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Good morning. So, in the last class we have started our discussion on multilayered neural 

network or multilayer perceptron, which is used for pattern recognition purpose. And we 

were talking about how to adjust the vectors or how to train the neural network, so that it 

is ready for the recognizing the unknown feature vectors. So, what we were talking about 

is something like this. 

(Refer Slide Time: 00:47) 

 

So, we have multilayered neural network with a number of input nodes, and the network 

has a number of output nodes, but the number of input nodes is same as the 

dimensionality of the feature vectors. So, it is dimension of feature vectors and at the 

output we have say the number of nodes which is same as number of classes. And we 

have 1 or more hidden layers and hidden layers will also have a number of nodes, and 

typically as we said the number of hidden, if we have say around 2 hidden layers. So, 

total we have 4 numbers of layers, including the input layers and output layer that is 

mostly sufficient for most of the practical applications. 



And what you do is, you feed the feature vector to the input layer and get the output from 

the output layers and every node of the input layer is connected to, is feeding the input to 

every node in the layer above it. So, it goes like this, with this similarly, here. So, if I 

consider a kth layer node, the output of the ith node, in the kth layer is represented by x i 

k. So, this is the output of ith node in kth layer and the connection weights from an ith 

node in k minus first layer to, a jth node in the kth layer is represented by, the w i j k. So, 

given this and as we said that pertaining the neural network as we are inputting all the 

training feature vectors and we know that, what is the class belongingness of the training 

feature vector.  

So, from that node is I know that, if I feed a known vector or training vector as input to 

the neural network, I know what we a corresponding output, because for every training 

vector, its class belongingness is known. So, if I get any vector from the output, which is 

not same as the expected output then the difference between these two vectors is the 

error vector. And from that we compute, the squared error and training of the neural 

network aims to adjust the with vectors in such a way that, the some of squared error that 

is minimized. So, what we have assumed is say, we have capital K number of layers so 

that, the output layer is labeled as capital Kth layer. 
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So, given that the sum of squared error is defined to be half then x j K, where this K is 

the capital K, indicating that this K is the output node minus dj that is the target output, 



expected output of the jth node in the kth layer. Take the square of this, where this j will 

vary from say 1 to MK, where MK is the number of nodes in the Kth layer. And we have 

seen that for a designing or for deciding, adjusting the weight vectors we will follow the 

gradient decent approach and have to take the derivative of this, with respect to w ij K. 

And using that derivative we have to for, adjusting the weight vector following the 

gradient descent approach.  

So, what we have done is taken the gradient of this, del E upon del capital w ij K and we 

have seen that, this derivative comes out to be a x j K minus dj into x j K into 1 minus x j 

K into xi, from layer K minus 1. So, this is what we have seen in the last class and 

following this, the weight updation rule, will be of this form w ij K in iteration say, t plus 

1 from the weight vector in iteration t. This will be simply, w ij K t minus eta times x j K 

minus dj minus x j K into 1 minus x j K times minus 1. This is the weight updation rule. 

Now, over here, for simplicity of expression, this particular term x j K minus dj into x j 

K into 1 minus x j K, this we can represent as delta j k.  

So, our weight updation rule will be w ij K in iteration t plus 1, will be w ij K in iteration 

minus eta times delta j k into x K minus 1. So, you find that, for adjusting the weights 

what you do is, you start the error at the output layer, start with error at output layer, take 

the gradient of it with respect to the w ij K then you adjust all the weights connection 

weights from the K minus first layer to the kth layer. Then what ever error you get in that 

layer, using that you adjust the second layer, K minus second layer to K minus first layer. 

Then you come to k minus third layer and so on. So, we find that we have an information 

flow in two directions, one is from input side to output side, when you go for the 

computation of the outputs of different nodes. 

And secondly for weight updation, what you do is to basically propagate the error term 

from output layer to the input layer. So, that is why, this sort of network is called as feed 

forward and back propagation network. And the corresponding neural network learning 

is called as back propagation learning. So, your vector information of input, vector 

information or output computation proceeds, from the input layer to the output layer. 

Whereas, while training the weight updation that proceeds from the output layer to the 

input layer that is, in the backward direction. So, this is called feed forward, but back 

propagation network, so accordingly the learning that is also called back propagation 

learning. 
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So, let us see that, what will be the steps in the backward propagation learning. 

Obviously in the first step, I have to initialise w ij K for every weight vector, for every 

vector connection, for every node i, for every node j and for every node K. And this 

initialization, has to be made randomly so say it or initialize the weight vector w ij K 

randomly.  

