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Hello, so in the last class we have started a tutorial. We have taken up a problem of a few 

feature vectors belonging to class omega 1 and few feature vectors belonging to class 

omega 2. Actually, the problem that we were trying to solve is the dimensionality 

deduction problem that from a hard dimensional space if I project onto a low 

dimensional space. There in many cases the problem that we face that in hard 

dimensional space if the feature vectors belonging to different classes are linearly 

separable, when I project that into a lower dimensional space they may not remain 

linearly separable anymore and we have also discussed that the best way to project is 

onto the Eigen space. So, we have taken this particular problem in the previous class. 
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That there are 5 feature vectors which are taken from class omega 1 and there are 5 

features which are taken from class omega 2. And we want to find out a projection 

direction for reduction of the dimensionality that maintains separability between the two 

classes that, is even after taking the projection onto a line, the projections of the vectors 



belonging to class omega 1 and the projection of the vectors belonging to class omega 2. 

These two states of projected points should still be linearly separable.  

So, before solving this problem we have taken up the issue that, if I project for the best 

representation of the multi-dimensional data. And the for that we have seen earlier that 

the best way of projection is to project onto the Eigen vector. So, the first problem that 

we have tried to solve is what will happen to this projected point, if the projection is 

taken on an Eigen vector. So, for that let us briefly recapitulate what we have done. 
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So, this is the inter set of feature vectors. And I want to project this feature vectors onto 

the Eigen vector. So, I have to find out what is Eigen vector. So, for this feature vector 

we have computed the min vector. And we know that the co-variance matrix the 

definition of the co-variance matrix is sigma is equal to expectation value of x minus mu 

into x minus mu transpose, where mu is this mean vector. So, for every vector we have 

computed x minus mu. So, these are x minus mu for different feature vectors. And once I 

have this x minus mu, for every individual vector the x minus mu we have computed x 

minus mu into x minus mu transpose giving me a number of matrices. 
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So, the first one x 1 minus mu into x minus mu, x 1 minus mu transpose that gives me a 

matrix m 1 x 2 minus mu into x 2 minus mu transpose gives me another matrix m 2. 

Similarly, x 3 minus mu into x 3 minus mu transpose gives me another matrix m 3. 

Similarly, I get m 4 and as I have total 10 number of feature vectors. So, I get 10 such 

matrices.  
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So, once I have 10 such matrix I can compute the covariance matrix which is nothing but 

expectation value of all this 10 matrices or effectively, these are the average or mean of 

all this 10 matrices, which gives me the co-variance matrix.  
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So, I compute the co-variance matrix by taking the mean of all these 10 matrices. And 

the co-variance matrix came out with this that is 26.275, .35, .35 and 2.53. Now, you 

note and interesting over here is. In the matrices that we have computed starting from m 

1 to m 10, this was the matrix. You find that 1 2 and 2 1 is same, 1 2 and 2 1 is same, 1 2 

and 2 1 is same. And obviously in the co-variance matrix also element, 1 2 and 2 1 is 

same, because this is the co-variance between the first element and the second element x 

1 and x 2.  

So, these two elements have to be. So, I get the co-variance matrix. And to get the Eigen 

vector of this co-variance matrix, I have to solve the Eigen value equation. So, first I 

have to find out the Eigen values of this co-variance matrix out of that I have to choose 

the maximum Eigen value. And find out the Eigen vector corresponding to the maximum 

Eigen value. So, to find out Eigen values of the co-variance matrix the equation is the 

procedure is well known you form a determinant of this form. 
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So, along the main diagonal if lambda is an Eigen value then along the main diagonal 

from all the elements you subtract lambda from a determinant and set this is determinant 

value equal to zero. So, I will get a number of equations. Solve those equations to find 

out the value of the lambda. So, that is what I get over here. I get a quadratic equation 

you find that it is an equation which is quadratic in terms of lambda. And because it is a 

quadratic equation so I will get 2 values of lambda to Eigen values.  

