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Hello. So, we are discussing about the temporal pattern recognition, that is the patterns 

which unfolds in time. We have started discussion on the tool, which is used for 

recognition or classification of such temporal patterns and this tool as we are discussing 

is what is known as hidden Markov model. We have seen earlier that this hidden Markov 

model has three central issues.  

The first issue is evaluation problem where we have said that evaluation problem is 

nothing but if we are given a particular hidden Markov model say theta and you are 

given a sequence of visible symbols, then we have to find out what is the probability that 

the model theta has generated this sequence of visible symbols V T by any path. So, 

when I say path, it is the sequence of hidden states through which the model makes 

transition while generating the sequence of visible symbols say V T.  
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And we have seen that how to estimate this probability and this probability we have said 

that it is P V T given theta, and we have estimated this as sum of P V T given omega r T 



into P omega r T, where this r will vary from 1 to r max, but r max is the total number of 

possible paths or total number of possible sequences of the hidden states through which 

the model can have transition while generating this sequence of visible symbols or 

sequence of visible states called V T.  

We have seen that there are two other major issues. The second major issue that we have 

already discussed is what is called the decoding problem. We have said that the decoding 

problem is, the aim of the decoding problem is to find out the most probable sequence of 

hidden states through which the machine will make transition to generate this sequence 

of visible symbols V T. The third issue that we are now discussing, we have just started 

that in the next class is the most important issue, which is learning of the hidden Markov 

model. So, by learning what we mean is suppose we have a course structure of the 

hidden Markov model that is we know that what are the hidden states and we also know 

what are the visible states or visible symbols.  

So, given these two and given a set of sequence of visible symbols supposed to be 

generated by this hidden Markov model, we have to find out the transition probabilities a 

ij and b jk, where a ij we know that this is the transition probability from state omega i to 

state omega j, where both omega i and omega j they are hidden states and the transition 

probability or symbol emission probability b jk is the probability that the machine 

generates a symbol b jk when it is in state omega j.  

So, these are the two transition probabilities that we have to estimate from a set of known 

sequences, which are to generated by this hidden Markov model and we have the course 

description, course structure of the Markov model in terms of that hidden states and in 

terms of the visible states. As we have already said that out of these hidden states, one of 

the hidden states say omega naught, this is called the final state that once the hidden 

Markov model enters this state omega naught; it cannot come out of this state omega 

naught. Any further transition it will make, it has to make within state omega naught 

only and while the machine is in state omega naught, it will generate only one visible 

symbol, which is represented by v naught. 

So, learning problem is to estimate a ij and b jk, these two transition probabilities or the 

transition probability matrixes from a sequence of set of visible symbol sequences. In 

order to do that, we have used two types of probabilities.  
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One of the probabilities which we have estimated from using the forward algorithm that 

is we have defined like this that is alpha j t and we have said that this alpha j t actually 

tells the probability that the model will be in state omega j at time step t by generating t 

number of visible states, the first t number of visible states given in a sequence of visible 

states v t. The definition of alpha j t is it is like this that alpha j t will be equal to 0 if t 

equal to 0, and omega j is not an initial state and alpha j t will be will be equal to 1 if t 

equal to 0, and omega j is an is an initial state otherwise it will be defined like this. So, 

this will be otherwise.  

Similarly, using the backward algorithm, we have defined beta i t as given by this and 

this beta i t tells what is the probability that the model theta will be in state omega i and 

will generate the remaining symbols of sequence of visible symbols v t. That means, 

what is the probability that will be in state omega i and will generate the remainder of 

visible symbols starting from t plus 1 to to capital T. So, these remaining symbols of all 

visible sequence v t will be generated by this machine and under that situation, what is 

the probability that the machine will be in state omega i. 

