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Good morning, so we are going to have, going to discuss today the Bayes decision theory 

for binary features. So far what we have discussed is assuming that the feature vectors 

are distributed following some normal distribution of the form P of X given omega i is 

equal to… So, this is the expression for a multivariate normal distribution. And we have 

seen that, in this expression where sigma i represents the covariance matrix, that for 

different conditions of covariance matrices, we can have different types of classifier. 

So, the first case we have discussed is, if the covariance matrix for every class i is of the 

form, sigma square into identity matrix I, where both this covariance matrix is of 

dimension d by d. Where our feature vectors are of dimension d and this identity matrix 

is also of dimension d by d. So, because this is identity matrix so this simply says that 

covariance matrix is a diagonal matrix, where every diagonal element is of value sigma 

square. That means every component have the same variance or else, off diagonal 

elements are equal to 0 so because off diagonal elements are 0’s so the components, 

different components of the feature vectors are statistically independent. 



So, in such cases we have seen that, the classifier is nothing but a linear classifier or 

when we talked about the discriminant function, the discriminant function for, function 

for individual classes, they are also linear functions. And because they are linear 

functions so the classifier which employs this linear functions to classify and unknown 

feature vector, that is a linear machine. And in particular, if we want to find out the 

decision boundary two different classes say ith class, omega i and the jth class, omega j 

the decision boundary between these two different classes is a hyper plane, which is 

orthogonal to the line joining mu i and mu j, where mu i and mu j is at the centers of the 

classes omega i and omega j. 

So, effectively I have a situation something like this, that, if I have mu i somewhere over 

here, which is the mean of the class omega i and mean j is somewhere over here. Then 

the decision surface is orthogonal is a hyper plane, which is orthogonal to the line joining 

mu i and mu j. And if the apriori probabilities p of omega i, is equal to p of omega j then 

this decision boundary or the decision surface becomes an orthogonal bisector of the line 

joining mu i and mu j. So, this was our simplest case. 
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In the second case, we have seen that if sigma i is equal to sigma, that is every class or 

the samples belonging to every class have the same covariance matrix, but otherwise the 

covariance matrix is arbitrary, unlike in the first case where, covariance matrix has its 

specific form like this. In the second case the covariance matrices are arbitrary, but every 



class have the same covariance matrix, which ideally means that, the points belonging to 

the same class or the points belonging to different classes, they are clustered in hyper 

ellipsoidal spaces of same shape and same size. And in such case we have seen that, the 

discriminating function that we get for different classes they are also linear. 

So, in both the cases in the first case, as well in the second case the discriminating 

functions become linear so the classifier is nothing but a linear machine. However there 

is some difference between the decision surfaces, that we get between two different 

classes omega i and omega j. In the first case, the decision surface was orthogonal to the 

line joining mu i and mu j, in the second case the decision surface is not in general 

orthogonal to the line joining mu i and mu j. 

So, here again if mu i and mu j so this is mu i and this is mu j, which are the centers of 

the two classes omega i and omega j then the decision surface between these two classes 

will be something like this. In the previous case, it was orthogonal to the line joining mu 

i and mu j, in this case in general it is not orthogonal. However the decision surface is a 

hyper plane or it represents the linear equation and here again, if the apriori probability is 

p of omega i is same as, p of omega j. Then this decision surface though it is not 

orthogonal to the line joining mu i and mu j, but it will pass through the point which is 

midway between the points mu i and mu j. 

And the third case we have said that, the covariance matrices of different classes are 

totally arbitrary. So, for ith class I will have one covariance matrix, for jth class I will 

have another covariance matrix. So, that effectively means that the clusters or the points, 

vectors belonging to different classes they are clustered into hyper ellipsoidal spaces. In 

this, in the first, second case the hyper ellipsoidal spaces were of same shape and same 

size. In this case, the points belonging to different classes will also form hyper ellipsoidal 

spaces, but these hyper ellipsoidal spaces may not have same shape or may not have 

same size. So, they will have different shapes as well as different sizes, but the points 

belonging to the same class they, form a hyper ellipsoidal spaces. 

