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Good morning, so we will continue with our discussion on Bayes theory, the discussion 

that we started in our last class. 
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So, we were discussing about Bayes decision theory. So, what we talked about yesterday 

is that, suppose in a particular classification or pattern recognition application domain, 

we have a set of objects or we have for that particular object, we have an observation say 

x. So, I have said that x is an observation, and based on this observation we have two 

classify the object in one of the two classes. So, taking that particular example of a 

manufacturing industry, we have to classify that object either into the accepted category 

or in the rejected category. 

So, for doing this job we have said that we have some a priori probability that is p of 

omega 1 and p of omega 2. However, omega 1 this category you have said that let us 

assume that this is the category of accepted objects. And omega 2 is the category of 



rejected objects. And p of omega 1 is the very a priori probability that the object will be 

accepted and p of omega 2 is the pro a priori probability that the object will be rejected. 

Now, in addition to make our decision we have said that, we have an observation x. And 

for this observation x, also we have class conditional probability density function that is 

probability x given omega 1 and also probability x given omega 2. So, these two are the 

class conditional probability density function which we have to estimate based on the 

measurements on x or objects which are unknown to belong to class omega 1, and the 

measurement of x from the objects which are known to belong to class omega 2. 

So, from this two we have two estimates this p of x given omega 1 p of x given omega 2 

omega 2. But finally, our classification problem is that we have an observation x. And 

based on this observation x we have to put this object either in category omega 1 or in 

category omega 2 or effectively what we have to find out is p of omega 1 given x and p 

of omega 2 given x. So, these are the two probability measures, which we say of the 

posteriory probability. And based on these two probability measures we have to decide 

whether the object has to be classified to class omega 1 or the object is to be classified to 

class omega 2. 

So, here p of omega 1 given x, we have said from Bayes rule that this is nothing but p of 

x given omega 1 into p of omega 1 upon p of x. Similarly, p of omega 2 given x is 

nothing but p of x given omega 2 into p of omega 2 upon p of x while you find that this p 

of x appears in the denominator of both these expressions, what this p of x is nothing but 

p of x given omega i take the summation or i is equal to 1 to 2. So, this is what we get 

from Bayes rule.  
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And then our decision was like this that, If p of omega 1 given x is greater than p of 

omega 2 given x then we decided in favour of class omega 1. So, in favour of omega 1 

that means we decide that the object having this observation x belong to class omega 1. 

If it is otherwise, that p of omega 2 given x is greater than p of omega 1 given x then we 

will decide that the object belongs to thus omega 2. 

However, we have one condition that if p of omega 1 given x becomes equal to p of 

omega 2 given x. So, this is the case when we cannot take any decision because the 

object lies on the decision boundary between the class omega 1 and class omega 2. So, it 

may be both in class omega 1 as well as in class omega 2. So, this is a case where 

decision cannot be taken. So, this was the basic Bayes decision theory however, we have 

taken that we have two class omega 1 and omega 2. And our decision was one of the two 

decisions either the object is to put in class omega 1 or the object has to be put in class 

omega 2. Now there can be a generalisation of this Bayes theory.  
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So, the generalised Bayes theory can be put something like this. So, instead of classes let 

us call it the states of nature. So, earlier in the example that you have taken there are only 

two states of nature. Now, we can generalise it having multiple states of nature. So, the 

first generalisation is like this that, use more than two states of nature. And then this state 

of nature in our case, in this classification problem is nothing but the classes. So, that 

will be our understanding when we talk about when we say that the states of nature it is 

nothing but the classes. In the earlier case we have taken a single observation x. So, 

based on this observation x we have tried to decide whether we have to put the object in 

class omega 1 or we have to put in class omega 2. 

Now, in the generalisation we allow more than one observations that means instead of 

having a single feature we have allowed feature vector. So, use more than one feature so 

that means we are going for feature vector. The other generalisation is in the earlier case 

we had only two actions that is either decide about class omega 1 or decide about class 

omega 2. Now, we can allow a number of fractions instead of just deciding whether this 

belongs to class omega 1 or this belongs to class omega 2. So just this case I have shown 

that if p omega 1 given x is equal to p omega 2 given x I cannot take any decision. 