So, after we initialize the weight vectors, the next step will be that, I have to feed training 

vectors or training samples to the input layer. So, once I feed the training samples, then 

using these training samples and whatever the random weights, that has been initialized, 

using that I have to compute the outputs from all the nodes, from all different layers. So, 

the next step, will be the feed forward class and in feed forward class, I have to compute 

the outputs of every neuron in every layer. So, for the k is equal to 0 to capital K minus 

1, I have to compute, 1 I have to compute x j K plus 1, which is nothing but that non-

linear function of sum of w ij k plus 1 times x i k at the summation will be from I equal 

to 0 to a Mk, where Mk plus 1 is the number of nodes in the kth layer because one of the 

node will be used to take care of the ((Refer time: 13:42)). So, this I have to compute for 

every node, j equals to Mk plus 1, one of the other nodes will have a constant input.  

So, this is what I have to do for in the feed forward cross, where I am computing the 

outputs from every node, in every layer depending upon, the weights that I have till that 

time and what is the input vector ((Refer time: 14:25)). So, once all these outputs are 



computed. Now, you come to the output layer node at the output layer node, I know what 

is the target output and what is the output that is computed to from here. So, from these 

two, I will get the error and using this error. Now, you follow the back propagation part, 

the proposition procedure to keep on adjusting the weights so that, error is minimized. 
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So, the fourth step will be the back propagation part. So, in the back propagation it is 

first we have to consider the output molecular nodes. So, for nodes in the output layer, 

that is j is equal to 1 to MK, where K this K is capital. I have to compute delta j, which is 

equal to x j K into 1 minus x j K into x j K minus dj, which is exactly same as this term, 

x j K into 1 minus x j K into x j K minus dj. So, this is what you do for the nodes in the 

output layer, but you find that computation of this term, this increment term for input 

layer nodes, for the hidden layer nodes has to be slightly different, because there the 

contribution to error is because of propagation from various other nodes.  

So, for other nodes, for layers the K minus 1 up to layer 1, this computation will be 

slightly different. So, here we say, delta i k that will be is equal to x i k into 1 minus x i k 

then I have to have this summation term because I have the continuation of various nodes 

leading to this particular error. So, this will be delta k plus 1 into w ij k plus 1, but this j 

will vary from 1 to Mk plus 1. And this have to compute for i is equal to 1upto Mk, 

where this k is lower case.  

Student: Even for the output layer ((Refer time: 18:13)) 



At the output layer, I can directly compute there because I know what is the target 

output, but in case of hidden layers. I do not know what is the target output from hidden 

layers, because that is coming due to contribution from various other nodes. So, this 

direct computation, that have done at the output layer that is not possible in the hidden 

layers. I am not showing this derivation of this, but following the summation from 

various outputs and taking the derivative of this, you can find out that this delta Mk will 

come out to, can be of something like this. Because at the output layer, I know what is 

the target output, but in the hidden layers I do not know what the target output because it 

is getting combined from various nodes, from the various nodes from the layer below 

that. So, once I have this delta terms then comes the weight updation part. 
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So, I have to update the weight and this weight updation is simply w ij k, I will put it as t 

plus 1, that will be equal to w ij k t minus eta times delta j k into x i k minus 1. So, why I 

have put this delta term is that, having different computations of this delta value, I can 

have a single expression for weight updation. And all these steps are to be repeated, so 

sixth will be repeat steps 2 to 5 until, convergence. So, what is our condition for 

convergence? The condition of convergence will be either all the training samples are 

correctly classified without the updation of the weight vectors, without the updation of 

the connection weights, in a single process. Or the output error that I get, the output error 

is limited, it is up to a ((Refer time: 21:14)) level.  



So, if one of these two conditions is satisfied then we can say that the algorithms are 

conversed and whatever the connection weights we have at that point of time, the 

network has to work with those connection weights. So, that is what is the back 

propagation neural network and you find that the back propagation neural network, 

works with the continuous inputs that means, the input vector can be of any form, it can 

be a desperate output vector or a continuous output vector. There is another kind of 

neural network, which is also used for ((Refer time: 22:00)) purpose and that neural 

network can be used for, recognizing the binary patterns. 
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So, this is what is called Hopfield network or this also works as the weight works or 

something like an associative memory. Now, what is this associative memory, to find 

that suppose you have met one of their friends, one of your school level friend, at this 

age. Possibly after your 4th standard or 5th standard, you have not met him at all and you 

find that during this period, there is been lot of changes. So, some Thomas who was your 

classmate, when you were in 4th standard, it is not the same Thomas, when he was aged 

around 22 years old. There has been lot of changes in him, but still you are able to 

recognize him, may be that you have forgotten his name that is ok, but still you can say 

that I know this person, I have met him somewhere before.  

