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Multiple Discriminant Analysis 

 

Good morning. So, in the last class we started our discussion on the problem involved 

with dimensionality of the feature vectors, and we have said that when the feature vector 

dimension is quite large then the computational complexity becomes very high. Because 

computation of the discriminant function for different classes, for each of the classes is 

proportional to d square, where d is the dimension of the feature vector. And when we 

have c number of such classes then obviously the amount of time that has to be spent to 

decide the class, we have to compute the discriminant function for each and every class. 

So, the total computation time becomes of the order of c into d square and you can easily 

understand that in most of the real life situations the dimension of the feature vectors 

becomes of the order of 100 or 200 or so. And in that case what will be the amount of 

computation involved to classify an unknown feature vector, because for every unknown 

feature vector, we have to compute the discriminant function corresponding to each and 

every class. And then we have to decide to which class that unknown feature vector has 

to be classified, based on which particular discriminant function gives the maximum 

value.  

So, in the last class we have discussed about this dimensionality, reduction problem. And 

we have said P C A or principle component analysis is one of the techniques by which 

the dimension of feature vectors can be reduced. Because the principle component 

basically gives you those principle components which are most useful ((Refer Time: 

02:04)) describe the feature vectors.  

So, though the principle component analysis that gives you the feature that reduces the 

dimensionality of the features by taking projection on lower dimensional space either in 

single dimension or in multiple dimension. And we have seen that those directions are 

nothing but the directions of the Eigen values of the scatter matrix or co-variance matrix 

of the data set. And we take those Eigen values, Eigen vectors corresponding to the 

maximum Eigen values.  



So, the error while doing the projection is minimised. Now, while doing so these feature 

vectors in lower dimension that we get they are the best representations of the original 

feature vector, in terms of the squared error sense. We ensure that the sum of squared 

error when we project that higher dimensional feature vectors onto the lower dimension 

following principle component analysis, the sum of squared error will be minimum. 

However, it does not necessarily mean that those projections will be the best projections 

for separating different classes, because when we go for classification we have to ensure 

that the feature vectors belonging to the different classes they are well separated.  

So, while the principle component analysis tries to find out the projection directions 

which will give you best representation of the data set in minimum squared error sense. 

But M D A or multiple discriminant analysis tries to find out the projection direction so 

that if I take projections in those directions, I try to ensure that the data belonging to 

different classes or the sample vectors belonging to belonging to different classes, they 

are well separated in that projected space. So, today what we are going to discuss is this 

multiple discriminant analysis or M D A. 
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So, this is also a projection technique, but when we try to find out the projection 

directions we try to ensure that the data in the projected space they are well separated. 

Now, why the principle component analysis does not guarantee you that sort of 

separation? Let us just take a sample situation, say something like this. Suppose, I have 



two dimensional feature vector, one is feature component X 1, the other feature 

component is say X 2 and the data distribution, let us assume is something like this.  

So, this is the data belonging to this space. The training sample that you get that belongs 

to one class. Let us say this is class omega 1, and the other set of training samples which 

are given they may be something like this. Suppose, this set of samples belong to class 

omega 2. Now, when you do principle component analysis, the principle component 

analysis takes the projections of data onto a direction which are aligned with the Eigen 

vectors. So, in this case the direction of the Eigen vector having corresponding to the 

maximum Eigen value will be something like this. Because this is the dimension 

direction in which the spread is maximum.  

So, on this if I take the projection, let me draw the diagram somewhere over here. So, if I 

take the projection you find that this set of data will be projected into this space. 

Whereas, the data classified as levelled as belonging to omega 2 will be projected into 

this space. So, as a result you find that I have region where the data both from class 

omega 1 and class omega 2 they are intermingled. That means taking this example we 

can say that when I take the projections along the directions of principle, along the 

directions of Eigen vectors, it does not necessarily mean that the data will be well 

separated in the projected space.  

Whereas, if I take the projection direction like this, suppose I take this as the projection 

direction we have discussed earlier that for best representation projection should be 

orthogonal projection. So, if I take this projection direction in that case we find that this 

set of data will be projected into this space. Whereas, this set of data will be projected 

into this space and now these two sets of projected data, they are well separated in the 

projected space. So, while principle component analysis tries to find out this direction, 

this projection direction, the multiple discriminant analysis tries to find out this 

projection direction.  

