Pattern Recognition and Application
Prof. P. K. Biswas
Department of Electronics and Electrical Communication Engineering
Indian institute of Technology, Kharagpur

Lecture - 30
Hyperbox Classifier

Good morning. So, today what we are going to discuss about is the hyper box classifier.
Earlier, we had just introduced the problem in the sense that so far the kind of classifiers
we have talked about it separates between 2 classes of the regions belonging to 2 classes,
which are simply connected.
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In the sense that | have a set of feature vectors belonging to 2 classes, which are given in
this form. Again | am taking this example in 2 dimension having 2 feature components x
1 and x 2. If the feature vectors for the training vectors belonging to 2 classes say omega
1 and omega 2, they form clusters like this, so this is 1 cluster. This is another cluster. 1
of the clusters is taken from say plus omega 1. The other cluster is formed by the points

taken from another cluster say omega 2.

Then the regions belonging to these 2 different classes; omega 1 and omega 2, they are to
be simply connected. | should be able to have a simple boundary, either a linear

boundary or a non-linear boundary separating these 2 classes.



So, either | can have a boundary or linear boundary, something like this in which case
the classes will be called linearly separable. 1 should be able to have a non-linear
boundary something like this in which case the classes are linearly non separable. So, |
should be able to have either a linear boundary or a non-linear boundary. So, accordingly
we have talked about different types of classifiers starting from our base classifier,
whether it is base minimum base classifier or base minimum error classifier and so on.
We have seen that in a particular case, when all the classes have the same coherence
matrix or the points taken from all the classes, they have the same coherence matrix. At
the same time, the feature components are statistically independent or different feature

components are statistically independent.

Then, we can have a linear boundary separating the 2 classes, omega 1 and omega 2. In
general, if different classes have arbitrary coherence matrices or the points belonging to
different classes of arbitrary coherence matrices in that case, the classes are not linearly
separable. So, you can have a non linear boundary. Mostly, what we have is a quantity
founded. Then we have discussed about other approaches for designing of linear
classifier like approach or relaxation criteria, list approach, mini minimum square error

based criteria based design approach.

In all these cases, we have talked about how we can design a linear classifier that
separates 2 different regions by a linear boundary. Lastly, what we have talked about is
the neural network approach. If | have a single layer perceptron or a single layer neural
network having multiple number of outputs, then what we have is we separate the classes

or the classes are separated with linear boundaries.

If the classes are not separable by linear boundaries in that case, we have to go for
multilayer neural network or multilayer perceptron. The non-linear boundaries are
actually replaced by piecewise linear boundaries. So, this multilayer neural network what
it does? It approximates a linear boundary by piece wise linear boundaries. So, in all
these cases, the regions belonging to different classes, they have to be simply connected.
As we said earlier, we have a point of distribution belonging to different classes

something like this.
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So, these are the distribution points belonging to 2 different classes where you can
assume that all the red points belong to 1 class, whereas the green points belong to
another class. Not only that, I can have some arbitrary distribution something like this as

well.
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I have a set of points somewhere over here, which belong to 1 class. | can have set of
points somewhere over here that belongs to the same class. | can have another set of
points somewhere over here, which also belong to the same class. In between, | can have,



so this is the set of points which belong to 1 class. This may be the set of points that
belong to some other class. This may be the set of points, which belong to some other

class. This set of points may even be extended like this.

So, if the pointer distribution is a complicated point distribution something like this, you
find that neither linear boundary, obviously a linear boundary cannot separate among
these classes. Even a non linear boundary is also unable to separate between different
classes. So, how we can design a classifier that can even classify the point distributions
or the class distributions, which are given like this? So, | just pointed out during our
introductory lectures that we can move for that. That is what | do is you divide this space
into a number of hyper boxes something like this. Different hyper boxes may be having

different dimensions.

So, when you are here, so in this 2 dimensional example, | can assume that those hyper
boxes are represented by rectangles. So, | have a set of rectangles, which represent 1
particular class. | have another set of rectangles, which belong to another particular class.
If somehow we can assign the class level to this different rectangles, so I can say that this
are the rectangles, which represent class say omega 1. These are the rectangles, which
represent class omega 2. Similarly, | can have a set of rectangles over here that will
represent class omega 3. | will have a set of rectangles covering this region, which will

belong to class omega 4 and so on.

