
Fundamentals of MIMO Wireless Communication 

Prof. Suvra Sekhar Das 

Department of Electronics and Communication Engineering 

Indian Institution of Technology, Kharagpur 

 

Lecture - 33 

Fundamentals of information Theory – 3 

 

Welcome to the lectures in fundamental of MIMO Wireless Communications. We are 

currently looking at the basics of information theory or the definitions which will be 

very, very use full when analyzing the capacity of MIMO channel.  

Till now we have covered discrete random variables and we have given the expression of 

entropy relations, we have also started the restriction of continuous random variables, 

because as we said it is important because we will finally dealing with wave form 

channels and we have started with the definition of differential entropy. So, we move 

forward in this lecture in defining some more description or some more relationships of 

continuous random variables which will finally, end up in helping us understanding or 

realizing the expression of capacity which is used in the MIMO channel conditions. 
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So, we continue from whatever we have done; that means, the differential entropy and 

we move forward to describe the joint entropy, the joint differential entropy. So, in this 

case it is similar to the discrete random variable and for the set. So, if we have the set of 

random variables x1, x2 up to xn with densities given by f x1, x2 up to xn; that means, 



this is joint density then we could define h x1 x2 xn which is the joint entropy as in the 

same manner minus f x1 x2 up to xn times log depending upon the base, whatever you 

put we have a minus. So, this density goes on top up, to x n and of course, d x1, d xn.  

And then we move on to the definition of we have this as definition of conditional 

deferential entropy. So, the conditional differential entropy is also defined for the pair of 

random variables x and y with joint density of f of x y as h of x conditioned on y or h of 

x given y as minus integral f of x y because we are taking the expectation times log f x 

given y d x d y and this is particular conditional density you could write it as x given y as 

f of x y upon f of y. So, using this you could expand this and the relationship you would 

get finally, this same as that of the earlier case as joint entropy of x and y minus of h y. 
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So, these are some of the relationships which will be using as we move down further. So, 

moving on what we now need to look at is the multivariate the entropy. This is very, very 

important that is the entropy of a multivariate normal distribution. So, we are taking step 

by step forward.  

So, that we finally, end up an expression which is very use full. So, for this we let x1 x2 

up to x n have a multivariate normal distribution, with a mean of mu I mean a vector mu 

and a covariance matrix, which is written s k and we would use the notation n of mu k in 

this particular definition to indicate normal distribution with a mean and a variance. So, 

this you could change the variables, but they would look similar in the way you write it, 



and we need to find h of x1 xn that is the multivariate distribution which is normal in this 

case. So, the probability distribution the probability density of the joint distribution, x1 

x2x n is usually given by f of x I write the underscore to indicate a vector you could find 

this is a bold index is given as 1 by 2 pi raise to the power of n this indicates the 

determinant of k to the half of square root; that means, e to the part of minus half x 

minus mu vector of course, transpose k inwards times x minus mu. 
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So, this is the expression of the density and we have to find this following the first 

principle and we are interested in the expression which is valuable for us. So, as we 

move a head we have to write. So, far continuous random variables we said it is 

dependent only on the density. 

So, we have this notation h of f which I have described in the previous lecture. So, this is 

written as minus f of x is the vector times log f of x d x right this is what we know. So, 

using that we move forward and write what is h of f as minus f x. So, if we look at this 

expression this absolute expression, that we have here and take the log of it and what we 

are left with is two parts; one is this part the other is this part. So, we could write it as 

here we can take the natural logarithm. So, either log based to a log base n we will take l 

n for ease and then you can do for log based to similar result. So, when I take the l n of 

these we get a minus sign l n 2 pi to the power of n times determinant of k raise to the 

power of half.  



So, this is what we have is the first expression and the second expression since it is l n l n 

of e to the power of something is the expression itself. So, we have minus half x minus 

mu transpose times k inwards times x minus mu. So, this is the expression you have. So, 

for which this half can come outside here this minus and minus adds together. So, we 

have plus half integration of f x times this constant l n 2 pi determinant of k place to the 

2 pi to the power of n and here again the minus and the minus cancels out and we have 

plus and that is integral f of x. 