So, I get lambda 1 which is 26.28 and I get lambda 2 which is 2.525. So, this co-variance 

matrix has two such Eigen values and out of this two Eigen values, I have to consider 

that Eigen value which is maximum. And corresponding to this Eigen value I have to 

find out the corresponding Eigen vector. So, obviously the matrices of size n by n I will 

have n number of Eigen values. So, it depends upon what is the dimensionality of the 

matrices. 
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So, for this Eigen value I try to compute the Eigen vector and for that we have this well-

known Eigen value equation that for matrix A, if x is the Eigen vector and lambda is the 

corresponding Eigen value then, this equation must be satisfied that is a x is equal to 

lambda x. In all case this matrices A is the co-variance matrix which is this right 26.275, 

0.35, 0.35, 2.53. And this Eigen vector x is x 1 x 2 which will be equal to so I took the 

maximum Eigen value which is 26.28.  

So, 26.28 x 1 x 2 I get two simultaneous equations. Solve this equation to get the values 

of x 1 and x 2. So, here you find that x 1 would be is equal to 70, x 2 would be equal to 1. 

If it try to get the value from the other one the values will be slightly different and the 

values that difference in values from these two equations is because of the error. In many 

cases the decimal values we have position we have ignored.  

So, I get it later. So, because of the transition error the x 1 x 2 values that I get from here. 

And the x 1 x 2 values that I get from here, ideally this should be same, but I get a 

difference because of the transition error, but anyway the values will be very close 

instead of 70 here we may get 68 69 or something like that. So, this is my Eigen vector, 

Eigen vector is 71 then what we have done is…  
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We have plotted all the feature vectors onto a graph paper. And this is the Eigen vector 

71 projected on all those feature vectors onto the Eigen vector and these are my projected 

points. And here as expected because we did not consider the separability of the feature 

vectors belonging to two different classes. We just wanted to find out projections 

directions that are a projections space that best represents the higher dimensional feature 

vectors into a lower dimensional feature vectors.  

So, we said that it may not be possible to maintaining the separability between the 

classes. And exactly that is what has happened. You find that all this feature vectors 

belonging to class omega 2 their projected within this space. And all these feature 

vectors belonging to class omega 1, they are projected within this region and these 2 

regions now get. So, though in the original 2 dimensional space the feature vectors 

belonging to two classes omega 1 and omega 2.  

They were separable on the projected space they are no more separable. So, this is a 

problem that we face if we go for best way of representation or project the original set of 

data onto the Eigen space for reduction of dimensionality. So, to solve this problem what 

feature linear discriminator does is it tries to find out a projections space which 

maximizes the separability between the classes or separation between different classes. 

And at the same time it tries to form compact clusters of the feature vectors belonging to 

individual classes.  



So, what happens if I have two points clouds belonging to two different classes. When I 

project into a lower dimensional space, I try to see that these two classes are wide apart 

and at the same time the feature vectors belonging to individual class they are very 

compact. So, if I can maintain this, I can maintain the separability between the classes 

even in the projected space or in the lower dimensional space. So, in order to do that I 

have to consider two things one is I have to minimize the within class scatter so that 

every class is very, very compact.  

And at the same time I have to maximize the between class scatter that is the classes 

should be pushed well apart. So, if I do them simultaneously then I get a sort of criteria 

function. So, after optimization of the criteria function I get a solution vector. So, this 

solution vector gives me a vectored or a projection direction on which if I project higher 

dimensional feature vector even in the lower dimensional projected space the separability 

of the vectors can be vented. Of course, when I tell all about this my assumption is in the 

initial space in the original higher dimensional space that data points are separated, they 

are separable.  

If they are not separable in the original higher dimensional space then whatever tricks I 

play I cannot guarantee that they will be separable in the lower dimensional projected 

space. So, that has to kept in mind that when I talk about separability after projecting 

onto a lower dimensional space. I always assume that in the original higher dimensional 

space the feature vectors are well separated. So, then only the other things are valued. So, 

by optimization of that criteria functions which minimizes the within class scatter and 

maximizes the between class scatter. I get a solution which is obvious form. 
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That is if S 1 is the within class scatter of the data points belonging to class omega 1 and 

S 2 is the scatter of the data points belonging to class omega 2. Then S w which is equal 

to S 1 plus S 2 this is called the total within class scatter, that is the sum of the scatters of 

the samples belonging to class omega 1 and the samples belonging to class omega 2. So, 

I take these two scatters individually then add this two I get total within class scatter 

which is S w mu 1 is the mean of the samples belonging to class omega 1 and mu 2 is the 

mean of the samples belonging to class omega 2.  

