
Fundamentals of MIMO Wireless Communication 

Prof. Suvra Sekhar Das 

Department of Electronics and Communication Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 31 

Fundamentals of Information Theory-I 

 

Welcome to the course on fundamentals of MIMO Wireless Communications. Till now 

we have covered the diversity gains achievable in MIMO communication, in which we 

have seen received diversity, transmit diversity as well as diversity that can be obtained 

when there are multiple antennas both are the transmitted side as well as the receiver side 

with this it is times. Now that we move forward and try to understand the capacity gains 

that can be achieved by use multiple antennas and which is one of the amongst the 

several gains, one of the most important gains that a MIMO communications brings. 

Now in order to study such details we would require some revision of concepts from 

information theory. 

So, this particular lecture would be dedicated towards revising some of the concepts 

which are fundamental towards building the expressions the way we would like to do it 

is instead of giving the direct expression of capacity for MIMO systems. It is otherwise 

to start with the basics and do a buildup of the capacity that is achieved for discrete 

random variable or discrete sources and then, move on to see how the capacity is 

achieved for the Gaussian channel, once you are able to see that then it is more or less 

straight forward that we will see what is the capacity in the case of multi varied it 

Gaussian distribution. 

So, once we have that expression then, that would lead us directly to the case for MIMO 

communications where all we need to do is use this build up. Use the expression that we 

achieved when there is multi varied Gaussian distribution and see how this maps to the 

MIMO system, whether a multiple antennas at the transmitter multiple antenna at the 

receiver and with one to one mapping would be able to use expression that is derived for 

multi varied Gaussian directly into the case of MIMO. So, that would ease our way of 

doing things as well as it has, it will give us an opportunity to understand how the 

expressions are as it is from the basics. So, with this let us begin with the some of the 



fundamental definitions that are used in arriving at the capacity expression for typical a 

w g n channel which we will be exploiting later on. 

So, when we are talking of such systems, we are essentially talking about digital 

communication system and when we talk about digital communication system we would 

like to begin with the discrete sources. So, of course when we go on finally, we would be 

reaching a situation, where we have wave form channel. So, in the beginning of this 

course we had described how you look at the channel. 

 And at one point, we said that the channel could be looked upon as a discrete input 

discrete output as well as it could be wave form. So, it is a mathematically easier when 

you develop the discrete input discrete output configuration. And then that would be 

translated to the Gaussian or the wave form channel. 

So, to begin with a let us take up discrete sources. So, when we look at a discrete source. 

So, we assume that there is finite alphabet at the source; that means, it has set of symbols 

one particular example could be the English alphabet, along with few punctuation signs. 

So, what we get in total let say there are 26 letters along with the few punctuation signs. 

So, which keep on coming the example, we could take is a if you take a file which has 

English characters and i would like to read them from the beginning. What i will be 

getting is the English letters from the English alphabet as well as punctuations one after 

another. So, we can say that the source is generating random symbols and because when, 

we look at the output of one file from the other or going look at the sequence there is no 

definite pattern unless it is premeditated. So, if it is not a premeditated there is you want 

to inject a pattern, if you look at any particular text at random the sequence of letters that 

would come out of it would random in nature. 

So, when such things happen it is often important to measure the randomness of source, 

in this particular lecture we do not intend to describe the how do you measure 

randomness, why do you measure it in this way and all details i would like to directly 

give some definitions related to such sources which finally, build up towards measuring 

or towards defining how capacity is defined. And when we go down the course, we 

would also may be giving you a prelude to how the capacity expression is arrived at 



instead of giving the rigorous proof of the capacity expression, because here in this 

course our aim is to use the information theoretic capacity result where as detailed 

derivation of the exact capacity expression is rather more appropriate in a course on 

information theory. 

So, with this background we would prefer to look into to the definition of entropy which 

is one of the fundamental measures of randomness of a source. 
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So, if we take that let x be the how to come of source, for instance i take this English 

letters which are like a, b, c, d and so on. So, basically x1, x2, basically you have x1, x2 

dot, dot, dot as the as the outcomes we can always associate probability associated with 

each of the outcomes p of x1 p of x2. So, for instance that you look at the source we 

generates this English letters. So, if i take a file which has may be ten thousands of letters 

and then i try to make the histogram of the number of a s the number of bs and. So, on 

and i try to see a frequency plot. 

Then what i can get is the probability of occurrence of a, probability of occurrence of b, 

probability of occurrence of c and so on and so forth. So, with the associated with each 

symbol there is a probability, with these there is a certain measure known as the entropy 



of the source. The entropy of the source gives you the inherent randomness in the source. 

