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So, in the last class, we have been discussing these correlation matrices and in that 

connection, I talked about what is called hermitian matrices and hermitian transposition 

and things like that. 
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So, today we continue from there. So, just to recall what we did last time, given a matrix 

say A, we defined Hermitian transposition that is AH which actually is nothing but A 

conjugate. Take the complex conjugate of each entry of A and their transpose which is 

also equivalent to doing it the other way. First take the transposition of A, and then a 

complex conjugate. That is very simple. 

 

So, if A is not a matrix, but just a vector say column vector, then it is hermitian 

transposition is what we first transpose it. So, it becomes a row vector, and then takes the 

conjugate of each element. Similarly, if A is a row vector, there is hermitian 

transposition will be a column vector with all the original elements are complex 

conjugated. If it happens if A is A hermitian, then A is called a hermitian matrix meaning 

suppose A is like this one. They are all complex entries A 1 1, A 1 2, A 1 n and what is 

AH. You take the transpose, and then conjugate. So, A 1 1, A 2 1 star dot dot dot A 1 

star, then A 1 2 star. Of course, it is A 1 1 star 2 A 2 2 star. 

 

See the elements; diagonal elements do not change their positions upon transposition. 

Then, An 2 star dot dot dot, A 1 n star, so A 1 n comes here. Actually on transposition i, 

jth element that is ith row and jth column elements become j ith element, that is j column 

and ith row. Now, if it happens that is as matrix that A and its hermitian transposition, 

they are same. Then, we will call we will say that A is the hermitian matrix. That means, 

A 1 1 and A 1 1 star should be same, that is similarly A 2 2, A 2 2 star. That means that 



 

the diagonal entries are real and A 1 2, A 2 1, A 1 2 is A 1 2 star, that is A 1 2 in the 

matrix A itself. 

 

The ijth element and jith element, that is 1, 2th element, that is 1 2 and 2, 1th element A 

2 1. They are complex conjugate of each other. If that happens that is aij and aji, they are 

same in magnitude and reverse in face that is aij. Aij is aji star. This is the key relation. 

Then, the matrix A will be called a hermitian matrix. Now, hermitian matrices play a 

very important role in this. All A in a probability statistics stochastic process at a signal 

processing operation is based on this stochastic process concept, statistic concept. So, 

this matrix satisfies many properties and we will investigate some of these properties. 

We will discuss them. 
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Now, in the previous lecture we have seen that if you have got two matrices which can 

be vectors also and there is a product AB, and then the product matrix is A transposed 

using the hermitian transposition, then this is nothing but take the conjugate of the 

hermitian product matrix. First take the transposition, and then conjugate and then we 

know AB transpose is nothing but B transpose A transpose conjugate, and you know 

conjugate of a product of all these reality matrix will consist of terms which are products 

of terms elements from A and B or B and B transpose, and A transpose and in the 

conjugate on each product is nothing but product of the conjugates. 



 

So, if you do that, it becomes B transpose conjugate times A transpose conjugate and B 

transpose conjugate or B conjugate transpose. They are same which is nothing but B 

hermitian, and then A hermitian. So, transposition hermitian transposition also follows a 

similar role on product matrices that ABH is same as BH AH, all right. Why we are 

interested in hermitian matrices? 
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Suppose a random vector meaning actually we had a sequence of n elements x 1 which is 

a random variable followed by the elements x 2 which is a random variable dot dot dot. 

Last element is xn which is again a random variable. We form a vector using this x. 

Now, first we define the means vector mu vector, that is expected value of x. What is 

expected value of x? It is E of x 1 dot dot dot E of x 2 x n. That is equal to mu 1 mu 2 dot 

dot dot mu n. 
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Then, with these definitions we define a matrix R. As I told you last time whenever I use 