So, once I have this then, the direction of the projection or the projection vector which 

maintains separability will be given by S w inverse into mu 1 minus mu two. So, this 

solution has been obtained by solving a generalized Eigen value expression. So, to 

illustrate this I will take up the same problem for which we have gone for projection onto 

the Eigen space. So, that is we have two sets of samples, two sets of feature vectors one 

set of feature vector belonging to class omega 1 the other set of feature vector belonging 

to class omega 2. 
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So, the feature vectors which belong to class omega 1 are 1 2 3 5 4 3 5 6 and 7 5. So, 

these are the 5 feature vectors which are taken from class omega 1. Similarly, 6 2 9 4 10 

1 12 3 and 13 6. These are the 5 feature vectors which are taken from class omega 2, and 

the scatter of data points belonging to a particular class they are defined by this. It is the 

sum of x i minus mu 1 into x i minus mu 1 transpose where mu is the mean of the feature 

vectors belonging to class omega 1.  

So, for every vector belonging to class omega 1, I have to compute every vector x 

belonging to class omega 1 I have to compute x minus mu or x minus mu 1 into x minus 

mu 1 transpose. So, when I have n number of feature vectors in belonging to class omega 

1 I will have each of this x minus mu 1 into x minus mu 1 transpose gives me matrix. So, 

if I have n number of feature vectors in class omega 1, I will have n number of such 

matrices.  

And sum of all those matrices gives me the scatter of the samples in class omega 1. 

Similarly, here for every vector belonging to class omega 2, x minus mu 2 into x minus 

mu 2 transpose that gives me 1 matrix. If there are m numbers of feature vectors in class 

omega 2, I will get m such matrices. And sum of all these m matrices gives me the 

scatter of the samples belonging to class omega 2. So, that is how I compute scatter for 

class 1 and I compute the scatter from for class 2 S 1 and S 2. And you find that there is 

this scatter and the co-variance matrix they are very, very similar.  



If I normalize the scatter matrix by the number of samples that I have, I get a co-variance 

matrix because co-variance matrix is nothing but expectation value of this term, which is 

nothing but take the summation of all these matrices normalize by the number of data 

elements that number of matrices that I found I get a co-variance matrix. So, they give 

more or less same information in one case it is normalized in the other case it is not 

normalized. 

So, what I do is I consider this feature vectors belonging to class omega 1 and I compute 

the mean of all this feature vectors because finally, I have to compute this term. So, I 

compute the mean of this feature vectors which is mu 1 and mu 1 in this case will be 4 

4.2. And then considering these vectors from class omega 2, the mean of this feature 

vectors which is mu 2 is 10 3.2 which you can easily compute from here. Take the 

summations of all these components divide by 5 I get 10.  

Take the summation of all these second components divide by 5 you get 3.2. And 

similarly, from here and the next 1 I have to compute is for each of the data points for 

each of this feature vectors I have to compute X minus mu 1. For each of the feature 

vectors over here I have to compute x minus mu two. So, that I can compute x minus mu 

1 into X 1 minus mu 1 transpose. In the other case X minus mu 2 into x minus mu 2 

transpose. 
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So, over here you find that for all the samples belonging to class omega 1, X minus mu 1 

when I compute x minus mu one. So, x minus mu 1 over here it will be simply 1 minus 4 

that is minus 3 for the first sample then 2 minus 4.2 so this will be minus 2.2. Similarly, 

over here for the second one it is 3 minus 4 that will be minus 1 5 minus 4.2 that will be 

0.8. Similarly, over here this will be 0 minus 1.2. Here it will be 1 1.8 and here it will be 

3 0.8. So, these are x minus mu 1 for individual vectors x. In the same manner I have to 

find out x minus mu 2 for individual vectors x belonging to class omega 2.  