So, some sort of association you can do with some pattern that is stored in your memory. 

So, that is what is associative memory, so given a pattern even if the pattern is not 



perfect, it is an imperfect pattern still, if you have a pattern stored in the memory and 

wants an imperfect pattern, imperfect form of the same pattern, or distorted form the 

same pattern is presented. Then you can recollect from the memory, the perfect pattern 

which has been stored, which is very close to this imperfect pattern. So, that is what is 

the concept of associative memory, I can associate an imperfect pattern with a perfect 

pattern, which is stored in memory.  

So, here we are assume that the pattern vectors or the feature vectors that we have are 

binary feature vectors and whenever I have a binary feature vector, the, by binary, what 

we means is the different feature components will be 0’s and 1’s. So, in this particular 

case, everyone will be represented by plus 1 and 0 will be represented by minus 1, but 

still it is point because only two digits, one corresponding to plus 1 and the other one is 

minus 1. So, the feature vectors that we have a binary feature vectors and suppose there 

are n number of components of the binary feature vectors, that means I have n ((Refer 

time: 25:17)) patters.  

Now, the difference between the back propagation network or multi-layer perceptron and 

this case Hopfield neural network is that, in case of back propagation network, your 

information flows only from the input layer to the output layer. A node in the k minus 

first layer will always feed to a node in the kth layer, a node in the kth layer will always 

feed to a node in the k plus first layer, but a node in the kth layer does not give 

information, does not feed a node in the k minus first layer. So, that back propagation or 

backward information flow, only we use for training the network, but not for 

computation. In case of Hopfield network, output of every node is connected to the input 

of every other node. 

So, it is something like this, see if I have n number of nodes, every node obviously has 

an input that is a binary pattern. They have outputs and output of every node is connected 

to the input of every other node. And this connection is bi direction that means, 

information flows in both the directions. So, similarly from here, this goes to the input 

side not from the output side, this connection will go to the input side. 
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Let me draw a fresh figure. So, like this output of every node is connected to the input of 

every other node and as before, the output of ith node is connected to the input of the jth 

node via a connection with w ij. And this is the same connection with, which is used for 

connecting output of the jth node to the input of ith node. So, wij and wji for same i and j 

will be same and what you do is by training as before, here what we are doing is, we are 

actually storing a number of patterns. A number of binary patterns in this associative 

network, or in this Hopfield network by adjusting the weights property. So, it is the 

weights wij, which actually stores the patterns and when you feed an input, because it is 

a feedback network from every node, I get input to, I get input to every other node.  

So, it is the feedback network and all the notes can be fired or can be activated 

asynchronous that is, in which order the nodes actually operate that is not specified. They 

can work in any order, so finally when you feed an input there will be a number of 

iterations, which occur asynchronously among all the nodes. And finally, when the nodes 

stabilizes, when the network stabilizes the output vector that in, that will get it is one of 

the vectors, which is already screwed in the network, by adjusting the connection 

weights, which is closest to the input vector, that we have given. So, when obtain the 

network we obtain a network in the network using the perfect feature vectors, perfect 

vectors and while retrievable, even if I given input vector, which is not perfect. 



The network will retrieve one of the patterns, which is perfect and stored and closest to 

the imperfect input vector that we have presented. So, that is how this Hopfield neural 

network works and while changing the output, while retrieving a particular pattern the 

output of a network will be set to class one or it will be positive, if some of the weighted 

imports is greater than 0 and it will be negative, if it is not greater than 0.  

So, for less than or equal to 0, the output of the node will be negative, for weighted input, 

some of weighted imports if it is greater than 0, the output is positive. So, you will find 

that during iteration the output of a node can vary many times, before it actually 

stabilizes because every change in output of one node is deflected to the input of every 

other node.  

And as it is deflected to the input of every other node, so our change of output of one of 

the nodes may effectively change the output of some other nodes. And that change again 

may reflect the output of the previous node because this change is again deflected to the 

input of the previous node. So, the network will go through a number of iterations, 

iteratively and during the iterations output of the notes may vary from plus to minus from 

plus to minus many times, before the network actually stabilises.  

And when it stabilises, the output pattern that we get, that is the closest patterns, which is 

stored in the network and closest to the input pattern, that has been presented to this 

neural network. So, actually it is associating the input pattern to one of the stored 

patterns so that is why it is associative memory or associating network. Now, let us see 

that, how we can store the patterns in the weight vectors or the connection weights from 

the ith node to the jth node. So, when we select the weight vector w ij are to consider the, 

training patterns that has been given, that has been provided. 
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So, suppose I have this pth tending pattern Xp and as I said that this Xp of the training 

vectors, the sample vectors are n-dimensional vectors. So, it will have n number of 

components and let us say of those n number of components are x 1 p, x 2 p up to x n p. 