So, this particular fact that I cannot take any decision, I can also define this is as action 

that I cannot decide to which class does the object belongs that also I can call as an 

action. This no decision is also action. So, I can allow other actions other than merely 

deciding states of measure. So, when as I said the states of measure in our cases are 



classes. So, merely deciding whether the objects belong to class omega 1 or the object 

belongs to class omega 2. Apart from that I can take other actions as well. 

And the fourth generalisation is this that in our case our decision was based on a 

posteriory probability that if p of omega 1 given x is greater than p of omega 2 given x 

then we decided to be in favour of omega 1. If it is other way round that is p of omega 2 

given x is less than is greater than p of omega 1 given x then we decide in favour of class 

omega 2.  

So, in this case we can have a more generalised criteria based on which we can decide 

about the states of nature which is called a lost function. So, introduce a lost function, 

which is more general than probability or let us say probability of error. Because as we 

said that, if we decide in favour of omega 2 then the probability of error is p of 1 given 

omega x. And the purpose was to reduce the probability of error in simple ways decision 

theory. So, as I said that will have more than one states of nature. 
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So, let us assume that there is C numbers of states of nature or C number of classes to be 

more specific in our application. And those classes let us call a set of classes omega 1, 

omega 2 up to say omega c. So, there is C states of nature. Now, about the actions as you 

also said that will also allow actions rather than merely deciding about the states of 

nature. 



So, suppose there are a number of actions. So, I have this state of actions which I 

represent as alpha 1, alpha 2 up to alpha a. So, this is the state of actions that I have apart 

from simply deciding that whether the object belongs to class omega 1 or it belongs to 

class omega 2 and so on. So, I have this number of actions and I said that we introduce a 

lost function which is more general than probability of error. So, this lost function I 

represent as lambda alpha i given omega j. So, this means that if the actual states of 

nature is omega j however we take an action alpha i. 

Then, the loss incurred while taking this action alpha i when, the actual state of nature is 

omega j is lambda alpha i units. So, this is loss incurred for taking action alpha i when 

true state of nature is omega j. And the fourth-generation generalisation is said that 

instead of considering a single feature, we will consider a feature vector. So, here let us 

assume that we have a feature vector that instead of a single feature we have a feature 

vector that is a multiple number of features of multiple observations of various 

parameters, which is a vector x feature vector x.  

And this feature vector x is d-dimensional. So, these are things that we have seen number 

of states of nature given by omega 1 to omega c. We have a number of phase actions 

from alpha 1 to alpha a. We have a general lost function which is given by lambda alpha 

i given omega that means the loss incurred for taking an action alpha i when the true 

state of nature is omega j. And we consider a feature vector x which is a d-dimensional 

feature. Now, let us see that how this decision rule in this generalised based theory has to 

be taken. 
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So, suppose we have an object and for that object we have made an observation vector or 

the feature vector given by x. So, x is the feature vector, which is of dimension d. And 

for this feature vector we take an action alpha i. So, as we said earlier that the loss 

incurred for taking an action alpha i while the two state of nature is omega j is given by 

lambda alpha i omega j. 

So, here for this feature vector x from this observation x we have taken an action alpha i, 

but we do not know what is the true state of nature. It may be omega 1, it may be omega 

2, it may be omega 3 and so on. They are true state of nature may be anything. So, for 

each of these I will incur a loss function. So, if the true state of nature is omega j, I will 

incur a loss which is given by lambda alpha i given omega j. And if the probability that 

the two state of nature is omega j given the feature vector x then the average loss or the 

average risk can be computed like this.  

The average risk or expected loss can be R alpha i given x is equal to lambda alpha i 

given omega j into omega j given x. x is my observation vector, take the summation over 

j is equal to one to c. Because I do not know what is the true state of nature. So, if the 

true state of nature is omega j then my lost function is lambda alpha i given omega j. 

Then to multiply this with the probability of true state of nature being omega j given my 

observation vector x.  



So, this is lambda omega a alpha i given omega j into p given j omega x take the 

submission over all the states of nature, that is j is equal to one to c that gives you the 

expected loss. So, which we are calling as R of alpha i given x. So, this expected law is 

also called a Risk function or we can also call it Conditional risk because it depends 

upon x. It is also the expected loss. So, any decision or any action alpha i that I had to 

take that particular alpha, that particular action for which this risk is minimum or the 

expected loss is minimum.  

Unlike, in the previous case where we used only two classes or decision was taken in 

favour of that class, which gives us minimum error. That is if I decide in favour of 

omega 1, I make sure that the error is minimum which nothing but p of omega 2 units. 