So, we are again not going into details description of this randomness, but rather the 

exact definition that which is useful for us. The entropy as you said is also useful in 

describing the average number of bits 0s and ones, that could be required to encode the 

source in the most efficient way in other words it is the minimum number of bits that is 

required in order to encode. So, for instance we take these out comes that are coming out 

each with certain probabilities. So, given there is a symbol and there is certain 

probability and there is a certain probability and there is finite alphabets size let say x of 

n entropy which is usually given as h x we are going to define is the measure of number 

of bits that we would assign on an average to each of these. For example, i could assign 

to the bit sequence 010 i could assign to b the bit sequence 11011, i could assign to c for 

instance 100, i could assign to d for instance 011101, i could assign to e for instance one 

0 and so on, right? So, this is the bit sequence. So, there on this as a length of 3, this has 

length of 1, 2, 3, 4, 5 this is the length of four this is the length of there and 3, 6 this is 

the length of 2. 

So, the average of these would be if i add them up and divide by 5, i am going to get the 

average bit length. So, what h x is going to give us is what would be the minimum value 

of the average number bits per such symbol that could be used. So, that is the measure of 

entropy and we all know what it is important for one direct example of this would be it 

would give us information about what is the maximum amount compression that could 

be done for the output of the sources. So, that is one way using it and of course, we are 

not going to use it in that sense our here just going to look at entropy because that. So, 

fundamental that will be use throughout until we arrive at the expression of capacity 

finally, So, h x is defined as minus sum of x element of this set which contains x p of x 

log base 2 p of x, when you define it in log base 2, we would give the units as bits. So, as 

many bits are required one could also define it as x element of big x p of x l n natural 

logarithm p of x n and in this case the definition of would go in nabs and in either of the 

case the we could see that we are taking p x, which is greater than or equal to 0 and 

rather we will be interested in the case of p is greater than 0 and since it is a probability 

this number is less than 1. 



So, p x lies between one and 0 you could put an equal to, but you prefer not to do it 

because p x equals to 0 means that does not occur. So, it is not part of the alphabet. So, if 

you would look at this then the log of p x log of p x is definitely negative. So, this is less 

than or equal to 0, 0 equal to 0 when p x is equal to one and minus log p x x greater than 

or equal to 0. So, p x is positive and log p x is also positive so; that means, this sorry 

yeah minus log p x is also positive so; that means, this whole number is positive. So, we 

could say h of x is always greater than or equal to 0, this is one of the fundamental things 

that we should always remember that h x is never negative when, we have x as the output 

come of sources and p x as the probability of occurrence of such sources and remember 

we are talking about discrete random variable at this point of time. So, this is what you 

would call the definition of entropy ok. 

So, with this we move forward and define a few more terms that would be necessary in 

due course of time and one of the next most important would be joint entropy the joint 

entropy of pair of random variables x, y which is a pair of random variables. So, we 

would have h of x y is equal to minus x element of big x which is whole set of that 

contains all the values of x y element of big y, which contains all y joint distribution or 

joint mass function of p of x y times log p x y in general we will use a log to indicate log 

base 2 or l n to indicate the natural log logarithm. 

So, this is the definition of joint entropy the next important definition that, we need is 

conditional entropy. So, again i said we are not going to describe this much, but just keep 

the definition for joint entropy briefly, we could say that what is a probability what is a 

entropy that a two sources have certain entropy together when, there are two sources 

generating it. We could talk in that sense conditional entropy if given that; that means, if 

we say that x and y are distributed according to p x y then, what is the conditional 

entropy conditional entropy h is denoted as h of y given x this is a notation which would 

be some of x element of all of this set of xp of xh of y given x is equal to x. So, this is the 

basic definition of conditional entropy of y; that means, the entropy of y given x entropy 

of y given x. 
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So, if we would proceed with this, what we get here is this particular expression or we 

can write it again h of y conditioned on x is equal to sum over x element of big of x p x h 

of y even x is equal to x. So, you are waying this with the probability and you could 

write this as x element of capital x p of x sum of this particular, one we could open it up 

saying it is y element of capital y minus p of y given x log of p y given x this is straight 

forward given the definition of entropy above. So, if we look at definition of entropy 

here following that we could write this description. 

So, going by this we could write this as x sum over y element of all of x all of y p of x 

times p of x y given x there is a minus sign from here which comes out log of p y given 

x. So, this one is basically p of joint distribution of p of x and y sum over y sum over x 

log p y given x. So, this you could also write as minus expectation over the joint 

distribution of x and y log p y given x log p of y given x right. 
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So, this is a what we could write we could also have the chain rule following this the 

chain rule says h of x y the joint entropy is equal to h ox plus h of y condition term of x. 