So, during the training process during the training of the classifier, we have to identify
these set of rectangles or the set of hyper boxes. So, next time during the testing or when
you actually go for classification of unknown feature vectors, | simply see the position of
the unknown feature vector with respect to these hyper boxes, which are already
generated. So, if the unknown feature vector falls somewhere over here, so this is the
location of the unknown feature vector. Then | can immediately say that because this

unknown feature vector is lying within a rectangle, which is leveled as class omega 1.

So, this unknown feature vector also belongs to class omega 1 or else the unknown
feature vector falls somewhere over here. Then immediately | can because of this
unknown feature vector falls within a rectangle, which is leveled as class omega 2, so
this unknown feature vector also belongs to class omega 2. So, that way, | can define or |

can generate a set of hyper boxes based on the training samples, which | have given.



Those hyper boxes are given the class levels based on from which training classes

belonging to which class that particular hyper box has been generated.

So, that becomes the class level at a particular hyper box. Once | get the class of the
hyper boxes than while testing or while in actual operation, | just find out that in which
of these hyper boxes that unknown feature vector is situated. So, this unknown feature
vector gets the same class level as that of the hyper box. So, these hyper boxes are to be
generated during the training operation of the classifier. Now, suppose | have a situation
in something like this.
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| have 1 hyper box somewhere over here. Now, what is the advantage of these hyper
boxes or the advantage of the rectangles? Once | divide the space, the feature space into
a number of hyper boxes or into a number of rectangles, you find that such rectangles or
such hyper boxes can be defined using just 2 points. If 1 know what is the left bottom
point and if I know what is the right top point that is sufficient to define the hyper box.
So, 1 of the points, this point left, because if | plot it against our conventional 2

dimensional co ordinate system, so this is my X 1 feature. This is the X 2 feature.

You find that corresponding to this left bottom point, both of the features X 1 and X 2
are minimum. Similarly, corresponding to this top right point, both X 1 and X 2 feature
values are maximum. So, accordingly this point is called a min point and this point is

called a max point. So, once | define this rectangle or the hyper box using this min point



and max point, such hyper boxes are called min max hyper boxes. This is done to see
whether an unknown point is within this min max hyper box or not suppose this min
point is represented by vector V, which will have X 1 co ordinate and X 2 co ordinate,

which are minimum among all the points.

It is also represented by max point, which is W, which also has X 1 co ordinate and X 2
co ordinate. These are maximum among all the points within this hyper box. Now, so
singularly, if 1 have n dimensional feature space or the feature vectors are n dimensional
feature vectors, then all the n co ordinates for this min point will be minimum among all
the points. Similarly, all the co ordinates for the max point, all the n co ordinates for the
max point will be maximum among all the feature vectors, which are given. So, if | say

that a point P, | want to check point P belongs to this hyper box or not.

So, let us consider the ith dimension say, | have this unknown point P. | want to check
whether this point P belongs to this hyper box or it does not belong to this hyper box.
Suppose let me take that Pi to represent that ith dimension of this feature vector. It is ith
dimension, 1 out of the 10. Similarly, for the min point say, Vi represents the ith min
point that means the minimum value of the ith co ordinate. Similarly, Wi represents the
maximum value of the ith co ordinate. So, this is ith dimension ith component of the

maximum.

So, if this unknown feature vector P has to lie within this min max hyper box, then
obviously | have to have the condition that Vi has to be less than or equal to Pi, which
has to be less than or equal to Wi . This has to be true for all i, wherein from 1, 2 up to n.
So, for all the components, all values of i Pi has to lie in between Vi and Wi. So, if it is
so, then we can say that this unknown feature vector P lies within this hyper box, min

max hyper box given by the min point V and the max point W.

So, this definition itself tells you that how to generate a min max hyper box that is given
a set of points. | want to find out a min max hyper box, which encloses all the points
within that set. So, for doing that, what | have to do is | have to find out every
component the minimum value of every component among all the feature vectors, which
are there in the set. So, if I have 50 points within the set for each of these feature vectors,
| have to find out the first component. So, | will have 50 first components. Minimum of

that will give me the first co ordinate of the min point.



Similarly, coming to the second dimension, I will get 50 components coming from 50
different feature vectors. | have to find out minimum of that. That gives me the second
co ordinate of the maximum min point. Similarly, the maximum values will give me the
corresponding co ordinates of the max point. So, given a set of points, for every
component, the minimum values will give me the min point. The maximum values will
give me the max point. You find that that follows from this particular condition that P

lays within the min max hyper box.