So, let us see what those values will be for the second one. So, here I have to compute x 

minus mu 2. So, the first one it will be 6 minus 10 which is minus 4, 2 minus 3.2 which 

is minus 1.2, 9 minus 10 which will be minus 1, 4 minus 3.2 is 0.8, 10 minus 10 it will be 

0, 1 minus 3.2 it will be minus 2.2. Similarly, here 12 minus 10 will be 2, 3 minus 3.2 it 

will be minus 0.2, 13 minus 10 it is 3 6 minus 3.2 it will be 2.8.  

So, I have got x minus mu for every individual x belonging to class omega 2. And Now, 

I have to go for computation of the scattered matrices S 1 and S two. So, for computation 

of S 1 I have to find out what is x minus mu 1 into x 1 x minus mu 1 transpose for every 

x minus mu 1 taken from the class omega 1. So, the first one is minus 3 minus 2.2. 
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So, let us see that what will be this first one is minus 3 minus 2.2, this is x minus mu 1 

into x minus mu 1 transpose will be minus 3 minus 2.2. And if you compute this value 

the matrix will be 9 6.6 6.6 then 4.84. This is one of the matrices the second one was 



minus 1 0.8. If you remember this it was minus 1 0.8. So, it is minus 1 0.8 the column 

vector into minus 1 0.8 row vector. It will be simply 1 minus 0.8 minus 0.8 and .64. For 

the third one it was 0 1.2 0 1.2.  

So, if I compute this it will be 0 0 0 1.44. For the fourth one it is 1 1.8. So, I will have 1 

1.8 column vector into 1 1.8 row vector. So, if I multiply this it will be 1 1.8 then, over 

here 1.8. And this will be 1.8 into 1.8 that will be 3.24. And then fourth one X minus mu 

1 for the fourth one was 3 and .8. So, if I compute this 3 then 0.8 3 0.8 if I compute this it 

will be 9 2.4 2.4 and 0.64. So, these are the 5 matrices that I have 1 2 3 4 5. And from 

these 5 matrices I have to compute the scatter is 1 which is nothing but sum of all these 5 

matrices.  

And if I take the sum you find that the first component would be 9 plus 1 plus 1 plus 9. 

So, that is 18 plus 2 which is equal to 20. Similarly, this is 6.4 minus .8 plus .8 plus 2.4 

6.6 minus .8 plus 1.8 plus 2.4. So, this will be simply 10 this term will also be equal to 

10 and here I will have 10.8 which is nothing but sum of this plus this plus this plus this 

plus this which comes out to be 10.8. So, this is my scatter matrix S 1 Similarly, let us try 

to compute what will he the scatter matrix S 2. So, for computation of scatter matrix S 2 

I have x minus mu 2 over here. For every x belonging to class omega 2 so that is given 

by this. So, I have to compute the scatter matrix S 2. So, the first one is minus 4 minus 

1.2.  
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So, the first matrix that I get is minus 4 minus 1.2 into minus 4 minus 1.2. So, that 

simply becomes 16 4.8 4.8 and 1.44. So, this is what I get from the first vector. The 

second vector is minus 1 1.8. So, the matrix that I get from the second vector is minus 1 

0.8. So, it is minus 1 0.8 into row vector minus 1 0.8. So, this matrix will be 1 minus 0.8 

minus 0.8 0.64. For the third one which is 0 minus 2.2. So, it is 0 minus 2.2 into row 

vector 0 minus 2.2. So, this will simply be 0 0 0 then 4.84. 

So, this is my third matrix. To compute the fourth matrix it is 2 minus 0.2. So, what I 

have is 2 minus 0.2 this is the column vector into 2 minus 0.2 the row vector. And if I 

multiply these two what I get is 4 minus 0.4 minus 0.4 and then 0.04, this is the fourth 

matrix. And then to get the fifth matrices I have to take this 1 3 2.8. So, this is 3 2.8 3 2.8, 

multiply these two what I get is 9 8.4 8.4 and then 2.8 into 2.8 it is 7.84. So, these are the 

5 matrices that I get from the 5 samples belonging to class omega 2.  

