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Good morning, so we are discussing about pattern recognition problem, and we are 

talking about the different discriminant functions, which are helpful for classification of 

unknown patterns. So, earlier what we have seen is starting from the base decision theory 

that if you know the probability density function of the parametric form of the 

probability density function. We can design the different discrimination functions for 

pattern classification or classification of pattern vectors or feature vectors. We have 

discussed about specific case that, if the probability density function is either Gaussian or 

Normal distribution function.  

And we know the mean and co-variance matrices of the different classes, then we can 

have different types of discriminant functions or different types of decision boundaries 

among different classes. In particular if the co-variance matrices of the samples 

belonging to all the classes are same then we have seen that discriminant function that 

we get is a linear discriminant function. Whereas, if different classes of the samples 

belonging to different classes they have different co-variant matrices. In that case in 

general the kind of discriminant function that we get is a quadratic discriminant function.  

So, in multi dimension it is called hyper quadrics. And accordingly the decision between 

two different classes in one case is hyper plane. And if the co-variance matrices are 

arbitrary or different classes have different co-variance matrices, then the decision 

between two classes becomes a hyper quadric surface. However, following the base 

decision theory if we want to have the discriminant function, we have to know that, what 

is the parametric form of the probability density function of the samples belonging to 

that particular class.  

And given the number of samples if we know the parametric form of the probability 

density function, we may not know the parameter values exactly. If we know the value of 

the probability density function then we have seen in previous classes that we can have 

the maximum likely hood estimate of those parameter values. So the maximum likely 



hood estimation says that these are the best representations or best supported by the 

samples, which are available from that particular class.  

And then also we have discussed about the dimensionality problem because not every 

feature has equal discriminating power. So, following the principle component analysis 

or following multiple discriminant analysis, we can reduce the dimensionality of the 

feature vectors ensuring that the features in the reduced dimensional feature vector will 

have better discriminating power than the features which are avoided. Now, today we 

will discuss about this same linear discriminant function, but unlike in case of what we 

have obtained from this decision theory that we have to know the parametric form of the 

probability density function.  

In case the parametric form of probability density function is not known. So, then what 

you have to do is we have to design the discriminant function or we have to find out the 

decision boundary between two different classes by using the samples which are 

available from different classes. So, here we do not assume any probability density 

functions. So, we know so initially we will discuss about the linearly separable classes. 

So, we know that the classes are linearly separable and because we are discussing about 

the supervised learning process.  

So, we know a set of samples belonging to one class omega 1, we know set of samples 

belonging to another class omega 2. So, using this information and without using any 

assumption of the nature of the probability density function. We have to find out the 

linear discriminant function which discriminates between these two different classes. So, 

we will assume that the classes are linearly separable. And as the classes are linearly 

separable, so we should be able to formulate we should be able to design linear 

discriminant function. Well, no probability density function form is assumed so because 

the discriminant functions will be linear. 
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So, we know that a linear equation can always be written as g X is equal to W transpose 

x plus W naught. For X is the feature vector. And we assume that the feature vector X is 

of dimension d. So, it is d dimensional feature vector. And W is called weight vector and 

W naught is called the bias or threshold weight. So, we see that this particular expression 

is a linear expression. For X is a d dimensional vector, W is also a d dimensional vector. 

And this term w transpose X is nothing but inner product of vector W with a vector X. 

And our decision criteria will be therefore, an unknown feature X, if g X is greater than 0. 

Then we classify X to belong to class omega 1, if it is less than 0 then X will be 

classified to class omega 2.  

And if it is equal to 0 then we say X is on the decision boundary. So, if g X is greater 

than 0 we decide X belongs to class omega 1, if it is less than 0 we decide X belongs to 

class omega 2, if g X is equal to 0 then X is on the decision boundary. So, the decision 

boundary between two classes X, one omega 1 and omega 2 is given by the equation g X 

is equal to 0 or W transpose X plus W naught that is equal to 0. Now, let us see that what 

is the nature of this weight vector W?  