So, that is what is given by beta i t and we will see in a short while from now that both 

this forward probability and backward probability will be used for estimation of the 

probability, transition probabilities a ij and b jk. Now, whether this beta i t, which is 

obtained by backward algorithm or this alpha j t, which is obtained by forward algorithm 



both of them uses a ij and b jk. So, beta i t uses a ij and b jk alpha j t also uses a ij and b 

jk, but the problem is this that this a ij and b jk that we are going to estimate that is what 

is the learning of hidden Markov model. So, initially I do not know what are the proper 

values of a ij and b jk.  

So, the estimates of this alpha j t or beta i t, they are not the correct estimates because I 

do not know what are the exact values of a ij and b jk. So, these estimates are only some 

approximation, they are not exact as, a ij and b jk are not exactly known. So, what is the 

way out? We will do it this way that we define a probability of transition from state 

omega i to state omega j in the time step t minus 1 to time step t.  
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So, I define gamma i j t that is the probability of transition from state omega i at time 

step t minus 1 to state omega j at time step t, I define this. This is defined for a particular 

tuning sequence say V T. So, what I can do is I can define this omega i j t, this will be 

simply alpha i t minus 1 that is the probability that the machine will be in state i at times 

step t minus 1. It will make a transition to state omega j. So, I have this transition 

probability a ij it will emit a symbol V T. So, that will be b jk, which will be effective 

only for the k symbol emitted at t at time step t, which is equal to v k times beta j t.  

So, this is the probability of transition from state omega i to state omega j in the time in 

the time step t i minus 1 to t while generating the sequence V T and this divided by P V 

T given theta. So, this will be my probability of transition from omega i to omega j in the 



time instant t and you find that this P V T given theta, this is the probability that the 

model theta has generated this sequence V T following any path. That is quite obvious 

because when we have defined V T, definition of V T was something like V T; P V T 

given theta, the definition of P V T given theta was something like this.  

So, it is summed over all possible paths omega t, omega r is one of the possible 

sequences of length capital T. I am summing over all such possible sequence of hidden 

states. So, this P V T given theta is actually the probability that the model theta has 

generated this V T following any path. This includes only that path where a transition 

from omega i to omega j from time step t i minus 1 to time step t is involved.  

So, this is an estimate of the probability of transition in the t th step from omega i to 

omega j t at time step t. Now, here again you find that this omega i this a ij and b jk, they 

are still not exactly known. So, how this algorithm is going to work? So, the usual 

practice is initially you choose the transition probability is a ij and b jk are arbitrarily at 

random.  

So, I choose some random values, some arbitrary values for the transition probabilities a 

ij and the transition probability b jk. Using that and using training sequence V T, you try 

to estimate what is omega i j t. Now, you can use this estimated i j t to refine or to 

improve the values of a ij or the values of b jk. So, how that improvement can be done? 

You find that the expected number of transitions from omega i t minus 1 to omega j t at 

any time in the sequence is given by. 
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So, I will write that expected number of transitions omega i in time step t minus 1 to 

omega j at time step t at any time in the sequence, in sequence V T, it will be simply sum 

of omega i j t where this summation has to be taken over t equal to 1 to capital T. So, in 

this inter sequence v t wherever whenever I have a transition from state omega i to state 

omega j, I have to sum all of them.  

So, that is what is giving me the expected number of transitions from omega i to omega j. 

The total expected number of transitions from state omega i, so against this, I have total 

expected number of transitions from state omega i that will be given by sum of gamma i 

k t or I have to take summation over k over the index k and this whole this thing has to 

be summed again over t equal to 1 to capital T. So, you find that I have two quantities. I 

have the total expected number of transitions from state omega i to state omega j given 

this sequence V T and I also have the total number of expected transitions from state 

omega i to any state. So, once I have these two quantities, then I can have the transition 

probability a ij. 
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So, I can have a refined transition probability a ij. I will put it as hat, which will be sum 

of gamma i j t, t is equal to 1 to capital T divided by sum of gamma i k t and the 

summation will be taken over all k, this whole thing summed over t is equal to 1 to 

capital T. So, this is our refined value of transition probability a ij and in the same 

manner, I can have a refined value of the transition probability b jk. So, I will have b jk 

hat, which will be given by sum of gamma j l t, take the summation over l and this whole 

thing is summed t is equal to 1 to capital T. I have to consider only those cases, but the 

emitted visible symbol is v k. 