Now, sum of all these 5 matrices will give me the scatter S 2. So, if you take the sum 

scatter S 2 will be given by this. So, I have S 2 which is nothing but sum of all this 5 

matrices. So, over here it will be 16 plus 1 17, 17 plus 2 is 21 plus 9 30. So, the first 

component will be 32 components 4.8 minus 0.8 minus 0.4 plus 8.4. So, this will be 12. 

Similarly, here it will be 12 and this component will be 1.44 plus 0.64 plus 4.84 plus 

0.04 plus 7.84. So, this will be simply 14.8.  

So, we find that I get two scattered matrices one for class omega 1 which is S 1 the other 

scatter matrix for class omega 2 which is S two. So, for class omega 1 the scatter matrix 

S 1 is given by this and for class omega 2 the scatter matrix S 2 is given by this. Now, 

from S 1 and S 2, I have to find out what is the total within class scatter that is S w which 

is nothing but S 1 plus S 2.  
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So, what I had is I had S 1 which is 20 10 10 10.8 and s 2 which was 30 12 12 and then 

14.8. So, I have to compute the total within class scatter which is S w which is nothing 

but S 1 plus S 2. And this will be simply if I add this two matrices 50 22 22 and here 10 

plus 8 plus 14 plus 8 that will be 25.6. So, this is my total within class scatter. And from 

this what I have to compute is S w inverse because finally, I have to compute the 

projection direction. 

And the projection direction S w is given by S w inverse into mu 1 minus mu 2 where 

mu 1 is the mean of the samples belonging to class omega 1 and mu 2 is the mean of the 

samples belonging to class omega 2. So, from this total within class scatter is w, I have 

to compute what is S w inverse. So, this is what I need to compute. Now, for a 2 by 2 

matrix computation of inverse is very simple. So, if I have a two dimensional matrices 

something like this. 
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Say, matrix A which is given by a b c and d this is a 2 dimensional matrices. Then A 

inverse is simply given by 1 upon determinant of A. And then matrix is d minus b minus 

c a which is simply this determinant A is nothing but a d minus b c. So, which is simply 

1 upon a d minus b c into d minus b minus c and then a. So, this is what is the inverse of 

A 2 by 2 matrices, where the 2 by 2 matrix is given by elements a b c d. So, simply using 

this expression when I know that my total within class scatter S w is given by 50 22 22 

25.6. 

(Refer Slide Time: 37:04) 

 



This is the total within class scatter I can very easily compute the inverse of the total 

within class scatter that is S w inverse. So, over here this is S w inverse will be given by 

1 over determinant of S w that means determinant fifty 22 22 25.6. And this matrix will 

be 25.6 minus 22 minus 22 20. And this one will be 50. And if you compute this 

determinant you find that this determinant is 50 into 25.6 minus 22 into 22 which comes 

out to be 1 over 796 into 25.6 minus 22 minus 22 50. And if you complete this 

computation the inverse of the matrix will come out to be 0.032 minus 0.03 minus 0.03 

0.06. So, S w inverse is simply this. So, this is the matrix which is important to me that is 

S w inverse. And the other quantity that I have to compute is mu 1 minus mu 2.  
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And we know from before that mu 1 was given by 4 4.2 and mu 2 was given by 10 3.2. 

So, these were the means of the samples belonging to class omega 1 and the mean of the 

samples belonging to class omega 2. So, I can easily find out that mu 1 minus mu 2 will 

be is equal to this minus this that is minus 6 this minus this which is equal to one.  
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So, once I have this the projection direction is simply given by, if I write it as a vector e 

is simply S w inverse into mu 1 minus mu 2 that is the direction of projection where S w 

inverse. You remember from it is 0.032 minus 0.03 minus 0.03 0.06. Of course, we are 

not considering the higher decimal spaces. So, it is 0.032 minus 0.03 minus 0.03 0.06 

into mu 1 minus mu 2 which is nothing but minus 6 1. So, you multiply this by the 

column vector minus 6 1.  

And if you compute this you will find that this 1 will come out to be minus 0.222 and 

0.24. So, the projection direction of the vector on which if I take the projection which 

will maintain the separability between the classes should be this 1, which is minus 0.222 

and 0.24. So, again let us plot these points on a graph paper and take the projections on 

to this vector. And let us see what improvement we get at all if we get some 

improvement. So, I will take this graph paper. So, as before let me assume that so this is 

my origin. So, I will draw x axis and y axis over here or x 1 and x 2 axis. 
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So, this is x 1 axis and this is x 2 axis. Let us put the vectors belonging to class omega 1. 