Similarly, if I decide in favour of omega 2 my error is p of omega 1 given x which is 

minimum in that case. 

In the generalised case, I had to take that action alpha i for which this risk alpha R alpha 

x is given. So, accordingly this is also called minimum risk classifier. So, in this 

generalised case the kind of classifier that I have is a minimum risk classifier. Now, let 

us see various derivatives of this minimum classifier, it is this minimum classifier which 

under different conditions leads to different kinds of classifier switcher actually in use. 

So, let us see two category cases. Suppose, I have two classes omega 1 and omega 2 or 

two states of nature omega 1 and omega 2. So, in this case if I assume that the action 

means saying whether the object belongs to class omega 1. So, alpha 1 means that 

decision that object belongs to class omega 1, alpha 2 means decision that object belongs 

to class omega 2. 
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So, I have two states of nature one is omega 1 other one is omega 2. As I have this 

omega 1 and omega 2 and also I have action the alpha 1 and alpha 2 reserve the actions. 

So, action alpha 1 means the decision that the object belongs to class omega 1, action 

alpha 2 means deciding that object belongs to class omega 2, so over here now if I write 

lambda alpha i given omega j as say lambda i j just for simplicity of expression. So, 

lambda i j means lambda alpha i given here. That is the loss incurred for taking at an 

action alpha i when the two state of nature is omega j.  

So, for this two class problem I can have risk function or of alpha i given x, as we said is 

nothing but lambda alpha i given omega j into probability omega j given x. We took the 

summation for j Is equal to one to c for all possible two state nature. So, in our two class 

problem this expression simply becomes that if I take action alpha 1, so I will have R 

alpha 1 given x. 

This will be lambda 1 1 that means lambda alpha 1 given omega 1 is that into p of omega 

1 given x plus lambda 1 2, that means lambda alpha 1 given omega 2 into p of given 

omega 2 given x. If I expand the lost function the expected loss for taking an action 

alpha i on and observation vector x then this is the expansion of the expected loss 

function or the risk function. 

Similarly, I have the other option of taking action alpha 2, I can take one of this two 

actions. So, the risk involved for taking action alpha 2 on observation vector x is nothing 



but lambda 2 1 into p of omega 1 given x plus lambda 2 2 into p of given omega x. Now, 

I said that I have to take that action for which the risk is minimum. 

So, if I find after computation of our alpha 1 given x and of alpha 2 given x that are of 

alpha 1 given x is less than are of alpha 2 given x then have to take action alpha 1. If it is 

otherwise that are of alpha two given x is less than alpha 1 given x then I have to take 

action alpha 2. So, under that condition for deciding in favour of class omega 1 or taking 

an action alpha 1 higher are of alpha one given x will less than that of alpha 2 given x. 

You can find that this leads to a condition that lambda 2 1 minus lambda 1 1 into p of 

omega 1 given x. This has to be greater than lambda 1 2 minus lambda 2 2 into p of 

omega 2 given x. 

So, this is the condition if I have to take this decision in favour of class omega 1 or if I 

have to take action alpha 1. Now, over here you find that this lambda 1 1 means taking 

an action alpha 1 when the two state of nature is omega 1. And as we are seeing in our 

case taking an action in alpha 1 means deciding that object belongs to class omega 1 so 

we are taking the correct decision. 

Similarly, lambda 2 2 this is the loss incurred for taking an action alpha 2 when the true 

state of nature omega 2. So, this is also a case when we are taking a correct decision so 

this is loss involved for taking correct decision. Whereas, this lambda 2 1 and lambda 1 2 

these are the loss for taking wrong decisions because we taking action alpha 1, other two 

state of nature is actually omega 2. We are taking an action alpha 2 when the true state of 

nature is actually omega 1.  

So, naturally this alpha 2 1 will be much larger than alpha 1 1 because the risk this is the 

loss for taking correct action and ideally this should be equal to zero because that action 

is correct. Similarly, that lambda 1 2 is much better than lambda 2 because this is also the 

loss incurred for taking wrong decision, whereas lambda 2 2 is the loss incurred for 

taking correct decision. So, you find that both of these that lambda 2 1 minus lambda 1 1 

and lambda 1 2 minus lambda 2 2 both of them will be positive or greater than zero. Now 

I can compare this with the two cases or Bayes decision that you have done earlier or 

minimum error classification method that I have done earlier.  
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So, our condition was p of omega 1 given x if it is greater than p of omega 2 given x then 

we have decided in favour of class omega 1. Now, in case of this generalised one by 

incorporating the risk function that is the minimum risk classifier, what you have do is 

this, decision rule that we had taken in simple Bayes decision that actually has to be 

weighted by the loss difference. Because this lambda 2 1 minus lambda 1 1 is nothing 

but a loss difference for taking wrong decision and for taking a correct decision. 

