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Lecture - 37 

Spectrum Estimation–Parametric Methods 

 

So, today we will be considering as I told you in the last part of yesterday’s lecture. I will be 

considering parametric method of spectrum estimation that is spectrum estimation by 

modeling. And I have already told you the elementary ideas of modeling that is you assume 

that the process is generated by passing a white sequence through a rational LTI system of 

transfer function saying z which can be all pole 0 or pole 0 both. And therefore, the power 

spectral density of the received sequence would be nothing but mod square of h e to the 

power g omega; h e to the power g omega being the transfer function.  

 

So, mod h e to the power g omega square into some constant. The constant denotes the input 

power spectral density now input is white. So, input power spectral density is flat which is 

equal to some constant. So, in this case the entire spectral density estimation was done to 

identify that model or a  estimating the parameters of those model. You know the coefficients 

that occur in the numerator and denominator collinearly and exist. Now, before I go further 

into that I mean I told you yesterday also that there is the justification for you know making 

this assumption. And going by this method and that comes from what is called Wolds’s 

decomposition of famous theorem by a great statistics person.  
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This was Wolds’s is called Wolds’s. This says that given any random sequence sn you can 

always decompose it into 2 parts 1 is xn. And other is say zn where xn is called non-

deterministic part and this is called deterministic part. And these 2 are mutually uncorrelated. 

What is deterministic part n also is a random sequence xn is a random sequence then if 

something is random what is deterministic about it. That is a very you know that that is a kind 

of puzzling question. That zn is random, because it is coming from it is basically originating 

from the given random sequence sn.  

So, what is why do you call a deterministic what is meant by a deterministic random 

sequence. Well a random sequence is called deterministic, if any current sample say za can be 

accurately given or is given directly by a linear combination of all its past sample. All or part 

of its past sample that is if zn can be written as a linear combination of z n minus 1 z n minus 

2 z n minus 3 dot dot dot up to z minus infinity.  

That is if zn is equal to some c 1 times zn minus 1 plus c 2 times zn minus 2 plus c 3 zn 

minus plus dot dot dot dot. Then that means, that from the entire past of that process zn I can 

accurately describe zn without any errors. Such kind of process is called deterministic 

process. To give you an example suppose you take zn to be a sinusoid of this form where A is 

the amplitude is random. What is sin 2 pi by N into n? It is a discrete sequence which 

sinusoidal sequence is periodic over a period N and the amplitude A is A.  



So, every time you perform an experiment you find this sinusoidal sequence, but amplitude 

changes, because amplitude is random. This process according to me is a deterministic 

random process is random, because amplitude A is random. So, sometimes it can be very 

small sometimes it can be very high. So, you get sinusoids from various amplitudes in that 

sense it is random. But, see if you know all the samples of a particular zn sequence belonging 

to a particular period take 1 period of zn.  

Suppose, you know all the samples then you can accurately describe all other samples in 

terms of the samples taken over a period, because of the periodicity. Because, whatever you 

observe in 1 period they only repeat. So, if you know all the samples within 1 period then you 

can predict any future sample or past sample accurately without any error. Instead of this you 

could have also have a phase here some phase you know. And that phase could be a random 

variable or both amplitude and phase could be random variable, but still that does not take 

away the periodicity.  

So, if you still know the samples within the period you know everything about the process. 

You know I mean I mean you know all the other samples of the process accurately. This kind 

of processes is called deterministic processes. If you take just spectral analysis actually they 

give rise to what is called line spectra, that is you know just a series of impulses derived delta 

function or impulses in the frequency domain.  

Then, obviously if you take sinusoidal function like this and if you take a autocorrelation 

function which is also sinusoidal. Then take its Fourier transform dtft. You will; obviously, 

get impulse functions, because any sinusoidal function if you a Fourier transform give rise to 

impulses. So, in general this deterministic random part zn that give rise to lines. That is, 

impulses in the spectrum for the time being we will not be considering this zn.  

So, we will considering we will concentrating, now purely on x of n that is which does not 

have any line spectrum. What is xn? Xn is the purely non-deterministic part. That means 

giving any xn you cannot write it exactly as a linear combination of all its past samples. That 

is if you want to predict x of n from all its past samples as a linear combination you cannot 

predict xn with 0 error. There will be some error of non zero variants or non zero power that 

is some non zero error I mean I would not care non zero error, because error for a particular 

case could be 0, but there is that error will be random.  