However, in all these three different cases that we have discussed, we have assumed that 

the feature vector x is continuous or the individual components of the feature vector x. 

Because our feature vector x is, nothing but a d dimensional vector having the 

components x1, x2 up to xd. So, it is a d dimensional feature vector so in all this three 



different cases our basic assumptions was that, the feature vectors are continuous or in 

otherwise, individual components are also continuous. That effectively means that if I 

consider a d dimensional feature space then the feature vector can be represented by any 

point, is represented by any point within that d dimensional feature space. I do not have 

any specific set of points, from which the feature vectors are drawn. 

However, in most of the practical applications and particularly in these days as we are 

walking with digital computers, all the data that we get are digital data. And the moment 

we get digital data, the vectors that we generate are no more continuous rather, they are 

discrete vectors or every component of the feature vector every xi will have a discrete 

values. Discrete values means, it will assume one half a set of specific values so instead 

of the continuous variable it becomes a discrete variable. 

So, when it is a discrete variable, in that case in all our previous lectures wherever we 

have talked about integration, the integration is to be replaced by summation. And the 

summation has to be carried out, over the discrete space. So, we will take a specific case 

of this discrete feature vectors. So, let us consider a case where, so we will have a feature 

vector x which will be discrete.  
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And we consider a specific case of a two class problem and the feature vectors, we will 

assume to be binary feature vectors. Binary feature vector means, every component of 

the feature vector will assume binary value either 0 or 1.So, when I have this feature 



vector x, which is given by x1, x2 up to xd. Again we assume that, we have d 

dimensional feature vectors. Every component of the feature vector x1, x2 or x3 can 

assume either a value equal to 0 or a value equal to 1.  

So, that means that, if a feature vector is taken from a particular class it will say whether 

a particular feature is present or it is absent. So, when I have this sort of binary feature 

vectors so we will also assume the different components of this feature vectors are 

conditionally independent. To have something similar to statistical independence of 

different components inventing most feature vectors. So, here also you will assume that 

different components of the feature vectors are conditionally independent. 

So, every feature value in this feature vector xi, every feature value can have a value 

either 0 or 1. So, it will say whether the feature is present or the feature is absent and 

correspondingly, the probabilities will be something like this. So, every feature 

component will be represented by a probability value where, the probability is something 

like this, that I will represent pi to represent the probability of the ith component. So, the 

pi will be equal to probability that, component xi is equal to 1 given that, the true state of 

nature or the true class is omega 1. We are concentrating a two case problem. 

So, we have classes omega 1 and omega 2. So, pi represents probability that xi is equal 

to 1 given that, the true state of nature is omega 1 similarly, qi is probability that, xi the 

same component is equal to 1, given the true state of nature is omega 2. So, given this 

type of probability measures, it simply means that if I have a situation that pi is greater 

than qi. In such cases, it simply means that ith component xi is more likely to have value 

1 if, x belongs to class omega 1.  

Because, it is the probability of assuming a value equal to 1, when the true state of the 

nature of the two classes omega 1 or when the true state of the nature of two classes 

omega 2. So, if pi is greater than qi that simply means that, if the sample is taken from 

class omega 1. Then it is more likely that the ith component x1 will have value equal to 1 

or xi will have a value equal to 1, more frequently if the vector is taken from class omega 

1. And if it is taken from class omega 2 then it is less frequent that the ith component xi 

will have a value equal to 1. 

So, when I have this kind of situation now, let us see that what are the cases in which 

these kind of feature vectors are more useful. Say for example, if we want to find out the 



health of a plant say, power plant, if I want to determine the health of a power plant. 

Then what, we normally do is there are number of sensors which are used to monitor 

different parameters of the plant. And after monitoring those different parameters, you 

decide whether the plant is or there is some danger in the plant. 