So, what does it practically mean? Let us assume that we have got two printed 

characters, one is say printed character O, other one is printed character Q. So, when I 

take the principle component analysis, the principle components actually tries to capture 

the gross features of the patterns and while doing so it may try, it may ignore the feature. 

This feature corresponding this tail whereas, this tail is most important to discriminate 



between O and Q. Whereas, principle component may ignore the feature corresponding 

to this tail part and unless I have that information I cannot discriminate between O and 

Q. 

So, that is the drawback of principle component analysis, though it gives you the best 

representation of data onto the projected space in minimum square sense, but it may not 

be the best projection. So, for us separability of the class are concerned so that is the aim 

of the multiple discriminant analysis. And when we discussed today, I will take a 

specific case of multiple discriminant analysis that I will consider that. Suppose, I have 

got only two classes and the approach taken for this multiple discriminant analysis to 

separate between two classes, and or to design a classifier which can classify between 

two classes after taking the projections onto lower dimensional space, that is what is 

called feature discriminator. 
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So, let us see what is this. Yes, they will pass through the mean of the samples, but what 

I have shown is just the projection direction. Actually, the line will pass through the 

mean of the samples, I have just shown the projection direction, not its exact position and 

then try to say see that. Because even if I pass this line to the mean of the samples, even 

then the same problem will occur. Either the projection will be downwards or the 

projection will be upwards, but the same problem will exist. I just have done it for the 

clarity of the figure that is all.  



So, let us assume that we have n number of d dimensional feature vectors which are say 

X 1, X 2 up to X n. And this feature vectors are partitioned into two different sets, one is 

set D 1 consisting of n 1 number of feature vectors which are levelled as class omega 1, 

because we are going for supervised learning though. So, I have out of this n number of 

feature vectors, n 1 number of feature vectors or obviously n 1 is less than n 1 number of 

feature vectors. I say that this feature vectors are in the set D 1 and this vectors are 

levelled to belong to class omega 1. Similarly, I have another set D 2 consisting of n 2 

numbers of feature vectors and these feature vectors are levelled as class omega 2.  

So, obviously n 1 plus n 2 in our case will be equal to n, n is the total number of feature 

vectors partitioned into two subsets, one consisting of n 1 number of feature vectors 

coming from class omega 1. I am calling that set of feature vectors as D 1 and the other 

one is n 2 number of feature vectors coming from class omega 2, and I say that this set is 

set D 2. And suppose I take a projection direction, W direction of projection where I 

assume that modulus of W is equal to 1, that means this is an unit vector in the direction 

of projection line.  

So, given this a feature vector X i when I take its orthogonal projection, because as we 

said that the orthogonal projections are the best projections. So, whenever we will talk 

about projection, we will talk about orthogonal projection. So, what I take orthogonal 

projection of the feature vectors onto this line. Suppose, I take a feature vector X i take 

the orthogonal projection onto this projection line, I get projected vector y i. So, here this 

y i will be nothing but W transpose X I, because W is the unit vector in the direction of 

line of projection and X i is the feature vector in my original space. When I take the 

projection of this in the direction of W, I get W transpose X i and the projected vector is 

y i.  

So, when I have this n number of samples, X 1 to X n, the projections on this onto a 

projecting line will be y 1, y 2 up to y n. So, each of this I can compute following this 

formula, so here y varies from i varies from 1 to n. So, these are the projected vectors 

that I can have after taking projection in the direction W. Now, coming to the sets D 1 

and D 2. 
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I can find out the mean m 1 which is nothing but mean of the samples in class D 1, and 

obviously this m 1 is equal to 1 upon n 1, because n 1 is the number of samples in class 

D 1. Then summation of X for all X belonging to set D 1, I take all the samples from set 

D 1 and average of that gives me the mean m 1. Similarly, m 2 is nothing but 1 upon n 2 

summation of X, for all X in set D 2 is that. Now, when I compute the projections of this 

mean vectors.  

