expression of I x y. So, we could write the expression of capacity and this point would 

write the expression of capacity at this point as capacity is equal to maximize log 

determinant of I m r plus e s upon m t n naught times h, R ss H hermitian over all 

possible distributions of the source; that means, subject to the constraint trace of R ss is 

equal to m t. 

So, basically you are maximizing over R ss this particular expression. So, this would be 

the expression of capacity of the MIMO channel and to derive this we have till now been 

able to explain the little characteristics of h. So, typical MIMO channel R ss we have 

defined and we have discussed the typical model which is for frequency flat and we have 

also used the definition of m dot the differential entropy of the received signal and we 

have derived that which particular entropy maximizes it. 

So, basically we have done step by step finally, to arrive at this expression and what it 

appears, if you would look at the few steps that we have taken is pretty straight forward a 

given that we now understand all the exact terms that were defined in all previous 

lectures till now. So, a we would like to conclude this particular lecture at this point 

stating that we have arrived at the expression of capacity I would like you to take a look 

at this expression of the MIMO channel capacity which is a very, very important and 

based on this we will proceed on to carry out certain more expressions which would be 

able to give us a hint about what is the meaning of this particular expression. 

So, since we arrived at the most important part of this course, which is talking about the 

capacity of the MIMO channel and we have seen the expression it now remains for us to 

explore this expression this particular expression open it up and see what happens, when 

this when the channels information that is H which we said is known. We say that let it 

be known only at the receiver then we will say that now let us we change the assumption 

and we say that there is a feedback channel because of the feedback channel the channel 

is known at the transmitters.  



So, what extra can be done what is the impact on capacity we have also studied the 

correlation matrix or the co correlation effect on the channel or how can correlation be 

module. So, using whatever we have studied on the correlation model of MIMO 

channels, we will then bring out the impact of correlation on the capacity of MIMO 

channel and finally, we will look at some architectures which will be giving us the 

capability to trade off between the diversity gain that can be a achieve we have analyze 

diversity gain, we will see a special multiplex gain or the MIMO capacity gain and will 

see how can we tradeoff between achieving high capacity and bettor error probability or 

a better reliability link a towards the end of this particular course. 

Thank you. 