Now, if we look at this term this is a row vector and this is the matrix this is the column 

vector. So, what you have over here is 1 cross let us say n and this is a n cross l and this 

is a n cross 1. So, this would lead to a n cross 1 finally, a product over here would be one 

cross one. So, what we have is one single value end of it here. So, we still write it down 

x minus mu transpose time’s k inverse x minus mu d x of course.  

So, we have this expression this this particular integral this is a constant is this is a 

constant over here. So, the rest of it integrates to 1. So, what you have is half l n 2 pi to 

the part of n times determinant of k this is one of the terms the second term which exists 

is also half and instead if we if we look at the this integral f x d x it is basically the 

expectation of this terms. So, we could write the expectation of and if you would see this 

product you could write it as expectation over I and j 2 variables x I minus mu I times k 

inverse times x j minus mu j right this again I repeat this integral f x d x I am replacing 

by this e this e can go inside and you will be having expectation of this times k I j 

inverse; that means, the inverse of k times this is element times this and then we could 

bring this over here. 

So, we will have an e of x j minus mu j times x I minus mu I times k inverse of I j right. 

So, when we have this and the summation over I j what this term would finally, lead to is 

an expression which is like half this this expression what you would see is kind of k I j k 

is the covariance matrix. 
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So, we left with the expression which is summing over k k inwards whole of these 

values. So, basically k k inverse would be an identity matrix and then you are basically 

adding up all of the terms. So, you are left with the half of n and here what you have is 

half l n 2 pi raise to the power of n times determinant of k. So, this half n that we have 

over here, for e s what we could do is we could have things in a nice way and here we 

could instead put this as l n of e. See if you have l n of e and then this is equivalent to 

one and then again you could modify this term to say that it is half e to the power of n l n 

half l n e to the power of n. 

So, we have this term and this term added together which would lead to half l n of this 

plus l n of this so; that means, l n comes inside as a product 2 pi e to the part of n times 

determinant of k. So, this is the entropy if it is l n it is a nats other wise if it is in log base 

2, it is half log base 2, 2 pi e are to the power of n times determinant of k is in bits right. 

So, this is the expression that you have for h of f and this is what we wanted to find and 

this will turn out to be very, very use full this particular expression is going to be turn out 

to very, very use full for all our expressions, that we finally, lead up to. So, at this point I 

would like to point out one more thing let is this what we have done is for real valued 

what we also need to do for complex valued because we will finally, dealing with 

complex valued. So, I will just give you the result what it appears for complex valued 

that is what we need for MIMO channel capacity. 
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So, when we have the multivariate Gaussian distribution of complex multivariate 

Gaussian distribution in this case you could write distribution as p of or lets write in the 

same notation p of x f of x is equal to one upon pi to the power of n determinant of 

covariance matrix e to the power of minus x minus mu times k inverse is of course, the 

on top times x minus mu. So, this is the expression. So, if you use this expression in 

calculating h of f h of f would turn out to be log of pi e to the part of n times determinant 

of k. So, this is the other expression which would have valued to us. So, we have seen 2 

important expressions which are fundamental in the expression of capacity which will 

finally, look at. 

So, let us move on further from this point. So, this is one of the expressions that we have 

and the other expression which we had pointed out is here. So, these are the 2 

expressions that we have which will be using in all our calculations after this further as 

we move on, we would also like to see the relative entropy as we have seen relative 

entropy for the discrete random variable case. So, here also it is the distance it is defined 

as d of f to g, where f and g are two distributions as integral f log f upon g which is 

similar to the expression that we had before. So, we will use this and we will define 

mutual information for this deferential for this continuous random variable as defined as 

integral f x y log f x y upon the f x times f y d x d y. 