Suppose, the projected mean vector m 1 I write as m 1 hat, this m 1 hat is nothing but 1 

upon n 1 into summation of y, for all y belonging to say set R 1. Now, what is this R 1 

when I have all these projected samples, projected vectors y 1 to y n. Now, the projected 

vectors which are projection of these n 1 number of samples. 
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I call that set as set R 1. So, this set is the projected vectors of these n 1 number of 

samples. Similarly, I say set R 2 which is the set of projected vectors set of this n 2 

number of projected vectors. I call this set R 2, right? So, here this m 1 tilde which is the 

projected mean is nothing but 1 upon n 1 sum of y, for all y belonging to class R 1. 
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And this y is nothing but 1 upon n 1 summation of W transposes X, for all X belonging 

to set D 1. I can take this W transpose out of this summation, because it does not depend 

upon the samples, okay? I simply get 1 upon or W transpose. Let me put 1 upon n 1 W 



transpose summation of X, for all X belonging to set D 1 which is nothing but W 

transpose m 1. So, that is quite obvious. So, projection of mean of the vectors in set D 1 

is nothing but W transpose m 1.  
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In the same manner I can compute the projection of mean of samples in set D 2 which is 

nothing but m 2 tilde. If I follow the same procedure it will simply be W transpose m 2. 

So, m 1 tilde that is the projection of m 1 onto the direction of W is nothing but W 

transpose m 1, projection of m 2 onto the direction of W is W W m 2 tilde which is 

nothing but W transpose m 2. Now, what is the distance between these two projected 

means? That is nothing but so the distance between projected means is nothing but mod 

of m 1 tilde minus m 2 tilde. This is the distance between these two projected means or 

difference between the two projected means, which will be simply mod of W transpose 

m 1 minus m 2.  

So, this is quite simple. Now, find that I can increase the distance between m 1 tilde and 

m 2 tilde by simply scaling up W. Here, I have assumed that modulus of W is equal to 1, 

if modulus of W is more than 1 then the distance between m 1 tilde and m 2 tilde will go 

on increasing. As I increase the scale factor of W, the distance between m 1 tilde and m 2 

tilde will increase, and that ensures that I can increase the separability between the two 

classes. But the question is how much should I increase the separation between the two 

classes? 



Should I go on increasing indefinitely? Obviously that is not justified or not very logical, 

because how much difference between m 1 tilde and m 2 tilde that I need for good 

classification depends upon, what is the variance of the samples within set D 1 and what 

is the variance of samples within set D 2. This variance will indicate that what should be 

the difference between m 1 tilde and m 2 tildes, the reason is very simple, if I take that 

distribution suppose I have two distributions like this. This is m 1, this is m 2, this is my 

x and this is say p x omega. We said the error of classification is nothing but the area 

bounded between these two density curves, probability density curves which is this 

shaded portion. Now, if the variance of the data distribution is quite large that means I 

have variance something like this. 
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The other one is like this. So, this is my x, this is p x omega, this is m 1 and this is m 2, 

here the variance of the standard deviation of the data within the two different classes are 

quite large. So, the curve has become very flat and the error is this. So, when I have this 

sort of distribution, you find that I should have the difference between m 1 and m 2 to be 

quite large. So, that the error of classification is reduced, that means these two curves 

should be wide apart, right? Whereas if I have distribution of this form where the 

variance is very small, m 1 is somewhere over here, m 2 is somewhere over here.  

So, in this situation I do not need that much separation which I need in the first case, here 

the separation between m 1 and m 2 can be much less than this, but even then my error 



the total error will be under control. So, how much should be the difference between two 

projected means in the reduced space that should be relative to the variance or standard 

deviations of data within different classes.  