So, this has to be computed wherever V T is equal to v k because I am interested in the 

transition probability b jk and this divided by sum of gamma j l t summation over all l. I 

have to take summation over t is equal to 1 to capital T and this denominator is 

irrespective of any symbol that is emitted by the state from the state omega j. So, the 

numerator is only considering those transitions wherever the emitted symbol is symbol v 

k and denominator is irrespective of whether the emitted symbol is v k or not. So, this 

ratio gives me a refined estimate of b jk. So, the procedure I have is initially you choose 

the arbitrary values of a ij and b jk. Using those arbitrary values of a ij and b jk, you 

estimate what will be your alpha i t and what will be beta j t.  

So, using this arbitrary estimate, the initial estimate of a ij and b jk, you have an estimate 

of alpha j t and an estimate of beta i t. Using this estimate of alpha j t and beta i t what 



you go for, you go for an estimation of the transition probability from omega i to omega j 

and that transition probability is this.  

So, you find that I have alpha i t minus 1 or j t minus 1, whatever subscript I use that 

does not matter. Similarly, I have an estimate of beta j t; I have an arbitrary estimate, 

initial estimate of a ij and b jk. So, I can estimate again using this a ij and b jk, I estimate 

what is P V T given theta and from here, I can estimate what is gamma i j t.  

Using this gamma i j t, I go for refinement of the transition probabilities a ij and b jk. In 

the second iteration, I use this refined values of a ij and b jk again to estimate what is 

alpha j t minus 1, what is our beta i t minus beta i t. I go for estimate of what is gamma i 

j. Again, using that refined value of gamma i j, I go for further d refinement of a ij and b 

jk.  

This entire step starting from refinement of gamma i j, refinement of b jk and refine, 

refinement of a ij, this entire process repeats a number of times unless I reach to a 

situation when the difference in a ij or the change in a ij and the change in b jk, they are 

within the tolerance limit. That is when I assume that my algorithm has conversed.  

So, when I reach that state, that a ij and that b jk can be used for evaluation of my model 

theta for any sequence V T. That is how hidden Markov model is trained and because 

this process is using both forward estimation and the backward estimation, the algorithm 

is called forward backward algorithm. Also, this is also known as Baum-Welch 

algorithm. 

So, let us try to recapitulate what we have done during this entire course on pattern 

recognition and applications. Initially, we said that whenever we want to classify or we 

want to recognize a pattern, for the pattern, we have to have some dissipaters or some 

features and when we take a large number of features put in a particular order that is 

what is called as feature factor.  

So, when a pattern is represented by feature vector, suppose the feature vector is of 

dimension d, then this entire pattern is represented by a point or by a vector in a d 

dimensional space. The advantage that I have by representing a pattern by a feature 

vector is as the pattern is represented by a point in my d dimensional space, if I have two 



patterns p 1 and p 2, the pattern p 1 will be represented by a point in d dimensional space 

and pattern p 2 will also be represented by a point in my d dimensional space.  

Now, what I can do is I can find out the distance between these two points. If I find that 

the distance is very large, immediately I can infer that these two patterns p 1 and p 2, 

they are not similar, they are widely different. Whereas the distance between the 

corresponding points is in my d dimensional space is small, ideally if the distance is 0, 

that is both the points are marked the same points in my d dimensional space, then 

immediately I can infer that the patterns p 1 and p 2, they are same.  

If the distance is small, I can infer they may not be same, they may not be identical, but 

they are very much similar because their corresponding feature vectors are similar. They 

are very close to each other. So, this is the advantage I get whenever I represent a pattern 

by feature vector and when I say feature vector having d number of components, each of 

these d number of components capture certain aspects of the pattern. These aspects or 

these properties of the patterns can be estimated in the time domain or in the spatial 

domain; in the time domain if it is the time domain signal, in the spatial domain if it is 

the special domain signal.  