Then, every component of P has to be within the minimum and maximum values of the
corresponding component. So, that is within min point and max point, min component
and max component of the corresponding hyper box. So, by checking this condition, I

can easily find out with a point or an unknown point belongs to a given hyper box or not.
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| come to a situation that | suppose to have a situation something like this. This is my X
1 dimension and this is my X 2 dimension. The hyper boxes are generated from the 10
examples. As the hyper boxes are generated from the 10 examples, it is not necessary
that set of hyper boxes that you generate that will cover the entire space. It is quite
possible that a part of the future space will not be covered by any of the hyper boxes

because it depends on the distribution of the 10 examples.

So, suppose | have a situation something like this that | have a hyper box somewhere

over here, which belongs to class omega 1. | have another hyper box somewhere over



here, which also belongs to class omega 1. | can have another hyper box somewhere over
here, which also belongs to class omega 1. | can have a hyper box over here, which may
belong to class omega 2. | may have a hyper box over here, which also belongs to class
omega 2. | may have a hyper box over here, which also belongs to class omega 2.

So, you find that given these hyper boxes, there is a lot of space in between the hyper
boxes, which is not covered by any of the hyper box. So, if there is a feature vector
unknown feature vector because these hyper boxes are created using the 10 examples.
So, it is obvious that all the 10 examples, which have given, they are covered at least by
1 of the hyper box. Given is an unknown sample, if an unknown sample falls somewhere
over here, so this is the position of the hyper unknown sample. This unknown sample
does not belong to any of the hyper box. So, should we say that this unknown sample

does not belong to any of the classes?

So, it is quite logical that if I can have some measure by which | can classify this
unknown sample as well, so 1 of the approach is what we discussed about the minimum
distance classifier. That is you try to find out what is the distance of this unknown
sample from defined hyper boxes, so by calculating the distance, you find out that which

hyper box is nearest to this unknown sample.

I can classify this unknown sample to the nearest hyper box or the class of the nearest
hyper box. That is 1 of the way. We go for minimum distance classification sort of thing
combined with this hyper box classifier, the other approach is which appears to be more
logical. This is because that is what in is in line with how we think or how we classify

without actual thing. So, that is what is called fuzzy membership or fuzzy clarification.
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I will not go into the details of fuzzy theory, but I will just introduce what is the concept
of fuzziness. How this fuzziness can be combined along with our hyper box concept? So,
we can have a definition of fuzzy hyper box or fuzzy hyper box set. So, the concept of
fuzziness is something like this. Let us take a simple example that given a set of persons,
live example persons, we want to say that who are the persons who are tall, who are the

persons who are short and who are the persons who are say medium height.

Now, while doing this, we never take a tape. Find out what is the height of a person.
Accordingly, we classify whether the person is tall or the person is short or we also say
that the person is very tall. We say that the person is tall, but not so tall. Similarly, he is
short, but not so short. So, when we decide something or when we classify something,
we do not really classify in the hard manner. It is not that. If the height of the person is
above 6 foot, 5, 6 inches, he is tall. We never do that. What we do is some sort of
approximation or given set of classes. So, we want to find out what is the likelihood that

a person belongs to one of the classes.

So, that is how we say that a person is very tall, the person is tall person is not so tall, he
is very short, not so short or short things like that. That means when we are doing some
sort of classifications in our classification, we are incorporating some sort of fuzziness.
So, if | out something like this that from the horizontal axis, | put the height of the

person. On the vertical axis, | will put something like membership grade.



So, our classification will be or the classification rule will be something like this. See if
the person is his height is between say 6 feet and say 6 feet 6 inches, | will say that the
person is tall. So, this is the region. When | say that the person is tall, roughly if it is
between 4 feet to say 4 feet 6 inches, then the person is short and somewhere in between

5 feet to say 5 feet 6 inches, we say that he is medium or say standard.

This is because in India, most of the persons are within this category 5 feet to 5 foot 6
inches. So, | can say this as a standard or medium. So, the membership grade can be put
something like this that if the person is tall, | can say that these are 3 different sets. 1 set
is tall, tall, standard. The other set is short. So, | just want to classify like this that
whether the person belongs to this set tall or the person belongs to this set short or the

person belongs to this set standard.

So, if a person has a height, which is within 6 feet to 6 feet 6 inches, then obviously the
person is tall. So, the membership to this particular set tall has to be equal to 1. If the
height is in between 4 feet and 4 feet 6 inches, the membership to this state has to be 1
that is maximum. If it is within this membership to this set has to be 1 that is maximum.
You find I have a lot of space between 4 feet 6 inches to 5 feet. Similarly, it is 5 feet 6

inches to 6 feet. Similarly, it is beyond 6 feet 6 inches below 4 feet.

