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Thebycheff Inequality and Estimation of an Unknown Parameter 

 

So far I mean we have been discussing random sequences. A very important concept in 

that context is that of stochastic convergence, that is I mean classically we have seen in 

mathematics you know that if you are given a sequence x of n, then we obviously 

immediately talk about its convergence whether it converges to something or not. 

Similarly, if you are given random sequence, that is a sequence of random variables, 

obviously same question can come again that is whether it converges to some point or 

not. 

 

So, what is the notation of convergence here, because it is not just a sequence of 

numbers, it is a sequence of random variables. We state various values depending on 

your experiment, right. So, what will be the notation of convergence here? This is very 

important. To get into this in fact, we will not be discussing that. Today just to develop 

the motivation for this how these notions are developed, just took it motivation for this 

topic. We will start at a topic an issue which maybe I should have considered earlier, but 

I mean I did not kept it for this lecture. 
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Now, suppose you are given a random variable x. X is a random variable expected value 

of say x is mu and expected value of x minus mu whole square which is the variance, it 

is a sigma square. Now, what does this mean? You first form a random variable x minus 

mu and square it up. You can call it x prime and then, e of x prime is sigma square, right. 

Now, you can see it means that on a line suppose this is origin. Now, x prime, its 

minimum value can be 0. X can be to the right of mu, to the left of mu, that is x minus 

mu can be positive or negative, but the square of x minus mu which is x prime is always 

positive or 0. It can never be negative. So, its minimum value is 0. That is why x equal to 

mu and as x deviates from mu either to the right or to the left x prime. The value of x 

prime increases. 

 

So, it goes out like this as x takes further and further values, you know I mean goes 

further and further. Diaphragm mean mu its value increases. So, expected value of x 

prime could be somewhere here, and that is if I am able to take the square and if that is 

sigma square. Now, what does that mean that if I am observing x and then, this 

difference x minus mu square, it will take values around sigma square, right. So, in some 

experiments, x prime can value to the left of sigma square and in some experiment to the 

right of sigma square. So, its concentration is around sigma square to the left hand side. 

It can go only up to 0. That means, to the right hand side also, it will not go up to infinity 

because then the average cannot be sigma square finite number. 

 

So, on either side it can go over a range like this. Then, my claim is I mean like this. So, 

then my statement is if sigma square or rather sigma both are positive is a small quantity. 

That means, if suppose a situation like this sigma on sigma square is only this much. 

Then, I can roughly have a range like this around sigma square right for x prime, which 

means x minus mu this variable x prime. In fact, x prime sigma is x minus mu square 

will vary over a small range around sigma square. 

 

So, physically this means that if I am now coming that we have random variable x and I 

am measuring x in the experiment. After experiment I am getting values close to mu 

because a deviation x minus mu, it will be over a small range. It can be positive or 

negative, but its range cannot be much because square of x minus mu which is x prime 

means it is much less which is sigma square. That is much less which means x minus mu 

that is the deviation of x around mu will be within a small range. That means if sigma 



 

square is really small, then if we measure x, we can say that I mean measurements for x, 

they are all coming across mu close to mu. So, loosely you can take even the particular 

measured value to an estimate of in this context an inequality comes to be a failure. This 

is Thebycheff inequality. 
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The probability of this deviation, its mod that is either to the right or to the left rather 

deviation across mu is positive or negative, but the mod value there is a magnitude of the 

deviation if there is greater than equal to some positive constant epsilon. Epsilon is 

greater than 0. So, probability that this deviation has magnitude greater than equal to 

epsilon is always less than equal to sigma square by your epsilon square. That means, if 

sigma is much less compared to epsilon, that is the variance of x is around x is less, and 

the epsilon there is the range of deviation that we are choosing is comparatively larger. 

Then the probability that the magnitude of deviation will be higher than epsilon that is x 

will indeed go beyond mu plus epsilon or mu minus epsilon will be very small because 

sigma square by epsilon square is small. I will again come to this point, but first let us 

prove it. 