So, its power variance sometimes it could be 0. So, sometimes it could non-zero, but the 

variance which is important you know that variance will be non-zero. Such a process is called 

non-deterministic process and for all this spectrum estimation by the parametric modeling 

parametric method will be concentrating on such non-deterministic part. I will not give you 

the proof of this Wolds decomposition, but I will consider this x of n. Now, since I am talking 

of predication and all that is better that, we again take resort to our previous notion previously 

described notion of is Hilbert space of random variables.  
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May be to make life simple we can assume all random variables including the random 

sequences xn to be 0 mean. So, Hilbert space of this is a set of this H set for all possible 

random variables 0 mean I am not writing 0 mean again and again it is 0 mean. Then there is 

rule of addition that is for all x y belonging to H. You know what is this x plus y which is z 

belonging to H is called we say we say that is closed under addition. What I mean be x plus y 

equal to z?  

It is the usual way we add 2 random variables to generate another random variable. But since, 

I am considering a set of all possible random variables the resulting variables if you call it z 

stills belongs to H. So, when you add 2 elements of this H the elements sometimes are called 

vectors they are not like position vector, but just right terminoginally they are called vectors. 

So, if you take any 2 vectors that is any 2 random variables belong to H there is rule of 

addition involving the 2. And what you get of the addition that also still belongs to H.  



Similarly, there is a rule of scalar multiplication. If you take c c could be a real or complex 

number. In fact, for our case we will be assuming you know the associated field of numbers 

to be complex. So, c is it is any complex number. So, c times x if you call it say z prime that 

also belong to H. C is any complex number and there is rule of scalar multiplication. In the 

usual way like that we know if there is x is random variable and c is a scalar what is c x is 

again a random variable.  

So, in each trial whatever value x takes that gets multiplied by c and that is the value assigned 

to z prime for that particular trials that is a physical meaning. Now; obviously, z prime also 

should belongs to H, because H consist of all possible 0 mean random variables mean is 

always 0 in all these operations. And the range is to 0 random variable 0 random variable. I 

will put a bar here to indicate it is a variable vector 0 random variable it means it is such a 

random variable which always takes 0 value.  

We say that x 0 value probability 1. When you add 0 to any x what you should get back is x 

that is a property of 0 vectors. Then given any random variable x there must exists is this 

negative; there must exist given x there exist this is there exists say x prime element of H. So, 

that x plus x prime is equal to this 0. In that case x prime is called this means x primes is 

called actually negative of x. And we denote it by minus x. Obviously, I explain I am what is 

the explain physically. Whatever, value x takes negate that that value is assigned to x prime.  

So, x prime is that kind random variable. That is physical meaning of 0 all rules of you know 

addition as multiplication like associativity distributive commutativity and all that they work 

there values here also there is a definition of Hilbert space. Like ordinary like our 

conventional 3 dimensional vector spaces involving I vector j vector k vectors. You know 

here also we define something, something called a dot product which in a general says is 

called inner products rather dot product.  
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So, for any x x for xy belonging to H we define the dot product like this, this is inner product 

and we define it like this xy star. And x we takes actually there are certain basic properties 

that this inner product should follow it you know those properties are satisfied.  

So, I will not go into that I just define inner product and if you take the inner product with 

itself it gives you mod x square variance. That for those properties are simple e of and x 

comma y should be conjugate of y comma x that is satisfied here Exy star is Eyx whole 

conjugate Ey star x star whole conjugate. So, this is actually this should be yEx star this is 1 

property x with x must be real greater than equal to 0 equal to 0 if x is the 0 vector only then. 

If x is on the 0 vector even if you take take 0 value some times, but on some other some other 

occasions it does not take 0 values. Then mod x square can never be expected value of the 

mod x square can never be exactly 0. So, it is 0 only if x is a 0 random variable of that Hilbert 

space otherwise not. 

And the other thing is cxy should be c times x comma y that is initially says y if here instead 

of x you call it cx c can be brought out. And then linearity x 1 plus x 2 comma y should be x 

1 y plus x 2 y that is again satisfied by this inner product by this correlation definition if it is 

drawbacks if you put x 1 plus x 2 within bracket times y star you can break it up and we can 

write in this form. So, all these conditions are satisfied if 2 vectors if x y that is equal to Exy 

star 0 then we say x and y are orthogonal. That is in case they are uncorrelated also. So, if 

random variables are uncorrelated 2 0 mean random variables are uncorrelated they are 

orthogonal.  



A set of vectors say finite set of vectors will be linearly independent if no vector can be 

written as a linear combination of the others. If that is suppose you are given 2 vectors 3 

vectors x 1 x 2 x 3 that is 3 random variables. If you cannot write x 1 as a linear combination 

of x 2 and x 3 or x 2 as a linear combination of x 1 and x 3 or x 3 as a linear combination of x 

1 and x 2 then this is a linearly independent set.  