A, I have a matrix. I will denote it by an upper case letter like this capital R with an 

underscore. Whenever I have a vector, I will denote it by a lower case letter with an 

underscore underline, and when no underline is present irrespective of whether I use a 

capital letter or a lower case letter, it will be a scalar. Suppose I define R as E x x 

hermitian, what does it mean? If the R is called correlation matrix, what does it mean? E 

of that is 1 vector x 1 x 2 dot dot dot upto xn, and there is another vector upon hermitian 

transposition we have got x 1 star x 2 star dot dot dot xn star. So, that means you have 

got such elements you can call it R 1 1. I will tell you what is the definition, what is the 

meaning of capital R 1 1 R 1 2 dot dot dot R 1 n. 
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Then, R 2 1 R 2 2 dot dot dot R 2 n, then R n 1 nn, where this is your R. I write here, 

where Rij is actually the correlation between ith and jth random variable defined like this 

as I told you in one of my earlier lectures in the recent lectures rather. I mean we can 

define the correlation between complex valued random variables like this. E of xi xj star 

obviously Rij and what is Rji. Rji is xj xi star at. Quite clearly if you take a conjugate of 

this, you get this relation Rij and Rji, they are conjugate of each other. 

 

So, R 1 2, R 2 1 star R 1 2 and R 2 1 1 is the conjugate of the other, that is you can say R 

1 2 is equal to R 2 1 star R 2 R 1 3 equal to R 3 1 star and like that. This also shows that 

R 1 1, R 2 2 upto Rnn, they are all real numbers obviously, because if R 1 1, R 1 1 star, 

they are same that is a number and its conjugate are same that be the number has to be 

real. You can see it here also what is Rii, that is E of xi xi star which is E of mod of xi 

square and mod of xi is always real value. So, it is E of mod xi square. 

 

So, you can see that the diagonal elements are all real and with a non-negative and all the 

non-diagonal elements, they satisfy this symmetry relation, conjugate symmetry relation 

rather that is Rij. That is the i th row and j th column, that entry is Rij and the j th row 

and i th column that is Rji. So, Rij and Rji, they are conjugate of each other which mean 

R is a hermitian matrix that you can see in other ways also. 
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What is RH? It is E of H. You can put the hermitian operation inside to as you after 

taking I mean whether you take the expectation of this matrix, and then take their 

complex conjugate transpose, or you first take the conjugate transpose, and then take the 

expected value, either you will get the same values, right. So, this is nothing but E of and 

you have seen a product AB hermitian is nothing but B hermitian. This is B x hermitian 

is B x is A. So, AB hermitian is nothing but B hermitian, that is hermitian of x hermitian, 

and then this x hermitian and two hermitian gets canceled. You get back x. 

 

So, you get x which is same as R which means R is a hermitian matrix. Hermitian 

matrices have some very interesting properties. I am coming to that. If your properties 

which are extensively used in signal processing applications, I will be coming to that. 

Another will be correlation matrix. 
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You can also define covariance matrix C is nothing but R minus M, where M is a matrix 

which is nothing but mu mu hermitian. That means, we have got x x hermitian here. We 

can also bring mu mu hermitian inside the expectation operation because after all these 

are constants. So, expected value of this constant will be the constant themselves. So, 

you can as well bring them inside this. So, now what happens is you have one matrix 

here, another matrix here, this matrix minus matrix xxH minus mu mu H. You can 

consider the total matrix. 

 

What is the total matrix? It is a matrix whose say ith row and j th column. What will be 

the element? It will be xi xj star minus mu i mu j star. What is this? This is a covariance 

between the two random variables xi and xj. After what is covariance, we have seen what 

Cij is. Cij is nothing but you expand it. So, you get first term xi xj star expected value of 

which is nothing but Rij Then, minus mu i expected value of xj star which is mu star in. 

In fact, we have done this already. So, that is why I am not getting into details. Mu i mu j 

star minus E of xi times mu j star which is again mu y mu j star, and the cross term mu i 

mu j star expected value. It does not make any difference because these are constants 

plus mu i mu j star. 