I will use this skin color for that, the vectors are 1 2 then 3 5. If you remember this 

vectors which we had used 1 2 3 5 4 3 5 6 and 7 5 from class omega 1, 6 2 9 4 10 1 12 3 

and 13 6 from class omega 2. So, for class omega 1 it is 1 2 the next one is 3 5 next one 

is 4 3 that is over here the next one is 5 1 2 3 4 5 1 2 3 4 5 6 5 6 which is over here the 

next one is 7 5 1 2 3 4 5 6 7 1 2 3 4 5 7 5. 

So, these are the vectors which are taken from class omega 1, similarly if I take the 

vectors from class omega 2, which is 6 2 9 4 10 1 12 3 and 13 6. So, I will take 6 2 1 2 3 

4 5 6 6 2 is over here then 9 4 1 2 3 4 5 6 7 8 9 1 2 3 4 this is 9 4 then comes 10 1 10 1 

then comes 12 3 12 1 2 3 and then thirteen 6 thirteen 1 2 3 4 5 6 13 6. So, these are the 

vectors from class omega 2. And my projections direction as we have computed is minus 

0.222 and 0.24. So, I will put it as let us this point so minus 0.22 minus 0.24 minus 0.22 

and plus 0.24.  

So, because I am an interested only in the direction. So, even if I multiply this by then 

does not matter. So, I will take it as minus 2.2 multiplying this by 10 minus 2.2 and 2.4. 

So, I will take this point minus 2 or if minus 22 if I multiply this by 100 even that does 

not matter. So, I will make is minus 22 and then plus 24. So, minus 22 is somewhere 

over here plus 24 is over here. So, this is the point so my vector is, this is the direction of 

projection.  



Now, let us project or take the perpendicular projection of all the feature vectors 

belonging to class omega 1 and the feature vector belonging to class omega 2 on to this 

projection direction. So, this will be, if I take perpendicular projection. So, these are the 

projections. Now, we find when I projected it the feature vectors belonging to class 

omega 1 onto this projection vector and the feature vectors belonging to class omega 2 

onto the projection vector they are not mixed anymore there are well separated. So, over 

here this is the region in which the feature vectors belonging to class omega 1 they get 

projected and this is the region over which the feature vectors belonging to class omega 2 

they are projected. And these 2 regions are well separated. So, the projected points are no 

more mixed. 
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Unlike in the previous case if you remember this particular figure at the feature vectors 

from 2 different classes they are mixed in this region. So, the projected points are no 

more separable, but if I maintain that constant that when I take try to take the projection 

directions I will maintain the separability I will try to maximize the separability between 

the classes or I will try to maximize the between class scatter. And I will try to minimize 

the within class scatter.  

So, while doing so the solution vector of the projection direction that I get is this and 

here it is quite clear. This demonstrates that on this direction if I take the projections 

even in the projected space. The Feature vectors in different classes they are well 



separated. So, this solves one part of the problem that is happened able to reduce the 

dimensionality, but for classification application, I need to go further that is I have to 

design a classifier which works in this projected space.  

So, how do I do that? Clearly, over here these are 1 dimensional variable all these 

projected points if I take the distance of these points from the center these are 1 

dimensional variable. So, I get a set of 1 dimensional value or scalar values over here. I 

also get a set of scalar values over here. So, I take this set of scalar values to belong to 

one class and this set of scalar values that belonging to another class. And for 

classification purpose what I need to do is. I need to identify a point on this line which 

will separate between these two classes.  

So, if this point follows a particular distribution I can find out what is the mean and 

variance of this set of points. I can also find out what is the mean and variance of this set 

of points. And from there I can identify what should be the threshold of this line. So, this 

is not a big problem, but it is a very simple problem. So, through what we have done is, 

we have reduced the problem from a higher dimensional space to a lower dimensional 

space and the lower dimensional space the problem is more manageable. So, I stop this 

lecture here. 

Thank you. 