If it is not if any of them is linearly expressible as expressible as a linear combination of the 

other two; that means, this is redundant. So, this can be thrown away other 2 can be kept and 

again you examine the linear independents of those 2 and so on and so forth. You can reduce 

the set to as smaller set where the smaller set is linearly independent. We all know this, 

because we have discussed all this the earlier. So, I will not go too much into it.  
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Then suppose, you consider just a set x 1 x 2 dot dot dot dot dot dot the set can infinite the set 

is then linear manifold is actually we also called span of s. It means set of all possible linear 

that is I would say finite linear combinations combinations actually we do not it all this, but I 

am just take its opportunity to introduce few basic notions to you people. Finitely the set of 

all possible finite linear combinations of the elements of s that is what is this linear manifold 

a phase. That is it can consist of all the variables x 1 x 3 dot dot dot then may be c 1 x 1 plus 

c 2 x 2 or c 2 x 2 plus c 3 x 3. That is linear combinations involving 2 variables linear 

combinations involving 3 variables linear combination involving 4 variables set of all such 

finite linear combinations that is called linear manifold.  



That is a vector space is it is, because if you take any 2 elements of that linear manifold 1 is 1 

linear combination another is another linear combination. You add that 2 you get another 

finite linear combination. So, it is closed is it not? So, you still remain within the linear 

manifold, because linear manifold consist of set of all possible finite linear combinations. So, 

if you take 1 entry of linear 1 element of the linear manifold which is some linear 

combination of these elements. And take another element of this linear manifold which is 

again another linear combination of the elements of s.  

Then add that 2 resulting thing also is a linear combination of the element some linear 

combination; some new linear combination of the elements of s. So, it also belongs to linear 

manifold. So, linear manifold is a vector space similarly if you take any element of linear 

manifold. That is, some linear combination finite linear combination of the element of s 

multiplied by scalar resulting thing is still a linear finite linear combination of the elements of 

s.  

So, again it belongs to linear manifold which is closed. So, I you can verify all properties 

linear manifold is a vector space. It consist of 0 element, because it takes it manifold means 

set of all possible linear combination of s means combination of the elements of s means each 

element of s also belongs to linear manifold. So, the 0 also belongs if even if the 0 does not 0 

is not in s you can multiply x 1 say by 0 scalar 0 you get 0 so on and so forth. Then, but 

remember linear manifold given consist of any series infinite series that, x 1 plus x 2 c 1 x 1 

plus c 2 x 2 plus c 3 x 3 plus c 4 x 4 dot dot dot dot up to infinity.  

It only consist of finite linear combinations, but for dealing with these problems you know we 

need also we need to handle also a thing like series; infinite series involving: x 1, x 2, x 3, x 4 

like that how to handle them. Suppose, you have got a series like this ci xi ci r is a sequence 

of scalars and xi is belongs to s. So, I equal to say 1 to infinity. Now, any set infinite linear 

combination actually it is not define it is not belonging to a linear manifold linear manifold 

consist of only finite linear combinations.  

The way we write is we write it like this some finite sums you know s 1 you take c 1 x 1 s 2 

take first 2 terms c 1 x 2 1 c 2 x 2 s 3 that is c 1 x 1 plus c 2 x 2 plus c 3 x 3 dot dot dot dot. 

You see s 1 s 2 s 3, they are all finite linear combinations of the elements of x. So, s 1 s 2 s 3 

s four they all belong to linear manifold. And what is the limit of the sequence of s 1, s 2, s 3, 

s 4. That is what is given by this infinite summation, because from s 2 to s 3 when we go we 

get 1 extra term s 2 to s 4 another extra term.  



So, as I go towards infinity I get all the terms of this infinite summation. So; that means, this 

sequence s 1 s 2 s 3 each element here s 1 or s 2 or s 3 or s 4 each of them belongs to the 

linear manifold. Now, if the limit also belongs to the linear now s 1 s 2 s 3 s 4 dot dot dot dot 

this sequence each element belong to linear manifold. Now, this its limit is limit of the 

sequence is this infinite sum. Infinite sum is not part of linear manifold, because their 

variables consists only a finite combinations.  

Then what you say we not we not only keep the linear manifold you know want to expand it. 