So, to find out the nature of the weight vector W let us take two points on the decision 

boundary. So, what we are interested in the nature of weight vector W. So, we take two 

points X 1 and X 2 on decision boundary. Now, because X 1 and X 2 are on the decision 

boundary so W transpose X 1 plus W naught will be equal to W transpose X 2 plus W 



naught. And both of them equal to 0 because X 1 and X 2 are lying on the decision 

boundary. 

So, we can simply write that W transpose X 1 plus W naught is equal to W transpose X 2 

plus W naught. So, from this you find that W transpose X 1 minus X 2 this is equal to 0. 

Now, what is this X 1 minus X 2, X 1 minus X 2 is nothing but, a vector lying on the 

decision surface, because X 1 is on the decision surface, that is a vector X 2 is also a 

vector that is lying on the decision surface X 1 minus X 2 is a vector which is lying on 

the decision surface.  

And W transpose minus X 2 is the inner product of W with the vector X 1 minus X 2, 

and because this inner product is equal to 0. So, that clearly indicates that this vector W 

is orthogonal to any vector line on the decision surface. Because we have taken X 1 and 

X 2 arbitrarily so W transpose X 1 minus X 2 equal to 0. That indicates that vector W is 

orthogonal to any vector lying on the decision surface that means the vector W is 

orthogonal to the decision surface. And this surface being a planar surface or a linear 

surface in d dimensional space we call it a hyper plane. 
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 And let us represent that hyper plane Y, H is the hyper plane. So, this vector W is 

orthogonal to hyper plane H. Now, what does this g x actually is represent? 
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You will find that g X gives you some measure of the algebraic distance of vector X 

from the decision surface of from the height of the H. So, this g x this gives an algebraic 

measure of X from H. Let us see how? How you say that g x represents an algebraic 

measure? It is not the exact distance value, but it is major of the distance value and is 

something to proportional to the distance algebraic distance of the vector X from the 

decision surface from the hyper plane H. How does it give us that measure? Let us 

consider a case in 3 dimensions.  

So, I have a 3 dimensional space with the vector components represented by X 1, X 2 

and X 3. Suppose, I have a decision surface something like this, in three dimensional 

planes. So, this is my plane H and let me take a point X somewhere over here. And when 

I take this point X over here, let me drop a perpendicular from this point X onto the 

hyper plane. And let me assume that X p represents the foot of the perpendicular on this 

hyper plane. And suppose the distance between X p and X, the length of this vector 

joining X p and X is given by say r.  

Now, if it so in that case I can write X is equal to X p plus r, r is the distance multiplied 

by W upon mod of W, because we have seen earlier that the vector W is orthogonal to 

the hyper plane orthogonal to the decision surface. So, the direction of the W is in the 

same direction of X p to X, because X p to X this vector is orthogonal to this hyper plane. 

W is also orthogonal to the hyper plane. So, this is W. So, I can write this X is equal to X 



p plus r into W upon mod of W because W upon mod of W is the unit vector in the 

direction perpendicular to the hyper plane.  

So, I can write it in this form. And when I write if like this then what is g X, g X is 

nothing but W transpose X plus W naught which in this case will be W transpose X p 

plus W naught plus r into W transpose W upon mod of W is it. I am simply replacing this 

X by this X p plus r into mod of W. Now, out of this the point X p which is of the 

perpendicular from X onto the hyper plane that lies on the decision surface. So, W 

transpose X p plus W naught because X p is on the hyper surface W transpose X p plus 

W naught will be equal to 0 because it is on the decision surface.  

So, what I get is this will be simply r into and what is W transpose W this is nothing but 

mod of W square. So what is simply get is r into mod of W. So, find that this 

discriminate function g X the value that you get is nothing but r we said is the distance 

perpendicular distance or orthogonal distance of point X from the decision surface, 

because it is the distance between X p and X. So this r is the orthogonal distance of point 

X from the decision surface.  

So, this g X is the orthogonal distance scaled up by the modular’s of W. And if I want to 

find out what is the actual orthogonal distance that is given by r is equal to g X upon mod 

of W. So, that is why we said that this discriminate function g X actually gives you a 

measure algebraic measure of the distance of the point orthogonal distance of vector X 

from the decision surface. Now, why are we calling it algebraic distance? 