 

Now, what is this? This will be equal to 2 integral x minus mu greater than equal to 

epsilon means that is x minus mu mod greater than equal to epsilon means either x minus 

mu greater than equal to epsilon. That is either x minus mu greater than equal to epsilon. 

Epsilon is positive. So, I am considering positive deviation. There is deviation to the 



 

right of mean mu. So, x minus mu in that case is greater than equal to epsilon meaning 

either x is greater than equal to mu plus epsilon or if the deviation is negative, that is x is 

taking value to the i mean is very less than mu. So, deviation is to the left of mu. In that 

case, this is less than equal to minus epsilon. Either the deviation is greater than plus 

epsilon, greater than equal to or less than equal to minus epsilon. 

 

In this case, you will get x less than equal to minus mu minus epsilon. So, what is the 

probability that x takes values either greater than equal to mu plus epsilon or value is less 

than equal to minus mu minus epsilon. Sorry, plus mu. This should be plus mu minus 

epsilon, either greater than equal to mu epsilon or less than equal to mu minus epsilon. 

So, there should be two integrals that is one from minus infinity to mu minus epsilon. If 

you see Papoulis book, there is a mistake here. He puts a minus symbol with mu. That is 

wrong. It will be mu minus epsilon Px which is the probability density of x dx, and there 

is another integral mu plus epsilon up to infinity Px dx. 
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Now, we keep this result. This we keep somewhere that is I repeat here just for storing 

purpose, that is probability of x minus mu greater than equal to epsilon is nothing but 

minus infinity mu minus epsilon Px dx plus mu plus epsilon infinity Px dx. This result 

we keep separately. Now, we consider sigma square. What is sigma square? It is x minus 

mu whole square. It is expected value. So, this is multiplied by Px dx integrated. So, 

obviously since x minus mu square mu whole square, its positive P of x is non-negative 



 

number. I mean all are non-negative x minus mu whole square P of x. These are non-

negative and dx is of course always positive. 

 

This is this integral obviously is greater than equal to same integral, but over a shorter 

range, over a reduced range. It is from minus infinity you say mu minus epsilon x minus 

mu whole square Px dx plus earlier we are going from minus infinity. Now, we go from 

minus infinity only up to mu minus epsilon, and again jump over region and start again 

at mu plus epsilon and go to infinity. So, it is a reduced range. So, obviously the value 

since all the quantities being integrated are positive, the net value of the integral on the 

right hand side or the two integral summed added will be less than equal to sigma square. 

 

Now, in the first integral consider or may be in the second integral. To start with you 

consider x minus mu whole square this function as x takes value mu plus epsilon. I get 

only epsilon square. Mu mu cancels plus mu minus mu cancels. I get only epsilon 

square. Epsilon square Px dx. As x takes values still higher and higher, x minus mu 

whole square that also takes values larger and larger, that is higher and still higher than 

the original I mean starting value of epsilon square, right. I repeat again the starting value 

of x is the lower limit that is mu plus epsilon. If you put mu plus epsilon here plus mu 

and minus mu cancels, and you are left with epsilon square epsilon square, but as x 

increases further, so you put values here which is not just mu plus epsilon, but something 

more. 

 

So, obviously may be delta. So, mu plus epsilon plus delta if we put that see you get 

epsilon plus delta whole square which is greater than epsilon square. That means this 

integral is less than equal to this second integral. This is less than and equal to mu plus 

epsilon up to infinity Px dx, because in this function x minus mu whole square takes the 

higher and higher value as x goes from mu plus epsilon up to infinity. I am holding this 

fixed at epsilon square. I am not allowing this quantity to go beyond epsilon square here. 

So, obviously net value is that we get by this calculation will be less than what I get by 

this integral here. In this integral, this function x minus mu square is increasing function, 

but here I kept it fixed and epsilon square which is the minimum value and integrate the 

rest. 