We want to add some more some more variables or some more points to the linear manifold 

to make it bigger and those points will be called a limit points. Limit points are what you 

know I cannot give you all details here. But, just for mathematical correctness I am saying all 

these limit point.  
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Limit point means, if you take any converging sequence limits of limit of any converging 

sequence in LMs LM means linear manifold this is LM s. That is if you take a sequence in a 

linear manifold like: s 1, s 2, s 3 and is giving the that they are converging that is s. It 

becomes bigger and bigger s 1 s 2 s 3 s 4 s hundred s billion s 10 billion as you go further 

further what happens that you basically converge. That is I mean even if you add new terms 

is not changing much like that if it is converging.  

If that be, so that, the limit of that converging sequence is called limit point. Now, if we add 

all the limit points that is append not add not addition we append the set of all limit points to 



this linear manifold of the base. Then what we call, what then it is called the closure of s? I 

will also call it the vector space of s the closure of s.  
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That is denote it like this, it is not closure you can say closure fine. We denote it like this 

LMs first linear manifold and then put the bar. That is take the closure of that is nothing, but 

union linear manifold of s union limit points of LM of s. Then within this closure thing we 

can write you know if you from any sequence any converging sequence taking the elements 

of the LMS. Or even this closure of s and the sequence you know is infinite it is an like if you 

form a infinite sum that is the series.  

We can happily write we know what its meaning that we can given a series we can always 

write in the form of partial sums like: s 1, s 2, s 3, s 4 like that that is the sequence. And since, 

it is converging we know its limit limit also must belong to this closure, because all the limit 

points are included in closure. So, we know what it means it is not defined. So, just for 

mathematical correctness I did so much. Now, I come back to the vector spaces; that is 

Hilbert space of random variable issue.  
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We are now back to this random deterministic non deterministic random process xn. 

Suppose, you want project you want to predict xn what we do like you know the conventional 

vector space of this is a vector v. And this is 1 space say u. You want to u you known it span 

by some vectors you want to predict v in the best way from u. What you do you take an 

orthogonal projection? So, this is your prediction this is the original 1 this is the error. Error 

is orthogonal to this plane or to this space u same physiography works here. That theory for 

this I am not doing what I am saying is this suppose xn as I told you xn is purely non 

deterministic.  

So, xn cannot be xn if this is like you know this is xn. This is xn and this is the past of past of 

xn that is it consist of xn minus 1 xn minus 2 xn minus 3 all the closure of that set. If you take 

a set if you take a set say s or may be past if we take we call it past is this set xn minus 2 dot 

dot dot. Then you take linear manifold of that this set and closure of that. This is given by u 

here. And you want to project you want to obtain xn as a best possible linear combination of 

all the elements of this past.  

So, we will have a best possible linear combination like may be ci xn minus I equal to 1 to 

infinity. You see it is an infinite sum, but it is no problem it is perfectly defined, because I am 

taking the closure that is it not only the linear manifold of the set. But it also includes all the 

limit points. So, this infinite sum is defined and this must be the best this coefficient should 

be chosen in the best way. So, that this is the orthogonal projection that is the if you take the 

error between xn and this projection you can call it x prime n this part this is x prime n.  



Then the error en this error, the error is orthogonal to you can say orthogonal to each element 

belonging to past and therefore, orthogonal to this closure of LM past. Only then only then 

this error is minimum in this variance. If it is not orthogonal you know from geometry if the 

error is not orthogonal if error was like this. Suppose, if the error were like this and this much 

is your prediction. Then there is off course length of this is more than the length of this. So, 

error variance in this other case is much more.  

So, errors is minimum only when minimum in norm minimum in variance only when its 

orthogonal to the space on which the prediction is made. Same thing we will do here we will 

assume that xn is now projected on the past that is on the set LM linear manifold of past and 

closure of that. And the best prediction is x cap n given by summation of ci xn minus i, i 

equal to 1 to infinity. So, the error is minus x cap n.  
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This error is en this is orthogonal LM, but this orthogonal that is uncorrelated to orthogonal 

to the entire past. So, it is uncorrelated that is its inner product or dot product with xn minus 1 

or xn minus 2 or xn minus 3 all the inner products are 0. So, it is orthogonal. Similarly, so cap 

similarly I can do the same thing for x for xn minus 1. I can get that is if I predict xn minus 1 

if I try to predict x minus 1 from the past that starts at xn minus 2 then xn minus 3 xn minus 4 

and all that.  

I get another linear combination of those elements that is my x cap n minus 1. And the errors 

is now you call it en minus 1 that error is again orthogonal to that error is orthogonal to what 

orthogonal to xn minus 2 xn minus 3 xn minus four like that. Now, remember 1 thing if we 



know what is x is a first equation we know what is x cap n ci x n minus i. Here take out the 

first term c 1 xn minus 1 this xn minus 1 can be written as x cap sorry yeah that is right. Xn 

minus 1 can be written as en minus 1 plus x cap n minus 1.  