So, these are the different height regions, which are not marked as belonging to any of
these sets. So, | will have a maximum value equal to 1, membership equals to 1. When
the height is between 4 feet to 4 feet 6 inches, the membership given to this particular set
is 1. Between 5 feet to 5 feet 6 inches, the membership given to this set is 1. Between 6
feet and 6 feet 6 inches, the membership given to this set is 1 that is maximum. The
remaining region can be done like this. If the height is less than 6 feet, depending upon
the difference from 6 feet, |1 can reduce the membership grade. So, | can have a

membership grade something like this, so over here in this region.

Let us consider 5 feet 6 inches to 6 feet. If the height is around 5 feet 9 inches, so | will
be somewhere say somewhere over here at this position. So, in this location, you find
that the person gets 2 membership values in 2 of the classes. So, the membership value to
class tall is this to say tall is this much membership value, say short is this much. So, this
itself consider as further classification because it tells me that what is the likelihood that

the person is tall and what is the likelihood that the person is short.



This measure itself or that way | generate a vector actually. So, membership to class
short falls to O at this point. At this point, membership to class short will be O,
membership to class standard will be this much, the membership to class tall will be this
much. So, actually | get a 3 dimensional vector, 3 dimensional vectors of membership
values to different classes. So, that is what fuzzy membership is. This fuzzy membership

itself can be taken as the classification, which is called fuzzy classification.

If I want to make a hard decision that is decide about whether the person is stall or the
person is short or the person is standard, then what | have to do is that | have to put a
max operator. | have to find out what is the maximum of membership values. The
membership value to which ever class is maximum, | classify the person. So, in fuzzy

logic, taking this maximum operator is nothing but fuzzy union.

So, fuzzy union gives you the maximum of the fuzzy membership values. On the other
hand, if I take the fuzzy intersection, it gives the minimum of the fuzzy membership. So,
| said | will not go into the details of this fuzzy logic or fuzzy algebra, but just for our
application what is required, |1 am discussing that. Now, after giving introduction to this
fuzzy membership values, let us see at how we can make use of this concept in our hyper

box classification.

(Refer Slide Time: 31:57)
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So, what I will do is give him the unknown feature vector. | will try to find out that what

its membership value to different hyper boxes is. That membership value or the state of



membership values themselves can be used as the classification output. I can find out the
maximum of these membership values. | can classify this unknown object to the class of
the hyper box to which its membership value is maximum. Now, when | talked about this
sort of membership profile, this membership profile is not unique. I can have other types
of membership profiles as well. This is what is simplest the membership profile can be

something like this.

(Refer Slide Time: 32:52)
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It can be a triangular membership something like this. There are different types of
membership profiles that can be used. This is something like your Gaussian curve. What
is mostly used is this sort of membership that is trapezoidal membership. You will find
that this is nothing but a trapezium. What is most commonly used is the trapezoidal

membership.

Now, the question is how to compute such membership functions. So, you can consider
in our case, this point may represent our main point corresponding to this particular class
tall. This point will represent max point. So, as we said, if the unknown feature vector
falls within the hyper box that is within the min point and max point, then the

membership value to that particular class will be highest. That is equal to 1.

As it falls beyond min point or beyond max point, not within the hyper box, membership
value has to be reduced depending upon its distance from the hyper box and the distance.

| can compute as distance from the min point. If it falls to the left of min point or I can



compute the distance to be distance from the max point. If it falls to the right of the max

point, so the kind of situation that | have is like this.
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So, let us say that this is where | have the min point V. This is where | have the max
point W. so, within the min point and max point, the membership value that will be
computed will be maximum. That is equal to 1 and beyond min point and max point, the

membership value has to be reduced something like this.

So, this is my on this axis. | have the membership value and the fuzzy membership value
is usually represented by mu. That is what is conventionally used. | can use some other
letter as well. That is not a problem, but if | use something else, | have to define what |
am using. If | use this symbol, it is known to everybody that it represents fuzzy
membership function. So, how do I compute this sort of membership function given the

min point and the max point that is V and W?

I am just writing in 2 dimensions. Actually, | have multi dimensional feature vector. So,
both of these min point and max point, V and W will be multi dimensional vectors. So, if
| define a function like this, so as | have multiple number of hyper boxes, so | have to
identify which hyper boxes.