 



 

So, obviously net value net thing that we will get is less than what this integral would 

give. Same way you consider the first integral when takes the upper limit mu minus 

epsilon square epsilon mu mu cancels, minus epsilon whole square, which is epsilon 

square, but as x takes values less than that may be mu minus epsilon minus delta. If you 

put that here, you get minus epsilon minus delta whole square which is higher than the 

origin starting value of epsilon square, right. So, as x takes lesser and lesser values and 

goes up to the minus infinity, this function x minus mu square goes on increasing. 

 

So, if I consider only epsilon square for it and integrate the rest, then obviously I will get 

a lesser value. That means this integral is less than epsilon square. So, here you take 

epsilon square common. So, what you are left with is simply what we wrote in the top. 

This is nothing but epsilon square into probability of x minus mu mod greater than equal 

to epsilon, which we wrote at the top. So, obviously probability of mod of x minus mu 

greater than equal to epsilon is nothing but less than equal to sigma square by epsilon 

square. This is the Thebycheff inequality. 
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You remember this is what we wanted to prove. So, what is the significance of this? 

Suppose x is varying across mu, but sigma that is if you take really x minus mu and 

square it up, and take the average. That average value is sigma square. That means if 

sigma square is much less, if this corresponds to sigma square rather because sigma 

when we take sigma square, it is x minus will be whole square, but here x is for x. So, 



 

around this, if sigma square is much less, then we get values of x in most of trails around 

mu in a small zone. It does not go far to the right for two values and if you now take an 

epsilon like this, this much which is much greater than this is much greater than sigma. 

 

Obviously, if this inequality means that the probability that x minus mu, it is either there 

is the deviation of x. X minus mu is either greater than equal to epsilon, that is x takes 

values to the right of this. X is either greater than equal to mu plus epsilon, that is takes 

values on this side or to the left. This side that is x is less than equal to mu minus epsilon. 

Probability of that will be much less almost close to 0, because sigma square is given to 

be sigma is given to be much less than epsilon. So, sigma square will be epsilon square 

almost equal to 0. So, obviously this implies the probability that x takes values far away 

from mu on either side that is x takes value either to the right of mu plus epsilon or to the 

left of mu minus epsilon. That will be very less almost 0 if epsilon chosen is much 

greater than sigma. So, we have been discussing physically that comes through this 

inequality also. Few things we can see. 
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Suppose x is such random variable. It is given that E f x is mu, but sigma square which is 

E of suppose is given to be 0. There is x such random variable because mean is mu, but 

whose variants is given to be 0. Then, that means for any I underline for this for any 

epsilon greater than zero probability of I write it in x expanded x minus mu. Sorry just a 

minute which is also equivalent to probability of x taking values either greater than equal 



 

to that is why in x minus mu is positive. A deviation to the right of new is greater than 

equal to mu plus epsilon. This set union with x taking values to the left of mu that is mu 

minus epsilon. That is x taking values to the right off mu plus epsilon and left of mu 

minus epsilon. For any epsilon, this is by the Thebycheff inequality less than equal to 

sigma square by epsilon square, but sigma is given to be 0 and epsilon however small, it 

is not 0. 

 

So, this is equal to 0. That means that x is such a random variable that it always takes the 

value mu with probability 1 because for any epsilon chosen, its probability of taking 

values higher than greater than equal to x minus mu and less than equal to x 1 as mu, 

sorry greater than equal to x minus epsilon. Greater than equal to mu minus epsilon and 

mu plus epsilon or less than equal to mu minus epsilon, that is graphically it means let us 

if your mu is here and epsilon for any choice of epsilon probability of x taking value to 

the right side or to the left, that is 0. You know this is true for any epsilon greater than 0 

however small. 