Then x cap n minus 1 is again a linear combination mean be say di xn minus i, but I will start 

at 2 up to infinite. If you replace xn minus I by this, what you get what you get is is you get 1 

term involving en minus 1 and the other terms starting at xn 2 xn minus 3 xn minus 4. Again 

xn minus 2 we replace by the same way you will get a term involving en minus 3 so on and 

so forth. So, that is I just I am just cleaning up and explaining.  
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If you take this first equation xn you take this on the left side is en plus. So, I take out the first 

term c 1 xn minus 1 plus the rest ci xn minus I i equal to 2 to infinity and then xn minus 1 

again I write as sum I equal to 2 to infinity. This is the projection may be some di xn minus i 

plus the error en minus 1 and plus the other term this term. You see here you will have en 

then some coefficient times en minus 1 and terms involving xn minus 2 xn minus 3 xn minus 

4.  

One more step xn minus 2 you project from project on its past. I will do the same exercise 

you will get again terms like en en you this right hand side will have en e 1 n en minus 1 en 

minus 2. And terms like xn minus 3 xn minus four xn minus five like that so on and so forth. 

So, essentially xn; given by what? If you do this exercise again and again I hope you are 

understanding this I erase this repeat sort I mean briefly what I am doing. First I wrote this 



error en as xn minus x cap n x cap n was a linear combination of the past of xn out of that I 

pull out xn minus 1.  

So, xn the other terms are kept as it is. Xn minus 1 again if you project on its past the error is 

en minus 1. So, xn minus 1 can be written as a summation of the error and the projection 

projection start at the xn minus 2. Now, if you simplify this we will get 1 term involving en 

another term en minus 1 and past xn minus 2 xn minus you go on doing it again and again. 

So, we will keep getting a I mean, I mean terms like you know en en minus 1 en minus 2 en 

minus 3 as a linear combination. Only en will have coefficient 1 others will have some non 

zero coefficients.  
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So, that means, xn can be written like some linear combination of say h 0 en. So, h 0 is 

actually 1, then another h 1 en minus 1 h 2 en minus 2 plus dot dot dot dot. I will of course, 

write h 0 is 1 as you seen here which is nothing but, a convolution between the sequences hn 

that is if you write hre n minus r r from 0 to infinity. As though the sequence en has been 

passed through a linear time causal linear time in variant system of response hr or hn.  

Only thing is you see en we have seen is orthogonal that is uncorrelated to all the past of xn. 

Therefore, en is orthogonal to xn xn minus 1 xn minus 2 so and so. Therefore, en is also 

orthogonal to en minus 1, because what is en minus 1 en minus is an error between xn minus 

1 and its past prediction. So, all the terms they are they are orthogonal to en therefore, en is 

orthogonal to the difference between xn minus 1 and x cap n minus 1.  
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That is we can write en orthogonal to what all the past; that means, I can also write en is 

orthogonal to what xn minus 1 minus its prediction, because prediction comes from further 

past n minus 2 n minus their linear combination. So, all the terms on this in this bracket 

involved xn minus 1 xn minus 2 xn minus 3 like that. So, en is orthogonal to each of them. 

So, en is orthogonal to the error and this error is en minus 1. And you can record simply 

apply this en minus 1 is also orthogonal to en minus 2 en minus 2 is orthogonal to en minus 3 

so on and so forth.  

Orthogonal means, uncorrelated; that means, en is an uncorrelated sequence which is also 

called white sequence off course 0. Because, the basic data from which they are generated 

they are 0 mean. So, it is a 0 mean white sequence which is passed through a linear time in 

variant system. What kind of system causal infinity impulse response system and that 

generates xn that is the proof. So, any non deterministic process x of n can be given directly 

as I mean is always describable accurately, as though it is generated by passing a white 

sequence.  

So, 0 mean white sequence through a causal IIR filter of impulse responses soon here by hn. 

This is very important this gives rise to the idea of modeling. That in that case can I now 

approximate that infinite impulse response causal in causal IIR filter by additional model az. 

Where, az is a ratio of 2 polynomial say z numerator polynomial denominator polynomial. If 

it is having the both numerator and denominator polynomial we call it ARMA autoregressive 

moving average model or equivalently pole 0 model.  