(Refer Slide Time: 36:36)

Suppose | consider a j hyper box. The membership function that will be computed by
this j hyper box is represented by b j. So, | have to find get an expression of this b j and b
J will depend upon 3 terms or 3 of the variable, 3 arguments; 1 is the min point of b j.
This is because b j is a hyper box that is min point of b j, which we will represent as V j.
The max point of the hyper box b j will be represent as W j. Our input feature vector,
which is because depending upon the position of the input feature vector, | have to find

out what is it is membership to the hyper box b j.

(Refer Slide Time: 37:26)




So, | can have a functional representation something like these say b j arguments are
suppose my input feature vector A. Then V j, which is min point and W j, which is the
max point are the 3 arguments on which this b j will compute the membership function.
This membership function can be computed like this. If it is a n dimensional feature
vector or the feature space that | have is n dimensional feature space, then | have to

compute the membership function considering all the dimensions.

So, | define a function something like this 1 minus f A i that is ith dimension minus W j i
that that is the ith component of max point W j. This max point W j is the max point of
my j th hyper box. Then a term gamma, | will explain what this gamma is minus f V j i
minus A i. The term gamma is going out of the screen light. So, like this, take the
summation of this. | have n defined dimensions. This | am representing in ith dimension.
So, take the summation of this for i is equal to 1 to n to consider the entire dimension and
take the average. This is not complete because | have not defined what these functions f

are.

So, I can define these functions f like this that f x gamma this will be equal to 1, if x into
gamma is greater than 1. This will be x into gamma, if x into gamma lies between 0 and
1. This will be equal to 0, if x into gamma is negative or less than 0. This is how | define
the function f. Now, see what it implies with respect to this particular diagram. If the
point A, I am considering only the ith dimension that is true for all other dimensions. If |
consider the vector A, which is the unknown feature vector here falls within the hyper
box, I am considering the ith dimension. So, let me put this as V i, thisas W i and A i

will be somewhere in between.

So, if A'i lies somewhere in between that means A i will be greater than V i. A i will be
less than W i. Now, come to this term A i is less than W i. so, A i minus W j i will be less
than 0. Similarly, A i is greater than V i. So, V j i minus A i that will also be less than 0.
In this functional definition, x is nothing but A i minus W jior V j i minus A i. So, both
these terms being negative, my x into gamma will also be negative. Gamma is a positive

quantity. So, this x into gamma that term will also be negative.

So, I am in this region in this definition because x into gamma is less than negative is
less than 0. It is negative. So, f x gamma becomes equal to 0. So, both these functional

values f A i minus W j i gamma and f V j i — A i gamma, both of them are 0. As both of



them are 0, this summation or upper single term in this summation determines A value 1,
which is found over i equal to 1 to n. So, | get value equal to n because this 1 is being

added n number of times t, the average divide by n i get a value equal to 1.

So, that clearly shows if the point lies between min point and max point, then the
membership value, which is computed will be equal to 1. Now, let us come to the other
case. Suppose that the point lies to the other side to the left of here. If the point lies to the
left of V i, then A i will be less than V i. At the same time, A i will be less than W i. So,
if Aiis lessthan V I, then this term is positive because thisis V jiminus Aiand Aiis
less than V i. So, this term is positive coming to this term. A i is also less than W i. So, A
i minus W j i will be negative. Since, that this term is negative, so the value of this

function is equal to 0 as per this definition.

The value of this function will be this or this depending upon what is the value of V j i
minus A i times gamma. So, if V j i minus A i times gamma is greater than 1, then the
value of this f x gamma is equal to 1. If this value is equal to 1, then what does this term
give me? 1 minus 1 is equal to 0. If V j i minus A i times gamma is in this region, it is
between 0 and 1. Then the output given by this term is 1 minus x times gamma. So, 1
minus X times gamma what is x? x is nothing but the distance from the mean point. So,

that is my x.

So, it is 1 minus x times gamma that means | get a straight line with a slope equal to
gamma. That is this straight line. Similarly, if the point falls to the right of W i, in that
case that means A i is greater than W i. A i is also greater than W i. So, Aiminus W j i
term will be positive, whereas V j i minus A i, this term will be negative. As this term is
negative, so this function functional value will be equal to 0. This functional value will

be either this or this.

So, if the distance from W j i of the point times gamma is very large, it is greater than 1,
then the output will be 0. This functional value the membership value will be equal to 0,
whereas if the distance times gamma is in the range of 0 to 1, so the output is 1 minus
this. Again, | get a straight line with a slope, which is equal to minus gamma. So, these 2

are different straight lines.