As I have n number of components in the feature vector, each of the x 1, x 2, x n they 

can assume either a value plus 1 or a value minus 1, because they are binary patterns and 

our conventioneers that bit 0 will be represented by minus 1. So, every component can 

have a value either plus 1 or minus 1 and this is the pth training vector, feature vector. 

And I have say m number of feature vectors that was this p, it can vary from 1 to m, as a 

have a m number of feature vector, or n number of pending vectors.  

Then, using this training vector, I have to compute the connection weights wij. So, wij is 

given by sum of the x i p into x j p, at this p varies from 1 to m for all i not and equal to 0 

and it will be equal to 0, if i is equal to j. So, that is how, you set wij, so what does it 

mean, you find that whenever i is not equal to j, your wij will be computed by this. If I is 

equal to j then wij will be equal to 0, you find that when I have from the schematic of 

this Hopfield network. I have not feedback to the input of the same node. So, that means 

wij for i equal to j is equal to 0 means, that a node does not feedback the signal to itself.  

The output of a node is connected to the input of every other node, where this connection 

weights wij, but output of a node is not connected to the input of the same node. So, that 

is what it means, and from here you find that, what is this term, ij, x i p into x j p you 



find that, both these components are coming from the same feature vector p. And the 

feature vectors or binary feature vectors having values plus 1 or minus 1, so this simply 

says, that if x i p and x j p both of them are same, both of them are positive or both of 

them are negative.  

Then, this term will be equal to plus 1, if one of them is positive other one is negative 

then this term will be minus 1. So, overall this summation sum x i p into x j p, so this 

simply tells you that the number of times a bits are same, minus the number of times bits 

are different. So, that is how and that is computed over, all the training patterns because 

it ((Refer time: 37:25)) it is computed over, all the training patterns and that is stored as 

wij, the connection between the ith node and the jth node. So, let us take a very small 

example. 

Student: ((Refer time: 37:40))  

No, there is no such rule I did not put it intentionally because I said that it is the same 

connection, which is used for bidirectional communication. 

Student: Actually, in that diagram, second one should be connected ((Refer time: 38:03))  

It should be there, output of the second one should be connected to the first one, from 

second one to the second one there should be maintained connection, from first one to 

the first one there should be no connection. But the connection weight we can understand 

wij is named as wji ((Refer time: 38:35)). 
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So, let us take a very small example to see how this weight vectors are really assigned. 

So, let us take that I have say, three feature vectors, one is x 1 and this feature vectors is 

given by plus, plus, plus a six bit feature vector. The second one x 2, which is given by 

so plus 1, minus 1, plus 1, minus 1, plus 1, minus 1 and the third feature vector is x 3, 

which is given by. So, all the three are six bit feature vectors. So, I have to compute the 

different connection weights, so what will be the value of the w 12, so here you find that 

I have to consider the first feature vector and the second. So, from the first feature vector 

both of them are positive.  

So, when I compute this term x i p into x j p, where i is equal to 1, j is equal to 2, that 

will be simply x 1 1 that is plus, x 2 1 that is also plus. So, I get product to be positive, 

coming to the second one, one bit is positive the other bit is negative, so it is minus. 

Coming to the third one, both of them are positives so I will get plus 1. When I summed 

over all these three patterns for p varying from 1 to 3, my result will be equal to 1. So, 

this w 1 2 this will be equal to plus 1 similarly, and w 12 will be same as w 21 that you 

can easily verify., When I compute w 13, I had to consider the plus 1 and third bit, over 

here it is plus 1, over here it is also plus 1, over here it is also 1.  

So, w 1 3 I get that is nothing, but plus 3, what is w 14 here it is plus 1, here it is minus 

1, here also, it is minus 1, should effectively I get the w 14 to be equal to minus 1. Then 

w 1 5 here it is plus 1, here it is plus 1, here it is minus 1. So, it will be 1 similarly, w 1 6 



that will be plus 1, minus 1, it will be minus 1, this computation. So, likewise you will 

find that, I have to compute w 2 3, I would not compute w 2 1 because the w 2 1 is same 

as w 1 2, w 2 2 is equal to 0. So, I have to compute w 2 3 so second and third here it is 

plus 1, here it is minus 1, here it is plus 1. So, 1 plus 1 minus 1, w 2 3 becomes plus 1. 