Otherwise, we have got the autoregressive model that is AR model or we have the MA that is 

moving average model. In our case, we will be considering AR model. So, now, we have got 

a full justification for going for this modeling process. So, we will be assuming we will be 

approximating that that actual sequence hn.  
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If you take it is z transform z transform is approximately equal to 1 plus this is a p th model I 

am taking p th order model. This coefficient is 1 and it is a causal system we should let z 

equal to infinite this set become 0 and any transfer of causal transfer function. If you let z 

equal to infinity what you get is h 0 when h 0 1. So, that value is 1. It is basic dsp for a causal 

transfer function hz if you let z tend to infinity what happens what is hz. Summation hnz to 

the power minus n starts at 0 goes up to infinity.  

So, h 0 plus h 1 z inverse plus h 2 z inverse 2 plus dot dot dot dot. Here if you j allow z to go 

to infinity all terms disappear except for the first terms which is h zero. So, you get is the h 0. 

It is expression if you let z tend to infinity all this a 1 z inverse a 2 inverse 2 . And all that 

they disappear only 1 by 1 results and this is 1, because h 0 was 1 as we saw last in the 

previous slide in the previous page. So, if we can approximate this by choosing the model 

order p correctly. And if their approximation is clear enough or good enough then our 

problem is simply to estimate a 1 to a p from the given data record of xn and that is the AR 

modeling problem.  
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So, here what from now onwards what I will be doing, I will be assuming now that xn has 

been generated by passing such a wide sequence maybe en through an all pole system. So, in 

time domain what does that equation mean? You have something like this. You remember 

what is the transfer function 1 by 1 plus that is xz by Ez Ez is the z transform of the en xz is 

the z transform of xn. And this was dot dot dot plus ap z inverse p; that means, xz into this is 

equal to Ez into 1 in time domain.  

It means xn plus a 1 a 1 z inverse xz means a 1 xn minus 1 plus dot dot dot ap xn minus p is 

equal to this 1 it is not z should be 1 you can take it a co coefficient b 0 here. But I will make 

it 1, because even if you put b 0 that b 0 can be absorbed into en. So, b 0 into en you call it e 

prime n only thing it will change is a variance of pn. So, is variance in either cases are 

unknown I will have these coefficients b 0 absorbing en. And you call it e prime n and why e 

prime again bring this a same notation en.  
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So, that is why I can afford to maintain a constant 1 here. So, it is simply en. And en is what? 

En is orthogonal to uncorrelated with all the past of xn and therefore, uncorrelated with xn 

minus 1 xn minus 2 up to xn minus p. Now, given the data record of the xn if I can find out a 

1 to ap that is called AR modeling problem. Associated with this it is also the interesting 

problem of linear prediction. Linear prediction in in the case of linear prediction I do not care 

what whether xn has a model or not.  

What I say is this I want to project xn into the space spanned by some finite number of past 

samples xn minus 1 up to say xn minus p. There is a vector space spanned by this a set of all 

possible linear finite linear combination after finite linear combinations, because we have got 

only finite terms that space. If you project it on this that projection will be a linear 

combination and the error is en. In that case, what is the error that is projection minus the 

linear combination for the projection?  

So, xn minus that linear combination I write as I put a minus here just for convenience x n 

minus I i equal to 1 to p this is the projection this projection x cap n. So, what is en xn minus 

x cap n which is minus minus plus which becomes equal to this. So, in the linear prediction 

problem also the error en is orthogonal to to whom to xn minus 1 minus 1 up to xn minus p 

not the entire past. In an AR modeling problem en is orthogonal to the entire past not just to 

xn minus or up to xn minus p, but en terms further past. In the linear prediction problem 

which is a different problem from modeling en is just orthogonal to terms of from xn minus 1 

up to xn minus p.  



But, whether you are dealing with linear prediction problem or AR modeling problem I will 

be using only the orthogonality between en and this few terms xn minus 1 xn minus 2 up to 

xn minus p. Since, everything else is same identical model equation and all the 2 problems 

turn out to be same, because I will not be using in the case for AR modeling problem. Even 

though en is orthogonal to further past terms xn minus p minus 1 xn minus p minus 2 dot dot 

dot dot I will not be using this.  

I will be using only the orthogonality between en and xn minus 1 xn minus 2 up to xn minus 

p as I will be doing in the linear prediction problem also. So, both these problems will gives 

rise to same set set of equation as we will see now and those equations have to be solved. We 

know that en is orthogonal to whom xn minus 1 to xn minus p.  
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So, what I do I make use of the orthogonal, I know that x I can write xn minus k to e star n. 

And by the way if you per permit me I will put a subscript p here, because if it is linear 

prediction. What is the order of the prediction? I am taking only p past terms. If it is an AR 

modeling problem what is the model of the what is the order of the AR model chosen p, if 

instead of p if it is p plus 1 and after all I do not know the exact model order.  