Now, see what this gamma does over here. Over here, gamma is the slope of the straight

line. Over here, minus gamma is the slope of the straight line. That means the gamma;



this particular parameter gamma is indicating how steep this line is. If the gamma is high,
then the straight line will be something like this. If the gamma is high, then the straight
line will be something like this. The slope will be very high.

If the gamma is small, then the straight line will be something like this. That is what
indicates the degree of fuzziness. When the straight line is bending in this direction, the
slope is becoming more and more. That means we are moving more towards hard
classification or crisp classification as it is called. If the value of gamma is less, then the
crispness or hardness is reduced. At the same time, the fuzziness is increased. So, gamma
is a parameter, which controls the degree of fuzziness. If the value of gamma is more,

then the fuzziness is more. If the value of gamma is less, then the fuzziness is also less.

So, using this particular expression for different hyper boxes, I can compute the fuzzy
membership function of this unknown feature vector to all the different hyper boxes.
Now, to find out the fuzzy membership function of this unknown feature vector to a
particular class, | will consider the membership functions computed by different hyper

boxes belonging to that class.

So, here if | consider that this blue boxes represent plus omega 1 and the green boxes
represent plus omega 2, | will compute the fuzzy membership function of this unknown
point from each of these 2 boxes and take the maximum of these membership functions.
That gives me what is the membership value of this unknown feature point to the plus
omega 1.

Similarly, | compute the fuzzy membership function, fuzzy membership value of this
unknown feature point from to each of these green boxes. Take the maximum of them
that gives you what is the membership value of this point to this particular class. Once |
get that, | get 2 membership values; 1 belonging to 1 for plus omega 1 other 1 plus

omega 2.

So, these 2 membership values themselves as | said can be used as fuzzy classification. If
| want hard or crisp classification, then | have to find out what is the maximum of these 2
and whichever is maximum, | have to classify this unknown feature vector to that
corresponding class. Now, how does this algorithm will actually work? | have a set of

training samples.
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| have capital N number of training samples. Let us assume these training samples are
coming from different samples. So, if | have 2 classes, some of these samples are taken
from class omega 1 and some of the examples are taken from class omega 2. So, what |
will do is I will consider this training samples one after another and while doing so, I will

go on creating the hyper boxes.

So, when | consider the first training sample, | do not have any hyper box created till that
time. So, what | will do is | will create the first hyper box. | have a single point. So, for
the first, the first hyper box, | will put the min point and the max point to be the same.
That means it is a point hyper box, which is same as the coordinates of that particular

feature vector.

Then, I consider the second point in the second point because | am considering the points
arbitrarily. It is not necessary that second point will come from the same class. So, if it
comes from the same class, then | have to go for expansion of the hyper box. So, | have
an initial point. Then | have a second point. So, | have to go for expansion of the second

box to include this second point.

If it belongs to another class to the second class, then instead of expansion of the
previous hyper box because previous hyper box belongs to some other class, instead of
expanding the previous hyper box, I have to create a second hyper box. Again, it should

be a point hyper box because this is the first point coming from the second class. So, I



have to create a second hyper box, which is again a point hyper box for which the min
point and max point is same. | have to go on doing that wherever possible. | have to
expand the existing hyper box to include the new point which is considered; otherwise |

have to create a new hyper box.

Now, while I expand the hyper box, there is a danger the danger in the sense if I come
back to this figure see over here, we should not. If it is already within that hyper box that
means it is already covered. If it is not covered, suppose in this particular case, | go on
expanding this particular hyper box. If | expand this hyper particular hyper box, you find
that it covers points from another class. So, when | expand an existing hyper box, then

there are ways that the amount of error we will incorporate that will go increasing.

So, 1 extreme case is every point is considered as a point hyper box. The other extreme
case is all the points irrespective of its class belongingness is put into the same hyper
box. So, if every individual point is taken as a point hyper box, | do not have any error.
In the other case, | have maximum error in between maximum and minimum. So, if |
allow the hyper boxes to expand in un- constant fashion, then that risk of incorporating

error is more.

So, | have to put some constant in the way the hyper boxes can be expanded. So, any
time, | get a new point belonging to a class of an existing hyper box, | should not expand
the hyper box, which is already existing in an un constant fashion in an uncontrolled
fashion to include this new point. So, there should be some constant up to which I can
expand a hyper box; beyond which I cannot expand a hyper box. So, I will stop here

today. We will continue with this discussion in the next class.

Thank you.