And when you sensor, when you monitor the sensor outputs you just see that, whether 

the sensor output is above a threshold level or below a threshold level. So, if it is above a 

threshold level, we set a value equal to 1, if it is below a threshold level we set a value 

equal to 0. Let me take a more obvious example, when I go to the market to purchase 

oranges, you must have noticed that even in our tech market you usually get two types of 

oranges. One type of oranges, which are produced at Nagpur and one type of orange 

which are coming from Darjeeling. Have you noticed any difference in appearance 

between these types of oranges. 

Student: Color is different 

Color is different, if it is from Darjeeling color is more attractive. It is really orangy 

color, it is more yellowish whereas, oranges from Nagpur they are more greenish and if it 

becomes quite old, it becomes more reddish. If you look at the surface texture, the 

oranges which are coming from Darjeeling, they are smooth whereas, the oranges which 

are taken from Nagpur, they are rough. So, if simply based on these two features I want 

to determine, I want to have an automated machine which will simply classify, tell me 

that whether these are Darjeeling orange or a Nagpur orange. So, it will try to take the 

decision based on the color in the simplest case or it will try to take the decision based on 

the feature, the texture feature. 

So, if I keep some of the feature vectors like, whether the color is yellowish answer will 

be either yes or no, whether it is greenish either it will be, answer will be either yes or no 

whether it is smooth, answer will be either yes or no. However, when I get an orange 

from Darjeeling and I take an orange from Nagpur, there is no guarantee that all the 

oranges from Darjeeling, will always have smooth texture or will always have orangy or 

yellowish color. Or if take oranges from Nagpur there is no guarantee that, I will always 

have greenish color, Nagpur even may produce some oranges which will have yellowish 

color or which will have smooth textures.  



So, there is always a finite probability that an orange produced at Nagpur will have 

yellowish color. So, it is not necessary if that color to be yellowish, I put that as a binary 

feature, for all the oranges coming from Nagpur that binary value will always be equal to 

0. It is not guaranteed, for some of them I may get values which are equal to 1, but that is 

less frequent than, the value equal to 1 when the oranges are taken from Darjeeling. 

So, simply over here if that feature I put as the ith feature xi then pi will be more 

frequently equal to 1, xi will be more frequently equal to 1, if this omega i is Darjeeling. 

And this will be less frequently equal to 1, if omega 2 is from Nagpur so coming over 

here if pi is greater than qi. So, it simply explains this particular situation, that is for 

oranges coming from Darjeeling, I will have more number of oranges having yellowish 

color than, the number of oranges I get with yellowish color from the Nagpur oranges. 

So, this is a typical situation like this.  

And what does conditional independence mean, the texture and the color they are 

independent. I mean if the texture is rough, that does not necessarily mean that the color 

will be greenish or if the texture is smooth, that does not necessarily mean that the color 

will be yellowish. So, coming to the plant if I take two features say, I want to monitor the 

health of a boiler. If I take two features, one is pressure inside the boiler and temperature 

inside the boiler.  

They are not independent because if temperature increases the pressure will increase. I 

mean just from the basic laws of gauss so they are not independent they are dependent. 

So, when I try to select the features I should select in such a way that the features are 

independent because that solves many of the mathematical problems, I do not have to 

look for complicated mathematics. So, if I assume that the features are conditionally 

independent. 
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Then, the same probability function I can write as p of x given omega 1, where x is the 

feature vector, which has d number of binary valued feature components. So, this p of x 

given omega 1, I can simply write as pi, pi is the probability that xi equal to 1, given the 

true state of nature is omega 1. But it also has a finite probability that, it may have a 

value equal to 0 so I have to concentrate on that as well. 

So, it is pi to the power xi into 1 minus pi to the power 1 minus xi obviously, if xi equal 

to 1, 1 minus xi equal to 0, if xi equal to 0, 1 minus xi equal to 1, and because the 

components are conditionally independent so the overall probability will be product of 

independent probability values. So, this I have to take for i is equal to 1 to d, as I have d 

number of components so this is the class conditional probability of a feature vector x, if 

the state of nature is omega 1. 