 

So, you now start getting epsilon 10 to 0. Obviously from right hand side and from left 

hand side will be approaching mu. So, as long as you are not at mu, but very close to mu 

on the left hand side and right side, probability of x taking those values is 0. You can let 

this limit tend to this epsilon tend to 0. This obviously means the probability of x taking 

value mu is 1. So, you say that x takes the value mu, x is such a random variable that it 

takes the value mu with probability 1, and variance is 0. 
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Further, x is a random variable and E of x square which is always this is always true mu 

square plus sigma square. That is expected value of x square which is also called the 

expected power. In electrical engineering language, it is expected power of x. Suppose 

this is given to be 0 and since, this is a square number and this is a square number and 

therefore, both are positive. This means mu is equal to 0. Sigma is equal to 0. Now, 

sigma equal to 0 means x is such random variable that takes the value mu with 

probability 1. That means, in all experiments we will continue to get the value of x equal 

to mu. What is mu here? It is 0. 

 

So, that means, x is a random variable which will always take the value 0 with 

probability 1. You remember when you are discussing this vector space of random 

variable, then in that vector space we also considered zero random variable. We called it 

zero vector and that time, I made this statement that is such a vector there is such random 

variable which always takes the value 0 with probability 1. I mean this explains that 

further. 

 

 

 

 

 



 

(Refer Slide Time: 26:59) 

 

 

 

Secondly, if you consider this bound, now you know this provides an upper bound that is 

this probability should be less than equal to this, but sometimes this upper bound may be 

much higher than the exact probability. You took some epsilon, you are giving the 

probability density function of x and from that you can carry out calculation and find out 

the exact value for this probability. You could find that this actually is much less that 

sigma square a by epsilon x square. This you would keep in mind. This is just a bound. It 

shows this left hand side can never exceed the right hand side, but it in no way means 

that this will be close to sigma square by epsilon by epsilon square. In some cases yes, 

but in many cases no. 

 

For example, if suppose x is given to be Gaussian or normal. It is Gaussian, in that case 

Gaussian mean mu and variant sigma square. You know what this probability density 1 

by root 2 by sigma e to the power minus x minus will be whole square by twice sigma 

square. If this is given, then you can find out yourself that if you are chosen epsilon to be 

just 3 sigma, those exact value will be given by I am directly quoting from Papoulis, but 

what does the right hand side bound gives. It gives sigma square by epsilon square. In 

this case epsilon is 3 sigma. So, sigma square by 9 sigma square, it is 1 by 9 and 1 by 9 is 

close to 0.1 which is much higher than this. 

 



 

So, just remember this probability, this left hand side is always less than equal to the 

right hand side. So, right hand is a bound, but it does not mean that left hand side is close 

to it because left hand side is probability as such can be very small compared to the right 

hand side. It will depend entirely on the probability density function given to you and 

epsilon that we choose and all that. Main importance of this bound is that this is 

independent of the probability density function that is applicable to x because this bound 

is always satisfied by any random variable of any arbitrary probability density function. 
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Now, consider a more general result. Suppose this is given that x random variable, but P 

of x equal to 0 for x less than sorry less than 0, not less than equal to. That means, x 

always takes values either 0 or positive term or x always takes positive values which are 

either positive or 0. X is always non-negative. In that case, then for any alpha greater 

than 0, this is also you choose some positive number. Probability of x taking values 

greater than equal to alpha, it is always less than equal to mu by alpha, where mu is the 

mean of x. This is interesting. There is no sigma here. 

 

Please you see the difference. In this result I am only considering random variables 

which take non-negative values. There is either 0 or positive numbers that is P of x is 0 

for x less than 0. In that case, I am saying that if you now choose any alpha which is 

positive, then the probability that takes values greater than equal to alpha, it simply is 

less than equal to mu by alpha. So, in this relation, there is no variance that is coming 



 

into operation, but this is more general result. We will come to that soon. How to show 

this? 
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Proof is very simple. What is mu? Mu is E of x. What is E of x? E of x is x into Px dx, 

but integral should not be from minus infinity. It should be actually from 0 to infinity. 

So, I correct it. This is 0 to infinity. Now, remember within this range 0 to infinity, x is 

taking always values which are positive or 0, and p of x is always non-negative. So, that 

integral is always positive and this product x into Px is always positive, but that is being 

integrated. Of course, the result is positive. Mu is positive. It has to be. This means, if 

you now do the integral from alpha, sorry there is some types of confusion between 

alpha and infinity. 