So, I say it is time domain say for example a speech signal; a speech signal varies with 

time right or the signal coming out of a microphone that is also a signal, which varies 

with time. So, whenever I have a time domain signal, I can extract the features in time 

domain itself. I say spatial domain signal say for example in case of an image; the image 

is defined as auto dimensional space. I can have combined spatial domain and time 

domain signal like in case of a video sequence. In a video sequence, as you know that the 

video sequence is nothing but a number of films which are played one after another at 

certain intervals. So, usually when we have commercial videos, they are played at an 

interval of say twenty five frames per second, at a rate of twenty five frames per second 

and or at the rate of thirty frames per second.  

So, every individual frame is a spatial domain signal and when you take the number of 

frames, which are played one after another, we move into temporal domain. So, I can 

have signals, which will have both spatial property as well as temporal property. So, 

when I talk about features, I can extract the features in spatial domain, I can also extract 



the features in the temporal domain. So, whichever way I extract the feature or I can also 

extract the features in the transformed domain.  

So, this signal can be transformed to the transform domain using the various types of 

transformations. I can use Fourier transformations, I can use discrete cosine 

transformation, I can use velvet transformations I can use gavotte transformations, and 

many such transformations. So, by using these transformations, what we do is we simply 

transform the signal into the transformed domain and the features can be extracted in 

transformed domain also.  

So, I can have spatial domain signal, I can have spatial domain features, I can have time 

domain features, I can also have transformed domain features. Each of these features as I 

say captures certain aspect or certain property of the pattern or certain property of the 

signal, when these features are put in a particular order, what I get is a feature vector and 

the advantage of converting a pattern or a single or a signal to a feature vector is as I said 

that it can be represented by a point in my feature space or in my d dimensional feature 

space. We have talked about various types of classifiers starting with our statistical 

classifier like bays’ classifier; we have talked about the parametric classifier where the 

probability density function is having a parametric form.  

We also have talked about the non parametric classifier when we still estimate the 

probability density function at a particular instance of the feature vectors, but we do not 

assume that the probability density function has any parametric form. We have also 

talked about other types of non parametric classifiers like nearest neighbor classifier, 

minimum distance classifier, and all these different sorts of classifiers. Then among the 

other types of classifiers, we have talked about using the discriminating functions for 

different classes. We have also talked about what are the decision boundaries with 

different classes.  

So, using that, we can classify the patterns or we can recognize the patterns. We have 

also talked about the neural networks for pattern classification or pattern recognition. We 

have talked about hyper box classifier. We have talked about the fussy min max neural 

network for pattern classification. So, these are different types of pattern recognition 

techniques or pattern classification techniques that we have done throughout, we have 

discussed throughout this course.  



Now, the question is as we have so many different types of classifiers or as we have so 

many types of recognizers, how to find out or how to estimate the performance of 

different types of classifiers?  
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Before that, there is another problem that how we design a robust classifier, so for the 

design of classifier, there is one of the techniques we will talk about is what is called 

leaving one out. So, what is this leaving one out technique? It is quite intuitive that when 

we train the classifier using the supervised technique that is when you design the 

classifier using a large number of feature vectors for which the class belongingness is 

known, then it is quite intuitive that if I increase the number of such samples used for the 

training of the classifier, the classifier will be robust.  

Similarly, for testing, if I use a large number of samples for testing the classifier, the 

tested result will be more accurate. But, practically, it is difficult to obtain such large 

number of training samples or such large number of test samples because only after 

proper training and only after getting the test results, I can put the classifier into the 

actual job. So, the leaving one out technique is basically a virtual technique by which a 

limited number of samples, training samples or test samples can be posed as a large 

number of samples. So, suppose you had been given capital N number of training 

samples. 



So, what this leaving one out technique does is you set aside one of the training sample 

for testing purpose. So, if I set aside one of the training samples, I am left with N minus 

1 number of training samples. You design your classifier using N minus 1 number of 

training samples and the sample x, which you have left aside, you use this sample x for 

testing the classifier, which has been designed using N minus 1 number of training 

samples.  