Similarly, lambda 1 2 minus one lambda 2 2 is also a loss preference between taking a 

wrong decision and taking a correct decision. So, the difference between a generalised 

case and the specific cases is that here, we had a simple expression p omega 1 given x 

minus greater than p omega 2 given x leads to the decision of omega 1. In the present 

term action alpha 1, if it is the reverse then I had to take action alpha 2 whereas, in this 

minimum classifier simply becomes lambda 2 1 minus lambda 1 1 which is waiting this 

posteriory probability p of omega 1 given x. 

That is greater than lambda 1 2 minus lambda 2 2 into p of omega 2 given x. This 

actually initiates action alpha 1 or deciding in favour of omega 1. So, this is what we are 

getting following the minimum risk classification. Now, as I said that there are 

derivatives of this minimum risk classification. Under different situations I can have 

different types of classifiers which are actually derived out of this minimum risk 

classifier. 
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So, let us see one such classifier which is minimum error rate classifier. You have any 

questions so far. 

Student: Sir, how will whether lambda 1 ((Refer Time: 32.16)). 

Those are predefined the loss function are predefined. Depending on the kind of 

application that you have, you have to define, what is the amount of loss that you will 

impose for different wrong decision or for a correct decision?  

Student: Sir, what means loss incurred for correct decision? 

Ideally it is zero, if I take a correct decision then the loss is actually zero. So, ideally it 

should be zero. For more generalisations I can still put a loss function which may be very 

low. Because as we said in our previous class that, if any I take a decision omega 1, but 

the probabilistic point of view there is also a finite probability that the object may 

actually belongs to class omega 2. Though, that probability value is very small so ideally 

the loss involved for taking a correct decision is zero.  

But to take care of such cases I can impose a loss even in a correct decision, but that loss 

value is very low. Because there is always a finite probability that my decision even 

though I am confident that I am taking a correct decision, but there is a finite probability 

however, small it is that my decision can be wrong. 



So, that is they can take care of by that lambda i i or lambda j j. Even there is a situation 

where I may incur a loss, even if I am confident that I am taking a correct decision from 

other circumstances. So, what is this minimum error rate classification? So, we said that 

if I take an action alpha i that means I am taking a decision that the true state of nature is 

omega i that is alpha 1 is true state of nature omega 1 alpha 2 is true state of nature 

omega 2 and so on. 

And if I define the loss function like this say lambda alpha i given omega j. So, taking an 

action alpha i means deciding it state of nature is omega i. So, as I said that if my 

decision is correct that means if I take action alpha i the true state of nature is also omega 

i then ideally I should incur a zero loss. 

So, if I define this loss function like that, so I define this lambda alpha i given omega j 

equal to zero whenever, i is equal to j that means I am taking the correct decision. And 

the loss function I make equal to one whenever i is not equal to j. So, this is how I define 

my loss function. And this is true for all i and j equal to one to c for all different values 

of i equal to j. So, whenever i and j are same that means I have made correct decision, I 

am taking a correct decision, the loss involved is zero. Whenever, I take a wrong 

decision the loss involved is one. 

So, this is how I define my loss function. So, by this definition of loss function let us see 

what will be the expected loss of the tricks that is R of alpha i given x that will be 

nothing but you have already said alpha i given omega j into p of omega j given x where 

j varies from 1 to c. So, this is the loss involved or the risk involved for taking an action 

alpha i. either equal to zero or equal to one. So, it is equal to zero whenever i is equal to j 

and it is equal to one whenever i is not equal to j. 

So, this term the summation gets simplified to summation of p of omega j given x. 

However, I had i is equal to j this summation lambda alpha i given omega j is equal to 

one and wherever i was equal to j this was equal to 0. So, this summation will be 

wherever i will be equal to j not i equal to j. 