 

So, this alpha and this is infinity. The alpha to infinity where alpha is positive, if we just 

carry out this integral, then this must be less than equal to the previous integral which 

was very larger range from 0 to infinity. Isn’t it? So, this is less than and equal to the 

previous one and now, within this integral we look at the function x. It starts at alpha 

some positive number and goes up, up, up, up, up, up, up to infinity, and multiplied by 

the respective value of Px. 

 

Now, if you state and if you do not allow x to go up, but we hold it at alpha only, but let 

Px continue as x moves from as that is we carry another integral like this, where as far 



 

this function P of x is constant, we let x move from alpha to infinity, but as far as x in the 

previous integral is constant, we do not allow to vary from alpha to infinity. We will hold 

it at its minimum value alpha. Then, obviously since everything is positive, the integral 

now will be less in that value than the previous integral because earlier both x and Px, 

they multiplied and integrated x was first taking value alpha and then, going up, up, up, 

up, but now I am multiplying Px only by alpha. Even if x is varying from alpha to 

infinity, Px is multiplied only by alpha all along and not by some quantity which is 

becoming higher and higher. 

 

So, obviously, the net value of the integral will go down. So, this will be further less than 

equal to this and outside alpha. By the way if I ask you why I am putting less than equal 

to and not less than in both cases? Answer is, it is just for mathematical correctness. For 

instance, initially I said that x into Px dx integrated from 0 to infinity, that should be 

greater than equal to the same integral, but from alpha to infinity why greater than equal 

to. Because it may so happen that your probability density function of P of x is chosen 

such that from 0 to alpha, its value is 0. So, obviously the integral itself becomes 

identical to this. This will follow next integral. 

 

There is x Px dx from alpha to infinity because being in the range between 0 to infinity, 

P of x is 0. So, there is no point in carrying out the integral there. It will take the zero 

values. In that case, equality will be given up. Then, here how you can take alpha out? 

It may so happen in a different context that as you go beyond alpha, Px comes down to 0. 

In that case whether x is increasing or x is kept at alpha, it hardly matters. That is why 

less than equal to. What is P of x? It is dx from alpha to infinity. This is this side is then 

equal to alpha into there is nothing probability of x taking values greater than equal to 

alpha. That is why you integrate Px with respect to x from alpha to infinity and that will 

give the total probability of x taking values greater than equal to alpha. So, that proves 

inequality. 
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Now, suppose there is a random variable, a given number, a given constant n given 

integer. You consider a random variable x prime which is nothing but say mod of x 

minus a whole to deeper n. So, obviously mod of x prime is a random variable that takes 

only positive values. That means I can apply the above result. If I choose that is the 

above means, then that for any epsilon greater than 0, any positive number positive 

epsilon greater than 0. I can write from this that probability of this random variable x 

minus a to the whole power n. This is random variable. I call it x prime. This is greater 

than equal to epsilon to the power n. That should be from this result less than equal to 

expected value of this random variable x prime divided by epsilon to the power n, that is 

expected value of this random variable x prime that x minus n mod to the whole n like 

here. Expected value of x was mu. 

 

Now, a random variable is x prime which is equal to mod of x minus into the whole 

power n. So, I am taking the expected value of that divided by the quantity to the right of 

this greater than equal to sin. Earlier it was alpha. So, alpha came as the denominator. 

Now, it is epsilon to the power n. So, it will be epsilon to the power n. 
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What does that mean is this is fine, but my claim is probability of actually let me write, 

remove it about it way, it is not probability. This event is identical to this event because 

whether you take mod of x minus a or mod of x minus a into the power n mod of x minus 

a is always positive. Epsilon is positive. So, if it is given that mod of minus say whole to 

the power n, it is greater than equal to epsilon n. So, it is the continuous are positive. It 

obviously means mod of n is positive, n is number, n is integer does not matter whether it 

is positive or negative. Though essential thing is that mod of x minus a and epsilon both 

are positive. If the above meaning that is given, then mod of x minus a to the whole 

power n is greater than equal to epsilon to the power n. 