So, it should not be an absolute value, it should be relative to the variance of data. So, 

accordingly I can make use of the scatter of variance to have some criteria function, the 

criteria function which has to be either maximized or minimized. And when it is 

maximized or minimized I can say that the separation between the two means that I have 

got that is sufficient for classification. So, we can define the scatter of the projected data 

like this. 
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So, let us see what is scatter of projected data. So, for an ith class I define the scatter of 

the projected data as summation y minus m i tilde square, where this summation has to 

be taken over all y belonging to set R 1, is that you find that this is something similar to 

variance. What we have not done is we have not normalized this. So, when I define such 

a kind of scatter for the ith for the samples belonging to set D i or the samples taken from 

class omega i, then I can define the total within class scatter. So, the total within class 

scatter will be nothing but s i tilde square or since we are considering only two classes, 

let me make it s 1 tilde square plus s 2 tilde square. Let us normalize this by the number 

of samples I have which is equal to n. So, this tells you the total within class scatter of 



the projected samples, right? And as I said that I want the separation between the two 

classes of the distance between two means should be relative to this total scatter, right?  
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So, I can define now a criteria function which is something like this, J W is equal to m 1 

tilde minus m 2 tilde square upon s 1 tilde square plus s 2 tilde square. So, this s 1 tilde 

square plus s 2 tilde square, it is the total within class scatter which takes into 

consideration the scatter of the samples taken from set R 1 plus the scatter of samples 

taken from set R 2. And what I have at the numerator is m 1 tilde minus m 2 tilde square 

which is nothing but the square of the distance between the projected means m 1 and m 

2. So, what I should try to achieve is this m 1 tilde minus m 2 tilde square should be as 

large as possible, with respect to the total within class scatter. Or effectively I want to 

maximize this criteria function J W, which is the ratio of m 1 tilde square minus m 1 tilde 

minus m 2 tilde square upon the total within class scatter.  

So, I want to maximize this. So, I can see effectively that this being the difference 

between the two classes or two means. I can say equivalently that this is something 

similar to within class scatter, sorry inter class scatter and this is something similar to 

intra class scatter. So, if intra class scatter is less that indicates that your data distribution 

is very compact. If it is compact then inter class scatter I need not have very large value 

to give the separation between two classes, right? Whereas if this intra class scatter is 

large that means the data are distributed sparsely or widely within every class. If it is so 



then this inter class scatter should be quite large so that I can have satisfactory 

classification performance or I can discriminate between the classes very easily.  

So, effectively what I have to have is I have to maximize this criteria function J W which 

is nothing but something like ratio of inter class scatter and intra class scatter. And 

features discriminator actually maximizes this and the value of W which maximizes this 

gives you the projection direction. So, how do I find optimal value of W which will 

maximize this? If I want to do that in that case, this expression I have to write as an 

explicit function of W and then I take the gradient. Or I take the differentiate it with 

respect to W equate that to 0 and you get the solution.  

So, if I want to explicitly write this criterion function J in terms of W, let us do this first. 

We define a scatter matrix scatter matrices, one is s i and other one is s w I, will say s i is 

the scatter within the ith class. And s w is the total within class scatter, right? So, as 

before I can define this s i that is scatter of the samples within ith class which is nothing 

but sum of X minus m i into X minus m i transpose, where I have to consider this 

summation over all X belonging to class d i.  

So, this gives me the scatter of the samples in set d i or the scatter of the samples which 

are taken from class omega i. So, once I get the scatter for individual classes or 

individual sets then I can define total within class scatter, because this is within class 

scatter. So, I can define total within class scatter as s w is equal to sum of s i for all i and 

here we are considering only two classes. So, this will be s 1 plus s 2 is that total within 

class scatter s 1 is the scatter of the samples in set D 1, s 2 is the scatter of the samples in 

set D 2. If I take these two sums that gives me total within class scatter or simply it is 

called within class scatter. Next, let us try to see that what will be the scatter of the 

projected samples. 
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So, for that I define s i tilde square which is nothing but W transpose X minus W 

transpose m i square of this. Take the summation over all X belonging to set d i. So, 

earlier we have taken the scatter of the original samples. Now, we are taking the scatter 

of the projected samples, this expression can be written as just by some re-organisation. I 

can write this expression as W transpose X minus m i into X minus m i transpose into W, 

take the summation for all X in set d i. Now, given this you will find that this W which is 

independent of X i can take outside the summation, right?  