So, in the same manner I can write p of x given omega 2, that is class conditional 

probability if the feature vector belongs to class omega 2 is nothing but. Now, the 

probability of xi equal to 1, then the true state of nature is omega 2 is qi. So, I will have 

qi to the power xi into 1 minus qi to the power 1 minus xi, take the product from i equal 

to 1 to d. 

 

 



Student: Sir where d is dimension of the. 

D is the dimension of the feature vector, so I have d number of components in the feature 

vector. So, these are the two class conditional probability values now, from here I can 

find out, what is called likelihood ratio. So, the likelihood ratio is given by p of x given 

omega 1 upon p of x given omega 2 which is nothing but if I simply multiply these two, 

it becomes pi upon qi to the power xi into 1 minus pi upon 1 minus qi to the power 1 

minus xi. Take the product where, I varying from one to d so this is what is the 

likelihood ratio right. 

Student: Sir xi could be a vector or Xi is a single component? 

xi is the single component, it is a scalar, xi is the single component, the capital x is the 

vector, having d number of components so but the value of i will vary from 1 to d. 
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Now, you know that the decision surface or our decision function between the two 

classes given, two classes is given by gx is equal to log of px, given omega 1 upon p of 

x, given omega 2 plus log of p omega 1 upon p omega 2. This we derived earlier now, if 

we put this p of x given omega 1 upon p of x given omega two, which is equal to this 

expression, if I put this expression into this function.  

So, it will give us because we are taking logarithm so the product term over here will be 

converted to sum of logarithmic functions. So, what I simply get is gx is equal to 



summation of xi because here xi was a power. So, this will become a product of the, in 

the logarithmic term so it is xi then log of pi upon qi plus 1 minus xi log of 1 minus pi 

upon 1 minus qi, where i will vary from 1 to d plus log of p of omega 1, where this p 

omega 1 is the apriori probability upon p of omega 2. So, this is the decision function 

and for a two category case we have already seen that, if g of x becomes greater than 0 

then our decision was that x belongs to class omega 1. If g of x becomes less than 0 then 

our decision was that x belongs to class omega 2. If g of x is equal to 0, that actually tells 

us that what is the decision boundary between the classes omega 1 and omega 2. 

Now, if you notice that this equation is a linear equation, isn’t it? Because this simply 

says, the linear combinations of different components xi of the feature vector x, I do not 

have any xi term, xi square term or xi cube term. So, the equation is a linear equation and 

this linear equation can simply be written in the form, if I just rearrange this particular 

linear equation I can write it in the form. 
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gx is equal to sum of wi xi plus w0, do not confuse w with omega. So, it becomes sum of 

wi xi plus w0, where i varies from 1 to d, because I have d number of components in the 

feature vector. So, you find that this is, nothing but a linear combination of the different 

components, of the feature vector xi plus a threshold term, which is w0. And this wi is 

for different values of I, this represents a wide vector and this is, nothing but a dot 

product or inner product of the wide vector with the feature vector. 



So, when I write it like this, over here this wi is simply log of pi into 1 minus qi that is 

quite obvious. Because, you find that this becomes xi into log of pi minus xi into log of 

o1ne plus pi or plus xi into log of 1 minus qi. So, this 1 minus qi term that goes to the 

numerator and 1 minus pi term that comes to the denominator. 

So, it simply becomes log of pi into 1 minus qi upon, log of pi into 1 minus qi upon qi 

into 1 minus pi where, i varies from 1 to d. Because, I have d number of components in 

the wide vector as well and w naught, that is the threshold is given by log of 1 minus pi 

upon 1 minus qi, sum of this for i is equal to 1 to d plus log of p of omega 1 upon p of 

omega 2. 

Now if you analyze this, as I said that our decision will be that if, g of x is greater than 0 

then we decide that x belongs to class omega 1. If g of x is less than 0 then we decide 

that x belongs to class omega 2, if this is equal to 0 that is a boundary case. So, if you 

analyze this expression or what do we get, what does these different components of w, 

that is wi, that effectively tell us. You find that xi that is the ith component of the feature 

vector x is the binary value feature vector. It can have a value equal to 0, it can have a 

value equal to 1. 