Now this could be done if you would write left hand side as p of x y over all of x and y 

log p x y now p x y you could break it into p of x by base theorem p of y given x, now 

this is straight forward you would have this multiplied by log p of x. 

So, when this is added over y you are left with minus summation. So, we could rather do 

it you would be left with minus x y p x log p x right and another term minus p x y times 

p of log p y given x. So, this is p of x comma y. So, this is basically when, added over y y 

goes out adds up to 1. So, this would be h x and this whole term as we have just seen 

basically h of y given x. So, basically h of x y joint entropy is equal to entropy of one of 

them plus conditional entropy of the other with respect to the first. So, this is also what 

would be useful. 
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So, with that we move on further to talk about relative entropy. So, again we have given 

a list of definitions which are important relative entropy and we will talk about mutual 

information. So, we are talk of relative entropy, if we would write this as the measure of 

the distance between two distributions p of x and q of x it is also known as the Kullback 

Leibler distance and is denoted as p d of p with a parallel line between q; that means, we 

are indentifying the distance between the distributions. 

Now, you can easily calculate distance between 2 points, but this is between 2 

distributions is not very easy to find. So, there is a specific definition to it and that is 

particular definition that what we are looking at in this particular case. So, when we look 

at the relative entropy or the Kullback Leibler distance this is given as x element of p of 

x times log of p x over q x and this could be written as expectation over the density of p 

of the distribution of p times log of p x by log of q x and we would remember that, we 

should remember this distance of p from q the distribution of p from q as per this 

definition is not equal to the distance of the distribution of q from p this is also 

fundamental. 

So, using these definitions that we have used, we would now give the definition of 

mutual information which is again fundamental in the expression of capacity. So, the 



expression of a mutual information mutual information, we look at it we would consider 

two random variables x and y with joint mass function p of x y see we are talking about 

discrete random variables. Therefore, we are talking about mass functions and marginal 

probability mass functions i would write in short functions in this way p of x and p of y. 

So, this is the notation that we have been using the mutual information i of x y it is 

denoted as i x y is the relative entropy, see capacity is defined in terms of mutual 

information mutual information is defined in terms of relative entropy and relative 

entropy is defined in terms of entropy. So, all this things are following in suit and we 

have to develop one after the other, the relative entropy between the joint distribution and 

the product distribution. So, in other words i of x y is given as sum over x element of all 

of x times sum over y element member of all of y the joint over the p f x y. Say it is 

relive entropy between the joint distribution and the product distribution. So, here if you 

look at it distance between two distributions p x and q x. So, it is given as sum over p x 

log p x by q x same things follows over here, joint log p of q of x divided by p of x times 

q of y right. So, between these two distributions sorry; it is p of x times p of y. So, 

basically if you look at this it directly follows from the relative entropy and between p x 

y and x times p y. So, it is basically the distance between the joint distribution to the 

product distribution and some of the things you could get cleared that the this could be 

expanded easily as the we could write in short as sum over x y; that means, all of x y you 

are writing in short all of x y p x y times log of p x given y times p of y divided by p of x 

times o of y p of y p of y cancels. 
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So, with that we could write this further as this is equal to yeah sum over p x y over all x 

all x y times see log is there in the denominator p x in the denominator. So, minus log p x 

because we have p x in the denominator log of p x. So, minus log p x plus some over 

over all the x y p of x y that is p x y times log of p x given y, you can easily recognize 

this is basically x of x and this is basically minus of h x given y. So, this is what we are 

built earlier. So, basically i x y could be written in terms of h x and h of x given in the 

similar manner we could expand this part into p. If we would write p of y given x times p 

of x times p of x times p of y what do we get? These two we can cancel out if they are 

non 0 and then i of x y you can easily guess from this it will be h of y and from this 

minus it will be h of y given x. So, these are the definitions that we can follow and if you 

would go by the chain rule the chain rule tells us h of x y is equal to h of x plus h of y 

given x or you could also write it as h of y plus h of y x given y. 

So, this you could write it as h x plus h y minus of h of x y. So, these are the 3 

descriptions of mutual information which would be finally, using that we can write. So, 

here, we can see that h of y given x is h of x y minus h x. So, if we look at this one h of y 

given x. So, h of y given x is equal to h x y minus h x. So, h x y minus this a minus sign 

h x when comes to this side the minus, minus and minus plus.  



So, we have h x h y and this term comes over here. So, we have h x plus h y minus h x y. 

So, we have reached important point in our description of these important terms in terms 

of the entropy. So, we started with entropy we talked about joint entropy conditional 

entropy relative distance between the two distributions. Then we define mutual 

information which is again very, very important term, when we talk about capacity. So, 

we conclude this lecture at this point and we would look at some more definitions in the 

following lecture. 

Thank you. 