So, if I take outside the summation then what I will have is W transpose, then summation 

X minus m i into X minus m i transpose into W, where this W is outside the summation 

operation. And these summations I have to take for all X in set d i. Now, what is this 

term within this summation? This is nothing but S i, that is the scatter of the samples in 

the original space. So, what I simply have is this is nothing but W transpose S i W. 
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So, when I have this then the sum of this scatter over two classes that is s 1 tilde square 

plus s 2 tilde square, that will be simply W transpose S 1 W plus W transpose S 2 W. 

This is nothing but W transpose S 1 plus S 2 W and S 1 plus S 2 as we have already 

defined that. This is total within class scatter S 1 plus S 2 is nothing but S W, which is 

total within scatter. So, this simply becomes W transpose S W W, right? So, in the same 

manner when I compute the difference between the two means, so that is nothing but the 

difference between the two means. 
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Or separation of the projected means which is m 1 tilde minus m 2 tilde square of this. 

Where m 1 tilde is nothing but W transpose m 1. m 2 tilde is nothing but w transpose m 2 

square of this. I can re-orient or re-organise this expression as W transpose m 1 minus m 

2 into m 1 minus m 2 transpose W, and you find that this is something like between class 

scatter. So, we had this S 2 to be within class scatter, because for s omega to be within 

class scatter. Because for computation of this I am considering the samples belonging to 

individual classes computing their scatters and then adding these inter class scatters.  

So, this is what is called within class scatter, and following the similar expression this 

expression m 1 minus m 2 into m 1 minus m 2 transpose. This tells you something like 

between class scatter. So, I can write this expression as W transpose S B W, where this S 

B we will call as between class scatter. Now, we will find that this is W or within class 

scatter. This is symmetric and positive semi definite and so is this between class scatter S 

B that is the property of this scatter matrices and not only that, when I am writing this 

expression as W transpose as P W, where this S B is m 1 minus m 2 into m 1 minus m 2 

transpose m 1 minus m 2. It is nothing but a vector, row vector m 1 minus m 2, sorry this 

is a column vector and m 1 minus m 2 transpose is a row vector.  

So, this is actually the outer product of two vectors. So, as it is outer product of two 

vectors so rank of this scatter matrix S B will be at the most 1, not more than 1. And not 

only that, I can have some more observation about S B or I can have some more 

observation about S B W. You will find that when I consider this part. Yes, so this 

portion m 1 minus m 2 transpose W, this is the inner product of two vectors. Because this 

is a row vector, this is a column vector of same dimension.  

So, this term is inner product of two vectors. As it is inner product of two vectors so it is 

a scalar, and when this is scalar this total term m 1 minus m 2 into m 1 minus m 2 

transpose W. This being a scalar, this whole portion will be a vector and the vector in the 

direction of m 1 minus m 2. So, when I am writing this as S B W you find that this S B 

will be a vector in the direction of m 1, sorry S B W will be a vector in the direction on 

m 1 minus m 2, because S B W is nothing but this, right?  

So, this S B W is a vector in direction of m 1 minus m 2. So, we will make us of this 

while solving for or projection direction W. So, I have this different scatter matrices and 

the corresponding expressions. So, once I have this, I have this within class scatter, I 



have this between class scatter and what we said is that is should define a criteria 

function, which is a ratio of measure of between class scatter and measure of within class 

scatter, okay? 
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So, now if I redefine our criteria function as J W is equal to, in earlier case it was m 1 

minus m 2 square upon m 1 tilde minus m 2 tilde square upon S 1 tilde square plus S 2 

tilde square, right? And we have found that this m 1 tilde minus m 2 tilde square is 

nothing but W transpose S W W and S 1 tilde square plus S 2 tilde square is nothing but 

W transpose S W W. So, I get an expression of this criteria function J explicitly in terms 

of W is given by W transpose S B W upon W transpose S W W, where S B is between 

class scatter and S W is total within class scatter.  

So, what I have to do is we have to maximise this ratio by varying the vector W. And W 

gives you the projection direction and that is the tedious mathematics. So, without going 

for tedious mathematics, let us see what is the solution. So, S W which will maximize 

this ratio must satisfy S B W is equal to lambda S W W for some constant lambda. So, 

the W which maximizes this ratio must satisfy this condition for sum constant lambda 

this expression. This ratio is known as generalized Rayleigh coefficient and this 

expression S B W is equal to lambda S W W. It is nothing but a generalized Eigen value 

problem.  