So, again using this end result that we get is I of x y similar to that we have got in the 

discrete random variable case h of x minus h of x conditional y or we could also write it 

is h of y minus of h of y conditioned upon x. So, the expression looks similar there is not 

much difference in the expression where in text books you could find all of these. So, 

these derivations or these expressions that, we have done now these are easily available 

in books and information theory one of the easy books to read very easy to read is the 

one on elements of information theory by Thomas m cover. There are many, many other 

books as I always said that you can choose a book according to your own preference and 

this is the particular 1 which gives these expressions in a straight forward manner which 

could be a it use to you in this particular course again I am iterating that we are not 

getting in to details of information theory to results we just reveal them, because they 

are. So, fundamental without which we will not be able to build upon the expression of 

capacity. 

So, we are doing this because these are the elements which are going to support the 

expression of capacity finally. So, we are mainly interested in using the results of our 

information theory of for which we are undertaking this activity. 
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So, moving on further what we have is that d; that means, the relative differential relative 

entropy d of f to g is greater than or equal to 0, we have seen this in the case of discrete 

random variables and this is with equality of course, with equality if and only if f is equal 



to g almost everywhere in that set. So, let s be the support set we have defined the 

support set support set of f, we have defined support set that have it is the set where the 

probability density is greater than 0. So, that is the support set of f and then we have 

minus d again we do it in the same way minus d of f g we begin with a minus we could 

do it other way also within the support set f log of g of f. Now you would remember 

from n since in equality these are concave function. So, you could write this as less than 

log of f g of f. So, what we have done is this is the function and integral over f d f is 

basically the expectation operation. 

So, expectation of a function is greater than or equal to the function of the expectation of 

the variable for convex or concave it is the reverse. So, that is what we have over here. 

So, this is equal to log of this and this cancels g and this is basically log of this basically 

integrated over s which supports set. So, basically the probability density functions were 

integrated over the support set leads to one. So, this will be log of one which is equal to 

0. So, that critically means that minus g is less than or equal to 0 or in other words what 

we have is d of f from g is greater than or equal to 0. So, this also holds true for the 

continuous random variable case as we have seen for the different for the discrete 

random variable. Now this gives some important results because we have defined mutual 

information in terms of relative entropy you could also start with this definition and you 

could prove many things as well. So, d is greater than or equal to 0. Therefore, we have 

this I x y is also greater than or equal to 0. 

So, basically if I x y bring the definition of d it is greater than or equal to 0. So, which in 

other words mean that h of x is greater than or equal to h of x conditional y or again h of 

y is greater than or equal h of y conditional x. So that means, conditioning reduces 

entropy that is what we had seen earlier same thing holds in this particular case also, we 

do not have any different result now with this we would like to move on to a very, very 

important result at this stage.  

Where what we have seen is expression of entropy and we have seen also expression of 

the entropy for Gaussian distribution. We have also seen an expression of entropy for 

multivariate Gaussian distribution for real as well as for complex case. So, what we 

would like to see is which distribution maximizes entropy this could be done in many, 

many ways one of the way is doing straight forward, where like finding the distribution 

is maximizes the other one that we could do is to propose a distribution and see that this 



distribution whether it is the maximum or not. So, that is the second approach is the one 

that what we are going to follow in this particular case. 
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So, we say that let the random vector x which is an element of r n; that means, a n 

dimensional vector and 0 mean have 0 mean and covariance given by k is equal to e of x 

times x transpose that is how you define the covariance matrix and that is k I j is equal to 

e of x I x j this is the expectation operator for I line I and j both line between one and n 

then if you say this then we can say that h of x h of x is be differential entropy of x is less 

than or equal to half log of two pi e raise to the power of n times determinant of k with 

equality if and only if x is distributed as a normal distribution with 0 mean and 

covariance matrix given by k.  

So, if we look at this what we are saying is we are proposing that the maximum entropy 

of this random vector x is determined by this expression. Now if you would remember 

this expression it is the entropy of multivariate Gaussian distribution, and where k is the 

covariance matrix. So, what this is saying is that suppose your random vector x whose 

covariance matrix is given by k all this is saying is that the entropy of such a random 

vector whose covariance matrix is given against the maximum value when the 

distribution is normal and the entropy is given by that of the normal. 