Now, if it has a value equal to 1 then the contribution of the term wi into xi for that 

particular component xi, to this function gx is, nothing but equal to the magnitude of wi. 

Because, xi is equal to 1 so it is nothing but equal to the value, the magnitude of that 

particular component of wi. So, effectively this wi, magnitude of it simply tells you that 

what is the importance or what is the relevance of the component xi in decision making 

that, whether the sample will belong to class omega 1 or the sample will belong to class 

omega 2. If value of wi is very large then xi has more weightage to decide about the 

class, if value of wi is small then xi has less weightage to decide about the class. 

And in other case, if pi is equal to qi that is value of xi to be equal to 1 is more likely, is 

same equally likely, even if the x belongs to class omega 1 or the feature vector x belong 

to class omega 2. So, pi is equal to qi, pi as we said it is the probability that xi will be 

equal to 1, if the true state of nature is omega 1. And qi is the probability that, xi will be 

equal to 1 if the true state of nature is omega 2. So, if pi is equal to qi that simply 

indicates that, whether x belongs to class omega 1 or x belongs to omega 2, xi is equally 



likely to have value equal to 1. So, that simply means that xi has no relevance in deciding 

the class. 

So if i has, if xi has no relevance in deciding the class then why should the corresponding 

vector wi be there. I can make wi equal to 0, without hampering my decision. So, if you 

come to this wi, the expression for this wi you have find that if pi is equal to qi then this 

expression pi into 1 minus qi upon qi into 1 minus pi. This expression will be equal to 1 

log of this is equal to 0 so the corresponding wi is equal to 0. And that is quite obvious 

because if pi is equal to qi then xi, the particular feature vector xi has no relevance in 

deciding the class of the feature vector x. 

On the other hand if pi is greater than qi, if pi is greater than qi then having value of xi 

equal to 1 should tell me that, the sample is more likely to belong to class omega 1 than, 

to belong to class omega 2. Whereas, if pi is less than qi then the sample xi equal to 1 

tells me that it is more likely to belong to class omega 2 than, its likelihood to belong to 

class omega 1. 

So, again coming to this particular case, if pi is greater than qi, if pi is greater than qi 

then obviously 1 minus qi will be greater than 1 minus pi. So, in this expression the 

numerator becomes larger than the denominator so this value is greater than 1. And when 

this value is greater than 1, value of wi is positive, if value of wi is positive what happens 

to my gx. 

Student: Positive. 

Not necessary, it depends on other values of i as well. So, effectively I can say that if xi 

is equal to 1, that particular component then this component xi gives a vote of value wi 

to gx, to decide that this feature vector x belongs to class omega 1. So, it is the, it gives 

the vote equal to the corresponding wide in favor of class omega 1. 

On the other hand if pi is less than qi, pi is less than qi so 1 minus qi will be less than 1 

minus pi so numerator becomes less than the denominator. So, this term is a fraction 

which is less than 1, log of this will be negative that means, wi in that case is negative. If 

wi is negative that means, the corresponding xi into wi is trying to make gx less than 0, 

trying to make, whether it will be less than 0 or not, that depends upon other wi into xi 

term. But what xi is trying to do in this case, it is trying to give a vote equal to the 



modulus of wi, in favor of class omega 2. Because, it is subtracting so it is giving a vote 

which is equal to modulus of wi in favor of class omega 2. 

So if pi is greater than qi, the component xi gives a vote equal to wi in favor of class 

omega 1, if pi is less than qi then component xi, gives a vote equal to modulus of wi in 

favor of class omega 2. That means this component is trying to push the decision surface 

of the decision boundary, either towards omega 1 or towards omega 2. 
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Let us take an example so let us consider a three dimensional space or three dimensional 

feature vectors. And let us so and let us consider a two class problem that is, I have 

classes omega 1 and omega 2. So, these are the two classes I have and every feature 

vector is a three dimensional feature vector where, every individual component can be 

either 0 or 1.  