 

So, this cancels and you will get this, and that is what you have here expected value of xi 

is j star which is Rij minus mu i mu j star. So, you get covariance and obviously, 

covariance I mean if all the elements x 1, x 2 up to xn, they are uncorrelated with each 



 

other, then we know their covariance. Mutual covariance should be 0. What happens to 

this covariance matrix? Mutual covariant is Cij equal to 0. Whenever i is not equal to j 

and whenever i equals j, then it is of course non-zero, because it becomes just a variance 

that is E of xi minus mu i times again xi minus mu i star xi star minus mu i star, so that it 

becomes actually E of modulus xi minus mu i square which is the variance, right. 
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In that case, I write it mutually uncorrelated, then Cij equal to 0. If i not equal to j and is 

equal to what sigma i square which is nothing but E of mod xi minus mu i square if i is 

equal to j. So, that means, C matrix which is R minus M, this is then we take this 

structure, all non-diagonal entries are 0 that is whenever i is not equal to j, this is 0 and 

diagonal entries consist of the variances. So, it becomes just a diagonal matrix like this 

big 0. That means, the upper half and lower half are zeros only diagonal entries which 

are positive numbers not negative numbers. 

 

So, that defines the covariance matrix for set mutually uncorrelated random variables. In 

fact, if the means also are 0, if this random variables x 1 to xn are given to be not only 

mutually uncorrelated, both are of 0 mean, then of course M becomes all zero matrix 

except for the diagonal entries. No, it becomes 0, all 0 matrix, because of all the elements 

are 0. So, in that case, R is simply this. 
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Now, hermitian matrices satisfy some properties. Number one, all Eigen values are real, 

first real and non-negative. How to show that? That means, suppose Rx x is an Eigen 

vector is lambda x. Mind you by definition of the Eigen vector, x is a non-zero vector 

after all. If x is a 0 vector, all 0 vectors are Eigen vectors. Why? It is because R times any 

matrix times 0 Eigen vector is always 0. Vector is always a zero vector. So, zero vectors 

is excluded from the definition of Eigen vector. So, that means, whenever I have an 

equation like this. I say x is a Eigen vector corresponded to the Eigen value lambda for 

the matrix R, and x is there by it is implied that x is a non-zero vector, all right. 

 

We have to show that since R and R hermitian, they are same that R is a hermitian 

matrix, x i mean lambda is real. It is very easy. You take the hermitian transposition of 

both sides. It leads to what as you told as I told product of two matrices will take the 

hermitian transpose. You get x hermitian R hermitian and again lambda. You can view 

lambda to be a vector with single entry lambda. So, it conjugates. Its hermitian 

transposition is what you further take the transpose which is lambda itself because it is a 

scalar, and then conjugate. 

 

So, get lambda star and x hermitian means you have to take the hermitian of x first, x 

hermitian lambda star, but here it does not matter, because lambda star also is a scalar 

number. The scalar number you can write to the right of xi or to the left of xi, it does not 



 

matter because it is a scalar number, but we have known that we are given rather that R 

hermitian matrix which means R hermitian transposition is same as R. 
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That is since R is hermitian, RH is same as R which means lambda, sorry which means 

here x HR is same as lambda star into xH and so is a row after all. xH is a row vector 

followed by a matrix multiply with a row vector. Similarly, on this side also row vector 

given by xH each entry is multiplied by lambda star. So, if I now post multiply this row 

vector by the column vector say x, here also i bring x, but Rx is we know lambda x. That 

means, Rx is lambda x. So, xH and lambda can be taken outside because it is a scalar.  

 

So, you take these two take both the sides to the same side. So, lambda minus lambda 

star x hermitian x is 2. Rx is lambda x Rx is lambda x. So, you get this put lambda x here 

take lambda outside. So, x hermitian x here, also x hermitian x take that common lambda 

minus lambda star. Now, x hermitian x is what? What is x hermitian x? 
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What is x hermitian x? That is simply if you just I mean expand it, x hermitian is a row 

vector with which entry with each entry conjugated, and then followed by a column 

vector x carry out the row vector times column vector multiplication you will get which 

is a real number because you are taking mod, and then square. So, it is always non 

negative. In fact, it is most of the times positive. If it is 0, each of the terms has to be 0 

because you are taking mod of square which means x 1 must be 0, x 2 must be 0 and xn 

must be 0. They also having value 0, but point is by definition x cannot be 0 vector. X is 

an Eigen vector. 