So, anything any other would any other random vector would have an entropy which is 

lessen that of the normal vector whose covariance is the same as that of the vector which 



is given. So, to do this again will take advantage of d. So, we will begin with that d is 

greater than or equal to 0. So, this is well known. So, this is where we begin with g and 

phi k. So, where we assume that this phi k in our expression is normal distribution and 

we assume that g of x is any density any density satisfying integral g of x xi xj dx is 

equal to k I j this is the element of the covariance matrix. So, all this is saying is that this 

is the definition of the element of the covariance matrix for all I j and phi k is normally 

distributed with 0 mean and k is the covariance matrix of equated the covariance matrix 

and we have said the mu is equal to 0. 

So, when we take. So, so basically we will be using the distance of g from phi k and will 

be showing the important result. So, when we move forward we look at this expression 

this is basically g log g upon phi k right. So, if you look at the numerator it is minus g log 

one upon g. So, or g log g is. So, basically it is minus h of g right. So, this is from the 

numerator and from the denominator term you have integral g log phi of k. So, when we 

look at g log phi of k phi of k we said it is 1 by 2 pi to the power of n times determinant 

of k square root of that e to be part of minus half x minus mu. So, in this case mu is 0 

transpose k inverse x minus mu. This is what we had. So, if you take log of phi k. We 

have seen this expression there is a constant term which goes there. So, basically log of 2 

pi to the power of n times determinant of k half this is one of the constant and if you take 

a look at the second term you again have there is a minus half depending upon the base 

you will have 1 or log of 2 log of e and then you have x times k inverse x transpose times 

x. So, basically there is a constant there is another constant and there is a quadratic term. 

So, what we have said is basically this term, if you look at this term the g times the 

quadratic term is what you are going to encounter over here and g times the quadratic 

term is equal to k and we could we could also say that this could be replaced by integral 

of phi times log of phi k. Because what we have described in this is that the covariance 

of this random vector x and that of the normal distribution are basically same. So, we are 

taken a normal distribution which as this. So, if I would do integral phi log k what we are 

going to encounter is this term. So, in this term when we do the integral we do the 

integral. So, this would turn out to be one whether, we have a phi or a g. So, whether we 

have a integral phi or we are integral g along with this term this integral terms in one 

times the constant this is the same constant which is due to log phi. So, we have integral 



g times the quadratic term in one case here and in the other case you are going to have 

integral phi times the quadratic term. 

So, these are the two things that we have. So, as we have said that g times the quadratic 

terms leads to k leads to the expression of k and again phi times the quadratic term is 

also equal to k because these both lead to the expression of the covariance matrix. So, 

since they are equal and this integral turns out to be the constant because integral of phi 

times of constant is equal to one integral log g times is constant is equal to 1. So, one we 

are left with these terms again which are equal by what of this covariance. So, then we 

could replace integral phi log g log phi with a phi log phi. So, what we have over here is 

minus h g of phi and we have minus over here.  

So, that would lead to minus h of g plus h of phi if you look at this expression. So, all we 

have done is replaced integral g log phi with in integral phi log phi because log phi leads 

to expression where there is a constant and constant times of quadratic term. So, integral 

of constant times g is equal to the constant and integral of the constant time the quadratic 

term is equal to the same constant time the quadratic term as for the normal case and they 

are both equal to the k component. So, I could replace g with phi. So, this is equal to 

minus h of g and this whole expression is basically h of phi. 

So, since this is a greater less greater than or equal to 0 all, we can say is that h of phi is 

greater than or equal to h of g and h of phi is the expression which we already have is 

given by this. So, basically h of phi is given by this expression. So, over all we could say 

thus this holds true for any continuous random vector whose covariance is given by k.  

So, we conclude this particular lecture at this point other very important things to 

remember is we have come to the point, where we have shown that Gaussian distribution 

or multi variant Gaussian distribution gives the maximum entropy for any random vector 

which has the same covariance. 

Thank you. 