 

This obviously means mod of x minus a is greater than equal epsilon, conversely if this is 

given that mod of x minus say is greater than equal to epsilon. Obviously if you raise the 

both left hand side and right hand side to any power n, this is both are positive. Both mod 

of x minus a and epsilon are positive. If you raise to any power even, then left hand side 

will be greater than equal to right hand side. So, the two events are same. One implies 

the other. That means from other I can also write that probability of since this is 

interesting in the Thebycheff inequality, our left hand side was this. Only a was replaced 

by mu. 

 

What is more general? P of probability of mod x minus say greater than equal to epsilon , 

but on the right hand side you are free to choose n, but left hand side, then it is always 



 

less than equal to right hand side for any n. So, you can put n equal to 1. Still it is 

satisfied. You can put n equal to 2. Still it is satisfied so on and so forth. You can now 

see that if n equal to 2, if you take n equal to 2 and a equal to mu, that is mean of x. In 

that case, you simply get back your Thebycheff inequality, right. So, this is much more 

general result. 
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Now, in the limited time that is left I will just get the concept of I will just start this 

discussion on stochastic convergence, convergence of random sequences, but again I will 

need some further discussions before we can take that up. You know that given a random 

sequence, I mean finding out a notion of its convergence is fundamental probability to 

the theory of probability as I told in the beginning. So, we again try to develop this 

notions using those Thebycheff inequality and related concepts here. 

 

Suppose you are just conducting a very simple experiment, you are measuring the length 

of something, and actual length is may be a, but what you are getting is not a, but you are 

getting some error in electric. In our communication electrical language, electrical 

engineering language, you call it noise. So, you are measuring, you are observing is x 

which is not equal to a. A is that sure length. It is not known to you. It is unknown. You 

are trying to find out what is actually a. Now, unfortunately every time we measure, you 



 

get some different readings, and this is a plus v. V actually is just a random error. It is 

like a noise. It is not a systematic error. 

 

If it is a systematic error, it can be corrected or at least it is deterministic. So, it can be 

subtracted. It is not in your hand. It is just a random thing, so it is like a noise term or 

error term, random error term. So, x is equal to a plus v. So, instead of finding out a, you 

are only getting x. Then, you can easily see from our previous discussion and from here 

that if v is such a random variable, v is a random a variable such that its variance is much 

less, then x will be close to a always. This is what we have elaborated so far in our 

discussion that a was a mu that time. That means the random; the x minus mu, the 

deviation will not go far. It will be within some small range around mu because the 

variance of v or variance of x minus a or even variance of x is much less. 

 

If that for Thebycheff inequality, it shows that suppose it is given that is E of it is given 

that v square is sigma square and if it is given that sigma is much less than some number 

epsilon which is again much less than a, that is sigma is much less than a and you can 

find out take some number epsilon in between, so that sigma is itself is much less than 

epsilon which is again much less than a. You can then write within Thebycheff 

inequality that probability of less than equal to that time, we will consider it to be greater 

than equal to. Now, you consider it. This is now necessary greater than epsilon which is 

nothing but 1 minus this is, sorry. 
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Obviously, this is I mean this thing probability of mod x minus x greater than equal to 

epsilon was less than equal to sigma square by epsilon square. So, you put a negative 

sign, so less than equal to becomes greater than equal to and add 1. So, greater than equal 

to simply becomes greater than. So, this is nothing but greater than sigma square by 

epsilon square. Since, sigma is much less than epsilon, what it means that x minus a that 

is, sorry this will mean that x will be in this range with high probability that the 

probability of that will be greater than 1 minus this, just a minute. It was mistake here. I 

left out one term epsilon. It is actually than equal to 1 minus this. 