So, could have a also taken further term some more terms and I would have got another 

order. So, whatever equation I have the corresponding error and all that would have been 

different there the white sequence have been different there. So, just to indicated that a p th 

order model problem or p th order linear prediction has been considered I just put a subscript 



p in all these. And here also or maybe I will do this little later just a minute, I will do the 

same thing little later when further clarity will come.  

So, for the time being let it be like this and if you take this this is the inner product between 

xn minus k for k equal of course, 1 dot dot p. So, xn minus 1 e star n that must be 0, because 

that is what inner product xn minus 1 e star n means actually E of en x star n minus k star 

which is nothing, but inner product between en and xn minus k and then star. And this n is 

orthogonal to xn minus 1 xn minus 2 up to xn minus p. So, this is 0 conjugate of 0 is zero. So, 

this must be 0.  

If I write it now if instead of en I substitute the left hand side here. What I get? E xn minus k 

into xn plus plus star that is, equal to 0. If you work it what we will be getting first term will 

be what. We started k equal to 1 say and then k equal the 2 then up to k equal p we will see 

some beautiful things. This is true for all k from k equal to 1 up to k equal p. So, let us start 

with k equal to 1 case first then k equal 2 so on and so forth.  

(Refer Slide Time: 45:38) 

 

So, for k to 1 first term will be what xn minus 1 into xn conjugate expected value of that, that 

is is equal to what? R star I am putting the lag in the subscript r star minus 1 why. You all 

know this, but still for your sake I am saying. What is the first term? X star n xn minus 1 right 

which also we can write as we can also write as E of I made a mistake here x star n minus 1 

star.  



So, it is actually r not r minus 1 star r 1 star am I correct or may be if you permit me I delete 

the entire thing in a slightly different way that is mathematically more convenient to handle. 

We have because of the orthogonality, because of the orthogonality; what we have, I write 

the orthogonality in the other way. In fact, that is simpler way than what I did the earlier.  
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So, E of orthogonality means, I earlier wrote xn minus k what I wrote earlier was xn minus k 

e star n that was 0. But that also means that was actually bit roundabout I would I can rather 

take en here and x star n minus k which is inner directly product no conjugate anywhere. 

Then, that is equal to 0 for k equal to 1 dot dot dot p. Now, if I put here this terms xn then 

what I get for k equal to 1 for k equal 1 what I get simply r 1. Then for k equal to 0 for k 

equal to 2, for k equal 1 I am taking the first term xn then x star n minus 1.  

If you take that correlation it is just clearly r 1 second time is n minus 1 xn minus 1 x star n 

minus 1 that is r 0 and then xn minus 2 I am just writing the correlation terms side by side 

first. Xn minus next 1 is a 2 xn minus 2. So, we take the xn minus 2 xn minus 2 star xn minus 

2 x star n minus 2 n minus 1, because k equal to 1 case. So, that will give rise to give rise to 

what? X n minus 2 i I can write down, but just for your benefit I am working out those. This 

is permanently n minus 1 in the summation this next term I am considering a 2 xn minus 2.  

So, the term is xn minus 2 xn minus 2 star xn minus 1. If you take the expected value what 

you get is simple correlation for the lag minus 1 minus of this right. So, what is that? R star 1. 

R star minus 1 if you call this index m I mean whatever index, then this minus this; n minus 2 

minus within bracket n minus 1, so it is minus 1. Then r star minus 2 dot dot dot dot r star 



when last term if you take this equal to what xn minus p that times x star n minus k n minus 

1. So, this will be minus of p minus 1.  

Then I put it in this kind of form 1 a 1 a 2 dot dot dot ap that is equal to this row times this 

column that is 0 the inner product is 0. Then take k equal to 2 case k equal to 1 and k equal to 

2. What happens in k equal to 2 case? In the k equal to 2 case I have got about 5 minutes left. 

So, I just we will develop this equation and call off today. K equal to 2 case for k equal to 2 

what do we have same thing you know I mean just instead of just we have x star n minus 2. 

So, this becomes r 2 r 1 xn into x star n minus 2 that gives rise to r 2.  

Then next 1 is a 1 xn minus 1 x star n minus 2 that will gives rise to r 1 r what times a 1. 

Then r 0 and this will continue will be so on and so forth. What is the last or k equal to p case 

for k equal to p case that will be rp rp minus 1 dot dot dot here will be r 0 here all zeros. So, 

we see we get a set of equations whether you are doing AR modelling or linear prediction. 

You will get the same solution because; I am only using the orthogonality between en and xn 

minus 1 up to xn minus p which is valid in both cases.  