So, using suppose this is x 1, which I had left aside and using all the samples other than x 

1, I train my classifier and use x 1 to test the classifier. Next, I set aside another sample 

say x 2 and use this x 1 for training. If I set aside this training sample x 2, I am again left 

with N minus 1 number of samples for training, but this N minus 1 number of samples 

include this x 1 and excludes x 2. So, using this N minus 1 number of samples, again you 

design the classifier and using x 2, you test the classifier.  

So, if every time I set aside one of the samples out of total number of samples N, and 

every time I design the classifier using the remaining N minus 1 number of samples and 

the sample which was set aside, I use that for testing purposes. So, effectively what I am 

doing is I am designing N number of classifiers. When this x 1 or this x 2 is used for 

testing the classifier, which has been designed using the other N minus 1 number of 

samples, sometimes this test will result positive.  

That means, the sample may be correctly classified, sometimes the test result may be 

negative that is the sample may not be correctly classified. So, what I can do is I can 

estimate a classification error rate that is out of so many test samples, how many times I 

have got misclassification of the sample? So, I have a classification error rate.  

 Then for designing your final classifier, you use all the N number of samples to design 

your final classifier and when all these N number of samples are used to design the final 

classifier, I can say that the error rate of the classifier will be at least less than the error 

rate that has obtained when I had designed N minus, N number of classifiers leaving 

aside one, so because I am using more number of samples to design my classifier. So, 

when I design the classifier, I know that what is the expected error rate? This is the 

method of designing the classifiers, which is called leaving one out technique.  

Now, this can be slightly relaxed in the sense instead of every time leaving one sample, I 

can say set aside a 10 percent of the samples and I design the classifier using the 



remaining 90 percent of the samples. This classifier will be tested using the 10 percent 

samples, which was set aside. So, every time I set aside 10 percent, using the remaining 

90 percent, I design the classifier and test this classifier with this 10 percent samples.  

So, here you find as I am setting aside 10 percent of the samples, I will be designing 10 

different classifiers. For every classifier, I find out what is the error rate and then when I 

finally, design the classifier using all the N number of samples, all the samples, I know 

that the maximum error rate of this classifier will be the error rate of the individual 

sample that I have got. So, this is one way of designing technique. Now, suppose I have 

designed my classifier. Then how do I present the performance of this classifier or how 

do I estimate that what is the sensitivity of this classifier? Now, when I say sensitivity, 

typically I am talking about a 2 class problem. 
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So, to discuss about this 2 class problem, I will take our old methods, which we have 

used earlier that I have set these two probabilities densities. So, this is p of omega 1 

given x and this is p of omega 2 given x and for a minimum error rate classifier, we 

know that our threshold, our decision bound was somewhere over here. So, this is x 

threshold. So, in case of minimum error rate classifier, we had assumed that if the value 

of x which the vector x is to the left of x threshold, then the feature vector is classified to 

class omega 1. If it is to the right of x threshold, then the feature vector is classified to 

class omega 2.  



So, this is my decision boundary and while doing this because there is a finite 

probability, that x over here may belong to x 2. So, I have an error, which is given by this 

amount. Similarly, when I decide feature vector say x 2 falls on this side because p of 

omega 2 given x 2 is more than p of omega 1 given x 2, I decide that this feature vector 

belongs to class omega 1, but there is a finite probability given by this that the feature 

vector may also belong to class omega 1. I have decided that it belongs to class omega 2, 

but there is a finite probability that the feature vector may belong to class omega 1.  