Now, for this alpha i, one value of i only one value of j is equal to i, total submission of 

all these probability values p of omega i given x or p of omega j given x for all values of 

j is equal to one. Out of that this is the summation where I is not equal to j. So, this is 

nothing but one minus p of omega i upon x. So, if I want to maximise or minimise this 



risk function that means this term has been minimised. And if I want to minimise this 

then this p of omega i has to be maximised. 

So, you find that I come back to the same decision, similar decision in the generalised 

case that p of omega i given x, for whichever i this has to be maximum I had to take that 

decision. And that ensures minimum risk that ensures minimum error affect. So, this 

minimum risk classifier in this particular case boils down to minimum error rate 

classifier. 

So, that is why I said that starting from there, I can have various derivatives various 

types of classifiers, but finally, all of them will turn out to be equivalent. But under 

different situations I can use them differently depending of convenience how we can 

model a problem in a particular manner? Now, let us come to another concept which is 

called discriminant function. So, effectively what are the classifiers you have? Say it is 

something like this ((Refer Time 40.46)). 

Probability is not zero, lambda alpha i omega is zero that is why the term is absent from 

here. 

Here we are taking this probability p omega i given x, p omega i given x is not zero. But 

in this expression this p of omega i given x was to be multiplied by lambda i i. This 

lambda i i is zero that is why in this expression this p of omega i given x the term 

corresponding to this is absent. It is only because of this p of omega i is not zero. So, 

when I have this c class classifier I can put it something like this. 
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Say, I have a classifier let us assume that it is a black box. So, this is my classifier box. 

Input i have an observation vector or feature vector x of dimension d. Then the classifier 

has to give me a decision that what is the class belongingness of this object having this 

feature vector x. Now, inside this black box all these different types of calculations are to 

be done are to be meant. if I go for minimum risk classifier than for every different 

action this classifier has to find out that what is the corresponding risk. And it has to take 

give me that action for which the risk is minimum.  

If I go for Bayes rule for every different class it has to find out what is the a posteriory 

probability then whichever class gives me the maximum posteriory probability the 

classifier will decide in favour of that class. In case of minimum error red classifier for 

every class the classifier has to decide that what the error for taking a particular action is. 

And it will decide in favour of that action which gives the minimum error. And you find 

that I have to compute the number of functions which is equal to number classes or 

which is equal to number of actions that I have in my classifier. 

So, many functions are to be completed. Say for every action alpha i in my classifier I 

have to compute this for every classroom omega i. For every class this omega i I have to 

compute this p of omega i given x like that. So, it is the number of classes of the number 

of actions that are higher defined with my classifier where I have to complete. So many 

functions then whichever functionaries gives either maximum or minimum. I take that 



particular action of that particular class. So, I can say that in this classifier box I have 

different modules or functional units which compute a function g of x 

So, this computes a function of g of x g 1 of x, this computes g 2 of x, this computes g 3 

of x, this computes g c of x on the same feature vector x. Then you takes a decision 

either following the maximum criteria or following the minimum criteria that to which of 

these c number of passes this feature vector x should belong. 

Now, if I put a generalisation that I will always compute the maximum of these 

functional values. So out these c number of functional values which ever functional 

value is maximum I will put x into the corresponding class. So, over there these 

functions are what are called is discriminate functions. So, this g x is called discriminant 

function.  

So, your function is same I will call it g 1 x when it is computed for class one omega 1 or 

when it is computed for plus two omega 2 g two x is the same function when this g x is 

computed for class omega 2 or for action alpha 2 and so on. So, this function is called g 

is for discriminant function. And whichever class if so maximum value discriminant 

function I put this object into that corresponding class. Now, let us see what will be the 

nature of this discriminant class  
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So, when I have c number of classes omega 1 to omega c. So, there is c number of 

classes. So, I will have c number of the functional value of the discriminant function, so 

g i x for i varying from one to c. So, if I feel the decision rule in general that g i x is 

greater than g j x for all j not equal to i. Then I decide that this x belongs to plus omega i.  

So, this means that whichever g i x whichever class i gives the value of this discriminant 

function g i x maximum, because this g j x all j not equal to i means this one is 

maximum. So, for whichever class this discriminant function gives the maximum value I 

put x into that corresponding class. So, what will be the nature of this discriminant 

function under different conditions. 