Student: Sir, here only the first term ((Refer Time: 18:25)) which one ((Refer Time: 

18:30)).  

You come to our original expression g X is equal to W transpose X plus W naught. This 

is your discriminate function. What you said is if g X is greater than 0 then belongs to 

omega naught. If omega one less than 0 then x belongs to omega two. If it is equal to 0 

then X is on the decision boundary. That is g X is equal to 0 not W transpose X equal to 

0. And g X is W transpose X plus W naught. So, because X p is lying on the decision 

surface so g of X p will be equal to 0.  

And g of X p is nothing but W transpose X p plus w naught. So, here why we are calling 

it as algebraic distance is that if r is positive then X lies on the positive side of the hyper 



plane. If r is negative then X is on the negative side of the hyper plane. And this 

expression that I have said that r is equal to g X upon mod of W. This is an expression 

which is nothing new I mean this is what you have already done in your school level 

mathematics.  
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We know that in school level mathematics what you have done is, if I have the equation 

of a straight line given say a x plus b y plus c is equal to 0. Come to your co-ordinate 

geometry. And given a point x 1 y 1 what is the distance of point x 1 y 1 from this state 

line which is nothing but a x 1 plus b y 1 plus c upon square root of a square plus. And if 

you compare this expression with this expression they are exactly identical. This 

expression is in the 2 dimensional, this expression is in d dimensional for the 

dimensional ((Refer Time: 21:21)).  

So, what you have derived over here is nothing new, this is something that you have 

already done in your school level mathematics. So, that we are saying is that if r is 

positive then the vector X lies on the positive side of the hyper plane. If r is negative then 

X lies on the negative side of the hyper plane. And what is the distance of origin from the 

hyper plane? 



(Refer Slide Time: 22:03) 

 

So, distance of origin from the hyper plane that is simply given by W naught upon mod 

of W. So here if W naught is positive then origin lies on the positive side of the hyper 

plane, if W naught is negative then origin lies on the negative side of the hyper plane. 

And if W naught is equal to 0 then the hyper plane passes through the origin. So, if W 

naught is equal to 0 then the hyper plane passes through the origin.  

And not only that your discriminate functions takes a particular form that g X will be 

simply given by W transpose X, but I do not have any bias of threshold. And this is the 

form which is called homogeneous form. And in mathematics it is always convenient 

that I can represent an expression in a homogeneous form that avoids many of the 

problems that we may face while we try to analyze different given topics. So, after I will 

discuss about the nature of the decision surface if it is hyper plane then what are the 

conditions or what are the different positions of the hyper plane. 

That we can have then the hyper plane has two sides. Actually, hyper place divides your 

feature space d dimensional space into two half spaces. One of the half spaces is positive 

the other half space is negative. If a feature vector falls on the positive half space then it 

will be classified into one task. If the feature vector falls on the negative half surface it 

will be classified into another class. If it is on the decision surface then we cannot 

classify it actually, because it is equally likely that it may belong to class omega 1 or it 

may belong to class omega 2.  



So, if the sample falls on the decision surface or falls on the hyper plane, we cannot 

really take any decision, it is an ambiguous condition. Now, after discussing this let us 

see that how we can design this vector W, ultimately because it is a linear class. I have to 

find out the discriminate function g X and if I can find out the weight vector W and the 

bias of the threshold weight W naught then my linear classifier is designed.  

So, I have to design or I have to decide about W and W naught. Based on the samples 

that are available because it is supervised learning so we are given samples from both the 

classes omega 1 and omega 2. So, I have to decide W and W naught based on the 

information available from those known labeled samples. 
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So, let us talk about design of the weight vector W. And here again for simplicity 

initially, we will assume that we have two category linearly separable case. Later on we 

will generalize this to multiple category problems or we have c number classes, but to 

start with let us start with on the two category phase that is we have classes omega 1 and 

omega 2. So, what we have discussed so far is we know that we have a discriminate 

function of the form g X is equal to W transpose X plus W naught. 