So, equation is valid this equation is valid for both the cases. How to solve the equation 

actually right hand side is all 0. But, do not think that this equation is like ax equal to 0 means 

x equal to 0, because top coefficient here is 1. So, 1 into r 1 that you to take to the right hand 

side, so a 1 into r 0 a 2 into r 1 r minus 1 star dot dot dot you get 1 1 side. R 1 into 1 that goes 

to right hand side. Similarly, from the second equation also r 2 into 1 r 2 that goes to right 

hand side unknown quantities a 1 to ap they remain on the left side. You solve it.  

I am just writing in this kind of form , but this equation you know I mean solving this the you 

know there are excellent techniques to solve this equations. And there is a famous algorithm 

called Levisohn Durbin algorithm this equation actually is called may be I just modified little 

bit. Just a few lines what we have suppose, I started at k equal to 1.  
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 But suppose I do this en xn minus k and I also take k equal to 0 case k is a say equal to 0 that 

case I take. This is no longer orthogonal n is orthogonal to xn minus 1 up to xn minus p this is 

not orthogonal then what it is. This will be what, what is xn minus k xn minus k has got 2 

components and their summation. What is the, what is one component? One component is a 

projection k equal to 0.  

So, for the time being I can put k equal to 0 actually there is no point in keeping a k here. So, 

same here you do not have any k. Another is en itself projection and the error together forms 

x star n xn we have putting a star we have putting the star. Now, we see en out of this is 

orthogonal to x cap n, because x cap n belongs to the past. So, what results is e of expected 

value of en into e star n that is E of mod en square which is the error variance sigma we call it 

actually. I will I will put a notation I will explain later it is called forward prediction, because 

I am predicting xn from the past.  

So, from past into future is called forward prediction and order p p th prediction or p th order 

modelling. So, sigma p f square this is just a notation it is a constant. Now, if you really 

replace here n by that expression xn plus a 1 xn minus 1 plus dot dot dot dot to ap xn minus 

pn and carry out this product. You will see; you will get this term r 0, because xn into x star n 

that gives rise r 0. Then r 1 r 2 dot dot dot up to r minus p star and this product will give rise 

to this term sigma pf square.  

So, how to solve this equation first forget about the first row, because right hand side top 

quantity sigma f square is also unknown. Because, only thing I know is the data its 



correlation values are r 0 r 1 r 2. I do not know sigma pf square that is the variance of that 

input noise or input white sequence. So, you take from the second row onwards solve it 

whatever value for a 1 up to ap you get put it here. Then take the product between first row 

and this column that gives you sigma pf square, these equation is called Yule Walker 

equation. In the next class, I will be considering first algorithm to solve this Yule Walker 

equations.  

Thank you very much.  
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Lecture - 38 

Autoregressive Modelling and Linear Prediction 

 

So, yesterday we are considering this autoregressive modelling there is a small mistake I 

made which want to correct actually. So, let me re do it again, because I do not remember 

exactly where it was...  
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So, let us redo read with we had a model like this Xn plus summation ai xn minus i, i equal to 

say 1 to p say p th order model you say en. In the case for autoregressive modelling en is of 

white sequence may be 0 mean white sequences. And it is a p th order model it it is an all 



pole model if it to the z transform find out the transform functions are only poles. Alternately, 

we have also shown that even if there is no such model you want to just project you want to 

just predict xn linearly from its past p values xn minus 1 to xn minus p.  

Then xn in the let the prediction coefficients be minus ai then the error will be what is what 

you see here on the left hand side. And that error then also you have got a similar equation. 

So, both linear prediction and AR modelling gives rise to same equation further. If it is linear 

prediction we know en is orthogonal that is uncorrelated with the past p samples. Because, 

what we are the doing is we are projecting x of n orthogonally on the space spanned by the 

past p samples xn minus 1 up to xn minus p.  

The error then because it is orthogonal projection the error will be orthogonal to the total 

plane or total space spanned by xn minus 1 up to xn minus p. So, en is orthogonal to the past 

p values. Similarly, in the case of AR modelling we have see the yesterday that input en 

which is white sequence, because of model is causal and all that. En is orthogonal to all the 

past samples of xn therefore, the past p sample also. Since in the modelling problem where 

we will be estimating or finding out ai is unknown ai's from the given data. We will be using 

only the orthogonality between en and the past p samples.  

It does not matter whether you are solving a linear prediction polynomial or AR modelling 

polynomial you get the same set of equations and same solutions. There we said that how to 

find out these equations, we know this orthogonality E of this is what we did yesterday and 

there I made a small mistake. So, I am redoing in this step, say x star n minus k that is equal 

to 0.  