So, we find that if S W is non-singular then this expression will be simply in the form S 

W inverse S B W is equal to lambda times W. So, this is our well known Eigen value 

problem, where this W is nothing but Eigen vector of S W inverse S B and lambda is the 

corresponding W is the Eigen vector of S W inverse S B. And lambda is the 

corresponding Eigen value, but we can simplify our solution instead of trying to solve 

the Eigen values and Eigen vectors simply, because of the fact that S B W as we said that 

this S B W is a vector in the direction of m 1 minus m 2. 
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So, by using this and from the relation that S B W is equal to lambda S W W I can find 

out what should be the direction W, because as I said the scale factor of W is not much 

important. What I want to see is what is the direction of W, that is my projection 

direction. So, from this you can easily find that W is nothing but S W inverse m 1 minus 

m 2. Why is it so? Because as we said that S b w is a vector in the direction of m 1 minus 

m 2 so I can write this S B W as sum scale factor K times m 1 minus m 2. Because it is a 

vector in the direction of m 1 minus m 2, right?  

So, I can write this as sum scale factor K into m 1 minus m 2 that is equal to lambda S 

W, lambda is a constant. So, I can put this constant under this constant K, because it 

simply becomes K upon lambda. So, equivalently I have sum constant K 1 times m 1 

minus m 2 is equal to S W W which clearly says that this W is nothing but sum constant 

K 1 times S W inverse into m 1 minus m 2 is it. And as I said that this scale factor is not 



that important to me, because I am interested in the direction of W. The scale factors will 

indicate that how much will be the separation between the two classes and in the 

projected domain how the points will be distributed.  

If I increase the scale factor, separation will be more. The points will be more spreaded if 

I reduce the scale factor. The separation will be less points, will be less spreaded. So, 

both of them the separation between the classes as well as the variance in the projected 

domain, both of them vary simultaneously depending upon the value of K in the same 

scale. So, this scale K or K 1 is not that important. What is important is what is the 

direction W. So, as such I can ignore this scale K 1 and if I ignore this scale K 1, I 

simply have W is equal to S W inverse into m 1 minus m 2. Where this S W is total 

within class scatter and m 1 minus m 2 is a vector in the direction of line joining m 1 and 

m 2, right?  

So, if I use this projection direction for projecting the data into lower dimensional space, 

I get I can maintain the separation among the classes and features data for classification 

purpose. However, this particular projection may not be the best in terms of data 

representation as far as minimum squared error is concerned. So, what I have done is till 

not is a two class problem, and your classification design gets complete because what I 

have done is from multiple dimension. I have projected onto single dimension and in the 

single dimension I have to find out a threshold so that if this one dimensional vector. So, 

the scalars are less than the threshold, I will put them into one class. If it is more than the 

threshold, I have to put them into another class.  

So, I have to determine the threshold value that is all, and the classifier which makes use 

of this concept is as I said is called features classifier or feature linear discriminator. 

Now, when I have seen number of classes, I have to extend from two class problem to C 

class problem. And it can be shown that in that case it simply becomes C minus one 

linear classifiers or the projection that now I am taking into one dimension. I have to take 

projections onto C minus 1 number of different directions.  

So, the problem remains the same, simply it is extension from two dimension to C 

dimension or the dimensionality of the feature vectors. Here it is one dimensional feature 

vector and there we have to go for C minus one dimensional feature vector and obviously 



I will gain if C minus 1 is less than D. Where D is the original dimensionality of the 

feature vectors, and C minus 1 is the reduced dimensionality of the feature vectors.  

So, we have discussed about this dimensionality problem and two ways to solve to tackle 

the dimensionality problem. One approach tries to find out a projection which is the best 

in terms of data representation that is the principle component analysis approach. And 

the other approach that is this M D A or multiple discriminant analysis is the one which 

is again a projection onto a lower dimensional space. But it tries to guarantee that when 

you take the projection, the separability of the feature vectors between different classes 

that will be maintained which is not guaranteed by principle component analysis. So, we 

will stop here today. Next day we will start some other topic. 