And as we said that this expression of the discriminate function this is not in the 

homogeneous form. However, if I can convert it into homogeneous form then my 

analysis will be easer or my design will be easier. So, how we can convert this into 

homogeneous form I can very easily convert this into homogeneous form. If I write this 



expression in the form a transpose Y where, a is my modified weight vector. And this 

modified weight vector will include all the components of the weight vector W and also 

the bias weight or the threshold weight W naught.  

So, if this weight vector a has to include all the components of W as well as W naught 

then I have to do some augmentation in the feature vector X. So, what I will do is, I will 

write this Y is actually augmented feature vector X. So, what will be y will be nothing 

but, I have to take all the components of x. So, I have to take the first component x 1 

second component x 2, all the d components of x that is up to x d. And I make last 

component is equal to one. So, if I do that for every x if I augment one to give me an 

augmented feature vector y.  

Then I can write this expression in an homogeneous form as a transpose y. Simply, 

because what is this a transpose y, a transpose y is nothing but w 1, w 2 up to w d, w 

naught. This is a row vector because I have to take transpose multiplied by column 

vector x 1, x 2 up to x d then one. So, if you do this multiplication, this multiplication is 

nothing but, summation of w i x i, i varying from 1 to d plus so up to d components I 

have taken care by this summation term x 1 w 1 plus x 2 w 2 plus x 3 w 3 up to plus x d 

w d. So, this is x i w i times x i, i varying from 1 to d plus w naught into 1. So, plus w 

naught right which is nothing but w transpose x plus w naught. So, I get exactly the same 

expression as this. Only thing I have to do is I have to augment one to the feature vector 

x giving me the augmented feature vector y. And after having this homogeneous 

expression my decision rule remains the same. 
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That if a transpose y I, for the i th augmented feature vector x i is greater than 0. Then I 

decide that to y i of the corresponding or inner vector x i that belongs to class omega 1. 

And if it is less than 0 then I decide that y i of the corresponding feature vector x i, do 

not confuse between this subscript and this subscript here. I have meant this subscript 

means the i th component of the feature vector. And this means i th feature vector. So, if 

it is less than 0 then my decision will be this belongs to class omega 2.  

So, my decision rule remains the same. Only thing is I have a modified formulation of 

the same problem. Now, let us see that how we can really design this weight vector W or 

in this case the weight vector a because a consists of all the components W and also the 

bias vector or the threshold vector w naught. So, our aim is to design the weight vector a 

by using the knowledge of the leveled samples from class omega 1 as well as class 

omega 2. So, we assume that we have n number of samples and when I say n number of 

samples that means we have n number of augmented samples where I have augmented 

appended one to each of the feature vector. 
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So, I have n number of samples called training samples, because these are the samples 

which are used to train the classifier. So, this n number of samples omega y 1, y 2 up to y 

n. So, each of this y i’s are actually augmented feature vectors by appending one to the 

original vector x. Some of this samples some of this feature vectors are labeled as class 

omega 1. Some of this feature vectors are labeled as class omega 2. Now, for a particular 

feature vector augmented feature vector y i as I say the earlier my decision rule will be a 

transpose y i greater than 0 indicates y i is in class omega 1, less than 0 indicates y i is in 

class omega 2.  

If it is equal to 0 I cannot take any decision. So, what i have to do is i have to find out the 

value of this weight vector w. I have some samples which are labeled as class omega 1. I 

have some samples which are labeled to belong to class omega 2. Now, given a weight 

vector a, if i take all the samples which are labeled as omega 1, If I find that for each of 

those samples a transpose y i is greater than 0. That means that given weight vector a is 

correctly classifying all the samples, all the feature vectors which are labeled as class 

omega 1.  

If I also find that for the same weight vector all the samples belonging to class omega 2, 

which are labeled as belonging to class belonging to class omega 2. For all of them a 

transpose y i is less than 0 then the feature vector then the weight vector a is also 

classifying the samples which are labeled as belonging to class omega 2. So, that 



particular which we have obtained, that is the correct word vector because it is 

classifying correctly all the samples which are in class omega 1. It is also classifying 

correctly all the samples which are labeled as omega 2.  