So, the probability of error over here is this much, the probability error over here is this 

much and the total probability is nothing but the area under these two curves. Now, if I 

shift my decision boundary to say this side, then for one of the classes, the probability of 

error will increase; for the other class, the probability of error will decrease. So, if I shift 

my decision boundary towards class omega 2, then the probability of error for class 

omega 2 will increase; probability of error, the total error for class omega 1 will 

decrease. So, for all such decision processes, I have one type of probability error, one 

type of error rate which increases and the other type of probability which decreases with 

the shifting of my decision boundary.  
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So, a particular case of this supposes we consider a 2 class problem where I am 

interested in samples belonging to class c and the samples, which do not belong to class 

c. So, I represent them as c and c complement. So, this represents the samples belonging 



to class c and this represent the samples which do not belong to class c. Now, because of 

or decision making process or because of the classification process, I may have a 

situation that a sample, which actually belongs to class c complement is classified as 

belonging to class c. So, this is a kind of situation which is expressed as false positive. I 

can also have a situation that the sample actually belongs to class c, but it has been 

classified to be belonging to class c complement. So, from c, you have put it to c 

complement. That is what the classifier has done and such cases are known as false 

negative. 

There are correct classification cases when a sample actually belongs to class c and it has 

been classified to belong to class c, which is called true positive at the case when a 

sample actually belongs to class c complement and it has been classified to belong to 

class c complement and that is the case, which is known as true negative. So, I have true 

positive case and I have true negative case. So, these are the different cases that I can 

have. This true positive or rate of true positive is also called the sensitivity of the 

classifier and the true negative this is what is called specificity of the classifier.  

So, I have these two terms, one is sensitivity, other one is specificity. As we said that by 

varying the position of the decision boundary, I will increase one error rate. At the same 

time, the other type of error rate will decrease that is the number of false positives, the 

number of false negatives, in one case the false positive can go on increasing, the false 

positive negative go on decreasing. In the other side, the false negative may decrease, but 

false positive false negative may increase, but false positive will decrease.  

So, naturally the position of the boundary leads to a trade off and the situation of based 

trade off is actually described by a curve, which is called a characteristic curve or which 

is also known as ROC curve. This ROC curve, this ROC actually represents receiver 

operating characteristic curve. How do you plot this ROC curve? ROC curve is you plot 

one of the false cases against the other that is I can plot false negative versus false 

positive.  
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So, a curve something like this false negative rate versus false positive rate for different 

positions of my decision boundary. This curve may be say something like this and this is 

called an ROC curve or characteristic curve. The advantage of this ROC curve is it 

simply says that how sensitive your classifier is against shifting of the decision 

boundary. And from this ROC curve, I can choose the best trade off, may be something 

somewhere over here I can say that total number of false positive and false negative that 

will be minimum. So, whatever for whichever position of the boundary I am at this 

position, that position in can use as my decision boundary position.  
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The other way of representing the performance of a classifier is by means of what you 

call a confusion matrix. The confusion matrix says that suppose I have got three different 

classes, class A, class B, class C and the confusion matrix is plotted in this manner A B 

C. So, it simply says that how many samples belonging to class A has been classified as 

class B, how many samples belonging to class A has been classified as class C. So, these 

are actually wrong classifications or false classification. The sample actually belongs to 

class A, but it has been classified as class B or class C. So, these are false classes and it 

also says that how many samples belonging to C has actually been classified as class A.  

So, these are the false classifications. This is the true classification. Similarly, how many 

samples belonging to class B has been falsely classified to class A, how many samples 

have been correctly classified as class B, how many samples have been falsely classified 

as class C. Similarly, for class C, how many samples belonging to class C has been 

classified to A, falsely classified to B, how many samples have been correctly classified 

as class C. So, you find that the diagonal of this confusion matrix, this actually gives you 

that how good your classifier is because this is what represents the number of correct 

classifications. So, these are the defined techniques. There are many other techniques, 

which can be used for to measure the performance of the classifier.  

So, in this course, we have talked about different classifier techniques, classification 

techniques or recognition techniques. We have also talked about different types of 

clustering, where the similar patterns of the similar feature vectors are put into the same 

group. We have talked about the classification or recognition of temporal patterns and 

towards the end, we have concluded our course on pattern recognition, and applications 

using the design techniques like leaving one out and the different types of performance 

measures of the classifiers. So, with this, we come to end of this course. I hope you have 

all enjoyed this course and you got benefitted by this course.  

Thank you. 