 If I go for minimum risk classifier my risk is given by R of alpha i given x for taking 

and action alpha i. And the distance to be minimum to take that action alpha i, but in 

terms of discriminant g i x the value of the discriminant function has to be maximum. So, 

naturally if I want to relate this risk with the discriminant function I have to make g i x 

which is negative of R of alpha I given x, because whenever this is maximum this is 

minimum because it is negative. And whenever this R of alpha i given x is minimum by 

negating this g i because maximum. 

Similarly, for minimum error red classification my condition was that this one minus p of 

omega i given x that has to be minimum that means p of omega i x has to be maximum. 

So, I can simply equate g i x top of omega i given x. So, for minimum error red 

classification g i x is simply p of omega i upon x. So, I can have the discriminant 

functions like this and for multiple number of classes for which ever class the value of 

the discriminant function is maximum I put x into that particular class. Now, you find 

that I can define g i f like this, but the choice of the discriminant function g i x is not 

equal the reason is. 
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If I take a function f say I have this g i x. And I take a function which is function of g i x. 

Now, if this function f which is function of g i x this is monotonically increasing. Then 

also this f of g i x will solve the same purpose as g i x, because it is monotonically 

increasing. So, for whichever i g i x is maximum for the same i if you g i x will also be 

maximum because the function f is monotonically increasing. So, if I can identify g i x 

then for any monotonically increasing function f of g i x that will also serve the same 

purpose of discriminant function. So this discriminant function that I said g i x it is not 

really unique. I can have various types of discriminant function.  

So, only here I have to take is this function f that I have to choose that must 

monotonically increasing function. And that gives us an advantage in the sense that if 

somehow I can identify g i x but g i x in its original form if it is not mathematically 

tractable. I can take another functional of this g i x which can be mathematically 

tractable, that can be used as a discriminant function. 

So, coming to a very simple example. So, coming to this minimum error red 

classification, we have said that this g i x is nothing but p of omega i given x. If I expand 

this it simply becomes p of x given omega y into a priory probability p omega i upon 

summation of p x given omega j into p omega j for j varying from one to six. Now, find 

that this term p x given p omega j, this is nothing but p of x.  



And because this term is appearing in the denominator of all the discriminant functions 

for every value of i, this will be there in the denominator. So, I can simply remove this 

when I design my discriminant function. So, I can say that my discriminant function will 

simply be g i x is equal to p of x given omega i into p of omega i. This will be now g i x. 

Now, find that one I define g i x like this, there is a product term. And whenever I have a 

product it is more difficult to implement as well as analyse rather than if I have a 

submission. So, as I have my original formation g i x like this. We know that logarithmic 

function is also monotonically increasing function. So, instead of using this I can use log 

of this. And that can be my discriminant function. So, instead of using g i f as this, I can 

use g i x, as this can also be my discriminant function. And here I have avoided this 

product by summation. So, it becomes mathematically more convenient.  
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Now, using this there is, if I go for two categories that is I have the classes omega 1 and 

omega 2 that means that I have classes omega 1 and classes omega 2. So, when I have 

these two classes that means I have two discriminant functions. One is g x other one is g 

x. And my decision rule is if g 1 x is greater than g 2 x, I decide it in favour of omega 1, 

g 1 x is less then g 2 x I decide in favour of omega 2. 

So, what is the decision boundary between the classes omega 1, omega 2? Decision 

boundary simply where g 1 is equal to g 2 x. So, g 1 x minus g 2 x is to zero, that gives 

me the decision boundary. So, if g 1 x minus g 2 x is greater than zero, I put it in plus 



omega 1, if it is less than zero I put is in plus omega 2. So, I can say that instead of 

taking these two discriminant functions particularly in a two category case, I can have a 

single discriminant function which is given by g x is equal to this g 2 x minus g 2 x and 

if this is equal to zero that gives me the decision boundary.  

And from here by applying the same concept of logarithm you will find that this 

discriminating function can now be written as. And if I use g 1 x to be p of omega 1 

given x and g 2 x to be p of omega 2 given x then g x becomes p of omega 1 minus p of 

omega 2 given x. And using the concept of logarithm and by expanding this in terms of a 

priory probability and class conditional probability, this will simply be written as ln p of 

x given omega 1 upon p of x given omega 2 plus ln p of omega 1 upon p of omega 2. 

So, here I have this priory probabilities as well as class conditional probabilities. So, 

when a priory probability is same you find that this term become equal to zero. So, only 

decision is based on your class conditional probability. So, I will stop here today will 

continue with this discussion in the next class. 

Thank you. 