So, that is a feature vector that we want, but how to obtain such a feature vector. So, to 

obtain such a feature vector another modification that can be done is that now, you say 

that I have two decision criteria. In one case I am checking that it has to be a transpose y 

i has to be greater than 0. In another case I am checking that a transpose y i have to be 

less than 0. So, instead of having these two different criteria cannot we have single 

criteria, that if some condition is true, a single condition is true I say that the sample is 

classified category.  

If the single condition that is not true, I decide that the sample is not classified category. 

So, cannot I make something like this that, if a transpose y i is greater than 0, I will say 

sample is correctly fixed irrespective of whether this feature vector y i is labeled as 

belonging to class omega 2 or it is labeled as belonging to class omega 2. So, I do not 

loop at the level of feature vector y, whatever be its level if I can somehow convert this 

decision in the form that a transpose y i irrespective of level of y i. If a transpose y i is 

greater than 0 I will say that y i is correctly fixed otherwise I will say that it is miss 

classified.  

So, otherwise includes less than 0 as well as equal to 0 because equal to 0 does not give 

me any information. I cannot decide about the class belongingness of the sample. So, 

whether it is less than 0 or equal to 0 I will say it is miss classified. If it is greater than 0 I 

will say it is correctly classified. So, how we can do that? From here you said that if a 

transpose y i is greater than 0 then y i belongs to class omega 1. If a transpose y i is less 

than 0 then y i belongs to class omega 2.  

So why do not I do one thing I take all the samples which are labeled as omega 2 and 

then negate it. So instead of considering y i, I consider minus y i, because I know all the 

training samples which are given from class omega 2. So, I simply negate all those 

training samples. So, when I try to find out this feature vector, this weight vector a the 

samples belonging to class omega 1, I will take them as it is, as it is means after 

augmentation after appending one.  



And for the samples belonging to class omega 2, I will augment them by appending one 

and then take negative of it. So, if I take the negative then this a transpose y i which is 

supposed to be less than 0 now, it will be greater than 0. So, I get uniform decision 

criteria after negating all the samples belonging to class omega 2. In all the cases I 

should have a transpose y i greater than 0.  

So, I will say that a transpose y i is greater than 0. My sample is correctly classified 

irrespective of whether the sample is taken from class omega 1 or the sample is taken 

from class omega 2. So, what I will do is I will take all the samples from class omega 1 

as it is. The samples from class omega 2 I will take negative of it. And then use this for 

designing or to find out what will be the weight vector a.  
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Then again it is better if we can define some sort of criteria function. So, we take some 

sort of criterion function say J a and the g a has to be minimized. If a is the correct 

weight vector that means for that weight vector a which classifies all the training samples 

correctly, J a will be minimum. So, I will define some sort of criterion function we will 

see what kind of criterion function we can have. And then my job will be, by varying a in 

an iterative way I have to minimize this J a.  

And this J a has to take a minimum value when I reach a weight vector which properly 

classifies all the training samples. And for minimization of this J a, the criteria function j 

a we can make use of an approach which is called gradient descent approach or gradient 



descent procedure. What is the gradient descent procedure? Suppose at the k th iteration I 

know what is a k, a k is the value of the vector a in the k th iteration. I have to update this 

weight vector a. So, from k th iteration I have to go to k plus first iteration.  

So, from here when i want to find out the value of a in the k plus first iteration, that is a k 

plus 1 which will be equal to a k minus sum eta k times grad of J a k. This is what 

gradient descent procedure is? And what is this eta k, eta k actually specifies the learning 

rate. So, what does this procedure mean? Suppose, I have a criteria function something 

like this. This is the point where it is minimum. Suppose, in the k th instant whatever the 

value of a k, I have the criteria function somewhere over here.  

So, I put that this criteria function this is J a with respect to a. So, at the k th iteration 

suppose, this is a k and the criteria function value of the criteria function is J a k. If I take 

the gradient of this, gradient will increase in this particular direction. So, what I am 

doing is, i am moving a k in a direction which is negative to the gradient. That means I 

am moving a k in this particular direction.  

So, in k plus fast iteration depending upon the value of this eta k which is learning rate I 

may move either over here or over here or over here or even somewhere over here. So, if 

the value of eta k which is called learning rate, if the eta k is very large then when I 

modify this a k, a k plus 1 may be found somewhere over here. That means I am over 

shooting the minimum value. And if eta k is very small I may land somewhere over here. 