And let us also assume that, the apriori probabilities p of omega 1 is same as p of omega 

2, which is equal to 0.5. And let us assume that value of pi is equal to 0.8 and qi is equal 

to say, 0.5 for all values of i, that is for i varying from 1, 2 and 3. So, it says that every 

component of the feature vector has a probability of being equal to 1 is 0.8 if the feature 

vector is taken from class omega 1. And every component has a probability of 0.5 of 

being equal to 1, if the feature vector is taken from class omega 2. 



So given this pi and qi values a probability values, I can compute the corresponding wide 

vectors, so simply from this expression that, wi is equal to log of pi into 1 minus qi upon 

qi into 1 minus pi for different values of i, I get different components of the wide vector 

wi. So, I get wi is equal to log of pi, that is 0.8 into 1 minus qi, that is 0.5 upon qi that is 

0.5 into 1 minus pi that is 0.8. And if I compute this, this becomes a value 0.3863 and the 

threshold w naught, which is given by this expression, w naught is equal to log of 1 

minus pi upon 1 minus qi, take the summation for i is equal to 1 to d plus log of p omega 

1 upon p omega 2. 

Now over here, in this case p of omega 1 and p of omega 2 they are equal to, they are 

equal and both equal to 0.5. So, this last term log of p omega 1 upon p omega 2 that will 

be equal to 0. So, what I have to compute is simply this term, w naught is equal to log of 

1 minus pi upon 2 minus qi take the summation over, i is equal to 1 to d. So, this w 

naught will be simply log of 1 minus pi that is 0.8 upon 1 minus qi that is 0.5. This 

component takes the summation for i is equal to 1 to 3 and we will find that this value 

will be something like, it will have a value something like this. 
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So given this, the decision surface between the classes omega 1 and omega 2. You verify 

this values, whether you are truly getting this values or not. So, assuming this our 

decision surface gx will be given by sum of 1.3863 xi, where this i varies from 1 to 3 



because I have three numbers of components. So, this is nothing but 1.3863 x1 plus 

1.383 x2 plus 1.383 x3 minus 1.2 this is equal to 0. 

So, if I try to plot this decision surface the, in three d one point you might have noticed 

that, because our features are binary features. Every feature component can assume a 

value either 0 or equal to 1, so every feature vector will be represented by a vertex of a 

hypercube in the d dimensional space. It can be either 0 0 0 or 0 0 1 or 0 1 0 or 1 0 0 and 

so on. So, every feature vector will be represented by a vertex, in the d dimensional 

space of a hypercube. 

So, if I try to plot this decision surface, the decision surface will be something like this. 

So, let us take a cube in this three dimensional space and if you plot the surface, the 

surface will come out to be something like this. So, this is our decision surface so you 

find that, this decision surface says that, these are the points which lie on one side of the 

hyper plane. And these are the points which lie on the other side of the hyper plane, so it 

simply says that, if at least two vectors of the feature, if at least two components of the 

feature vector are equal to 1. Then the point is classified to class omega 1. 

Student: Sir it should be at least one because equation says it will be at least one ((Refer 

Time: 49:34)), which one. The equation from this decision surface that you ((Refer time: 

49:40)), this one. 

Student: Yes sir. 

Student: If at least one is ((Refer time: 49:52)). 

I mean it is the other way, these are the points which are put to class omega 1, omega 2 

and the other side is put to class omega 1. So, it says if at least one of them is equal to 1 

then the decision will be in favor of class omega 1. Otherwise, the decision will be in 

favor of omega 2. 

So, we find that I again get a simple hyper plane in three dimensions, it is just a plane, 

which is boundary between the two classes omega 1 and omega 2. So, if the probability 

values are different, if different pis have different other values then the position as well 

as orientation of this plane may be different. But effectively what it does is, the inter d 

dimensional space is broke into two halves, one half will be given to class omega 1, the 



other half will be given to class omega 2. The nature will be a bit more complicated 

when, the numbers of classes are more than 2, because then we have to think of more 

than one decision surfaces and how they combine. 

Student: Sir, will axis represents x1, x2? 

Axis represents x1, x2, x3.So, let us stop here today.  

Thank you. 