 

So, sigma much less than epsilon, this is almost close to 1, but of course probability 

cannot exceed 1. This is always less than equal to 1 from left hand side, but if sigma is 

really very close to very much less than epsilon square, this is just 1 minus some very 

small amount 0.000 something. So, we can loosely say using probabilistic language that 

x will almost certainly, almost surely will be within the range a plus epsilon to a minus 

epsilon and since, epsilon itself is much less than a as I told in the beginning, I assumed 

x will be very small and x will be very close to a or almost equal to a. 

 

So, in that case it will be safe to take the particular x that you measure as a good estimate 

of a. You do not have to repeat the experiment again and again. We do not have to look 

for further trails because if sigma square is less than epsilon square, this itself is very 



 

close to 1, because it is less than, this is almost 0. So, its probabilities between 1 and 

some point at which it is very close to 1. So, you say that x is almost certainly within this 

range a plus epsilon to a minus epsilon. So, since again epsilon is much less than a, x is 

within a plus to a minus you can say. So, whatever x you get, you can simply take into 

the estimate of a. No problem, but suppose this is not true that sigma square is not really 

or sigma is not really much less than a, so you cannot apply this. Then, what we do that 

is what the sequence of random variable comes actually that suppose we perform the 

experiments several times, n times. 
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First time you get x 1. Whatever you observe if it is name random variable x 1, then you 

observe x 2, then you observe x 3. So, you will get a sequence of r v random variables, x 

1 x 2 dot dot dot may be x n. Xi outcome of it h experiment. This experiment and xi is 

equal to a plus some noise term giving the ith experiments. The noise term that comes 

that is vi. So, actually if you again repeat the experiments, first I mean you are making n 

observations x 1 x 2 x n. After half an hour may be you can make again another x n 

observations. So, in the first observation, vi took some value. Next time ith step, you will 

get some other value of vi. In that sense, vi is a random variable of variance sigma i. 

 

In fact, to make life simple, you can assume that vi whether it is v 1 or v 2 or v n, they all 

have the same variances. After all it is coming from the same error process. Now, after 

making n trails that is you got some values for this n random variables. Out of this 



 

sequence of your x trails, first trail x 1 you got the value of x 1, then 2, then x n you 

measure. That is together. This consists of one experiment. Next, you again measure x 1 

x 2 x n a likewise, but I am just bothered about only experiment where you measure 

some value of x 1 only, x 2 and x n. Stop you are not measuring again. What you are 

doing? You are finding out a sample estimate which then again is a random variable. 

 

Now, obviously what is the mean of this? Mean of xi is a because vi is 0. Mean may be I 

forgot to mention that this error you know it can take positive value or negative value. Its 

mean is 0. That means, each xi has a mean a. So, what is the mean of x bar mean, that is 

a n times n into a divided n. So, E of x bar is same as a, but what is x bar minus a whole 

square variance. That will be you can see sigma square by n square. That is a beauty. 

Sigma square by sorry n not n square n. So, variance is coming down. Earlier it was 

sigma square and I said if sigma is not much less than a, we have a problem. We cannot 

simply measure once and take it to a good estimate of a. In that case, I measure it n times 

and take a sample average. This sample average if I call it random variable, its variance 

is not sigma square, but sigma square by n and if sigma square by n. 

 

(Refer Slide Time: 56:55) 

 

 

 

Sorry I am about to finish just one minute. This is much less than a square because it is 

sigma square. Suppose this is much less than this, then obviously we can invoke that 

inequality. If it is much less than square, then whatever value of x bar you measure by 



 

this sample average, that is good enough. That will be close to the mean a because 

variance what does it mean. The variance, new variance if you call it sigma prime which 

is nothing but sigma, sorry square root of sigma square by n. What is mean? Mean is a. 

So, that means this ratio is much less than 1. So, I can use that previous theory and I can 

say that probability of you know less than equal to that is or may be less than some 

epsilon. It is almost close to 1. So, whatever you measure for x bar, this is good enough. 

So, that is all for today. So, in the next class, we go further into these notions.  

 

Thank you very much. 