So, which says that you are landing rate is very slow.  

If eta k is very large I may over shoot the solution and this may lead to oscillation. So, 

what I will have is from over here I will move to this point then to this point then to this 

point then to this point and so on. So, I will have oscillation around the solution vector. 

So, this is what this gradient procedure does. That you start with an initial arbitrary value 

of the weight vector, for that weight vector you find out what is the criteria value of the 

criteria function. Then try to minimize the criteria function following the gradient 

descent procedure or this is also called procedure of stiffest descent. That means you 

follow the negative of the maximum radiant value path of the negative of the maximum 

gradient value. So, this is also called stiffest descent procedure.  
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Now, one such criteria function as i said that, we will talk about the Perceptron criterion 

function one such criterion function is called Perceptron criterion. Now what is this 

Perceptron criterion? Let us assume that at the k th instant, somehow we have been able 

to obtain the weight vector a k. I am not saying how we have obtained it? Somehow in 

the k th iteration I am about to find out the weight vector a k, because it is in the k th 

iteration I say it is a k.  

Now, this a k, I will try whether it can correctly classify all the training vectors or not, all 

the training samples or not. And when I consider all this training samples, as I said that 

the training samples from class omega 2, they will be negated after augmentation. They 

will be negated training samples belonging to plus omega 1 they will simply be 

augmented they will not be negated so that if all the samples are correctly classified or 

all the samples I must have a k transpose y greater than 0.  

If there is any sample for which a k transpose y is not greater than 0, it may be less than 

0 it may be equal to 0 I say that particular training sample is not correctly classified. So, 

our aim will be to find out an weight vector a which will classify all the training samples 

correctly. I do not want to have even a single training sample which is not correctly 

classified or which is miss classified. So, I can try to design the criteria function which 

will make use of the training samples which are not correctly classified.  



If the training sample is correctly classified, I do not bother about it because my job is 

done. If the sample is not correctly classified then I have to think to modify my weight 

vector. So, the criteria function that I want to design; I will make use of the training 

samples which are not correctly classified by that particular weight vector a k. So, 

accordingly I can define the criterion function, I call J p a because we are saying it 

Perceptron criterion, which is equal to sum of minus a transpose y for all y, which are 

misclassified.  

So, find that if y is misclassified then a transpose y it is negative. So, minus a transpose y 

has to be positive. So, as a result this Perceptron criterion function j p a, it can never have 

a negative value. It will always have a positive value, and the minimum value can be 0. 

So, I have a global minimum for this Perceptron criterion function. And this global 

minimum I can find out by gradient descent procedure. So, if I want to apply that 

gradient descent procedure then I have to take the gradient of j p a with respect to this 

weight vector a.  

So, I will have grad of g p a with respect to which is nothing but sum of if I take the 

gradient of a transpose y with respect to a it simply becomes y. So, it is simply sum of 

minus y for all y misclassified. And my update rule or the algorithm to find out this 

weight vector a will simply be, I take an initial weight vector a 0 arbitrary. So, a 0 will be 

arbitrary then a k plus one that is the weight vector in the k plus first iteration will be 

simply a k plus eta k, which is the learning rate into summation of y, for all y 

misclassified.  

So, this is the algorithm for design of my weight vector. So, once I have chosen a 0 

arbitrarily. From a 0 I can find out what is a 2 by following this updation rule, a 1 from a 

0 I can find out a 1 which is nothing but a 0 plus eta k which is the learning rate into 

summation of all the vectors y, which are actually misclassified by a 0. So, I have a 1, 

from a 1, I can find out a 2, a 2 is nothing but a 1 plus again eta k plus summation of all 

the samples which are misclassified by a 1.  

So, by doing this iteratively I can finally, find out a weight vector which will finally, 

classify properly all the training samples. May be the number of iterations will be more 

depending upon your initial choice. And the number of feature vectors that you have the 

distribution of feature vectors, but if the feature vectors are linearly separable will get an 



weight vector which will properly classify all the training samples. So, we will stop her 

today next day will continue with this. 