Similarly, w 2 4 take the second and the fourth bit, here it is plus 1, second and fourth bit 

here also it is plus 1 because both the bits are negative.  

Second and fourth bit, it is minus 1, so that gives me w 24 also equal to plus 1. Similarly, 

w 2 5 second bit and fifth bit plus, plus 1 here, second bit and fifth bit minus 1 here, 

second bit and fifth bit minus 1 here. So, I get overall minus 1 similarly, w 2 6 here it is 

plus 1, here it is plus 1, here it is minus 1. So, w 2 6 is plus 1, now when I compute w 3, 

w 3 1 is same as w 1 3, I do not have to be compute, w 3 2 is same as w 2 3 I do not have 

to be compute, w 3 3 is equal to 0. So, I have to compute w 3 4, w 3 4 here it is plus 1, 3 

4 here it is minus 1, 3 4 here it is minus 1. So, w 3 4 becomes minus 1, w 3 5 it is plus 1, 

here also it is plus 1, so here it is minus 1, so w 3 5 becomes plus one 1 w 3 6 here is plus 

one, here it is minus 1, her also it is minus 1.  

So, w 3 6 becomes minus 1 similarly, I have to go for the w 4 5 because others I need not 

compute. So, w 4 and 5 plus 1 minus 1, here it is plus 1, so w 4 5 becomes plus 1, w 4 6 

plus 1 minus 1 plus 1. So, this becomes plus 3 then I have to compute w 5 6, because 

others I need not compute, w 5 6 plus 1 minus 1 plus 1 so it effectively becomes plus 1. 

So, these are all the weight vectors that I compute, which stores these three different 

patterns. So, once I have this weight vectors, then using this weight vectors.  

Now, if I feeding an unknown feature vectors, after iteration when this network will 

converge it will give me an output vector, which is close to the output vector, will be one 

of the three. And that will be closest to the input feature vector, that you have presented 

even if the input feature vector is not one of this. So, it will try to extract one of the 

stored patterns, which is closest to the input vector. Now, the question is why should this 

network work, how does it work. 
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Suppose, i feed in an input feature vector, binary feature vectors, which is given as Y, 

which is nothing but y1, y2 up to say yn. It should also have the, same number of 

components of and given this, the output of ith node, it will be either plus 1or minus 1. 

And this output will depend upon, you have to compute wij times yi for, j varying from 1 

to n. And depending upon the sign of this, if it is greater than 0 and output of ith node 

will be plus 1, if it is less than 0 then output of the ith node will be minus 1, that will be 

repeated many times, during the iteration. And finally, it will converge, so this sign of 

the output of the ith node, will actually change many times not only once and that will 

change asynchronously.  

I cannot say that, after change of the output of the first node, then only the output of the 

second node will change. There is no such guarantee because everything works 

asynchronously mentioned and all of them are working in parallel. So, you find that, if 

you analyze this term, that is this summation of the wij in to y i, where j varies from 1 to 

n, if I analyze this, this will simply be sum of what is this wij? wij is sum of x i p in to x j 

p, where p varies from 1 to m. If I have m number of patterns, these times y j, where j 

varies from 1 to n, so this is what my wij.  
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And this term, I can write as sum of x i p into sum of x j p, yj where j varies from 1 to n 

and j not equal to i. And here, p varies from 1 to n, so I can write this whole from in that 

manner. So, it is just rewriting this expression into this form, so here you find that these 

value, within this xi. 

Student: ((Refer time: 50:25)) 

I will not be written because I want the ith output, so my variable will be j. It is the ith 

output. So, I have to sum it over j. 

Student: ((Refer time: 50:42)) 

It is the output of the ith neuron.  

Student: Single value? 

Single value. 

So, if I compute for all values of i, I will be getting that. So, here we find that depending 

upon the closeness of this vector x and y, this is the product of xj times yj and you are 

taking the summation for i is equal to 1 to n, j is equal to 1 to n. Where j is not equal to i 

so these value will be close to n, where n is the dimensionality, if the vector xj and yj, if 

the values xj and yj are matching most of the time. And this will be close to minus m, if 

xj and yj they do not match most of the time.  



So, if they match most of the time, I get a positive output and that means, that this pth bit 

whatever is output, that should be the sign of the pth bit, that should the signed by the ith 

bit. And if they do not match most of the time, then it should be the reverse. So, if you go 

on iterating on this, a large number of times when the network converges, the output of 

the network will be the one, which is closest to the pattern, which is tored into the 

network. So, that is the logic behind, why this network should work was as associative 

network. So, I will stop this lecture today, next I will continue with some other topic.  

Thank you. 