 

If x hermitian see in this product lambda minus lambda lambda star times x hermitian x 

is 0, X hermitian x is a scalar lambda minus lambda star is a scalar. So, either lambda 

minus lambda star equal to 0 or x hermitian x is 0, but what is x hermitian x. We have 

seen here mod of x 1 square plus mod of 2 square plus dot dot dot dot plus mod of xn 

square. So, this is less than greater than equal to 0. It cannot be negative, but if x is given 

to be an Eigen vector, then it is not only greater equal to 0, it is actually greater than 0 

because an Eigen vector means it is a non-zero vector. So, at least one entry has to be 

non-zero whose mod square is not of course greater than 0. That means, in here xHx 

cannot be 0 which means lambda equal to lambda star. So, this leads to lambda equal to 

lambda star which means the Eigen values are real. 

 



 

Next thing you have to show that they are not only real, they are non-negative. We are 

coming to that. Now, the fact that they are non-negative, I postponed it for the time 

being. There is some property will be required which we will be coming little later and 

that property is called positive definite of the correlation matrix. So, i have so for proved 

that lambda is real. The fact that lambda is also non-negative. It is greater than equal to 

0. I will prove it just little later. I will come to the other point property number 2. 
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Sorry, it means suppose R x 1 is lambda 1 x 1, R x 2 is lambda 2 x 2, and lambda 1 and 

lambda 2, they are not same, that is x 1 and x 2, their Eigen vectors, but their Eigen 

vectors corresponding to two different Eigen values of R. One is lambda 1, another is 

lambda tau. Then, it says that x 1 and x 2 are orthogonal meaning if you take this product 

which is called the inner product x 1 H x 2, this must be equal to 0 which is also true for 

x 2 1 H x 1, that is you either make x 1 a row vector and then conjugate it, and then 

multiply the x 2. 

 

So, what are the entries x 1 star x 2 plus? I mean the first entry conjugate times, the first 

entry of x 2, then first entry conjugate of x 1 times, sorry second entry conjugate for x 1 

times second entry of x 2 and like that because sum equal to 0, or alternatively if you can 

take the hermitian transposition of the left hand side here, you get x 2 H x 1. Obviously, 

0 hermitian transpositions give you 0. So, x 1 H x 2 or say x 2 H x 1, they both gives rise 



 

to 0, all right. This is to be proved. In fact, this orthogonal you know transfer a motion of 

what is called inner product we define for two vectors. 
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Inner product is like what in three-dimensional vault. You had for dot product between 

two vectors, then take two vectors and get a real number out of the dot product. Its 

satisfaction basic properties for two vectors actually define like this. There you write 1 

vector, then dot y by, but widely used notation is this inner product or dot product 

instead of having just x dot y we write within these two things symbols x, y which is 

nothing but x hermitian y. So, that means, one is this vector x 1 star up to say xp star. If 

there are p entries, another is y 1 dot dot yp which is nothing but summation xi star yi i 

equal to 1 to p. If the inner product is 0, then we say x and y are orthogonal. We have to 

prove that two Eigen vectors x 1 x 2 corresponding to different Eigen values lambda 1 

and lambda 2 of R, they are mutually orthogonal. Now, how to show that? 
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As I said R x 1, it is given lambda 1 not equal to lambda 2. Now, you take the hermitian 

transposition of the first equation that is now you take hermitian transposition here. What 

you get is x 1 hermitian R hermitian, but R hermitian is same as R. Do not forget that is 

same as x 1 hermitian lambda 1 hermitian, but lambda 1 is a scalar. Its hermitian is 

conjugate of lambda 1, and you can always write it in the beginning only because it is a 

scalar number. So, lambda 1 star x 1 H also means as before, sorry as before RH and R 

are same. So, I will just write in like this lambda 1 star. 

 

So, I now pre-post multiply this row vector with x 2. So, I bring x 2 here. I wrote the 

same here also, but lambda 1 as I told this is very important. Lambda 1 is Eigen value is 

real. So, lambda 1 star is same as lambda 1. Is it not? It is because they are real. I have 

just now proved a while back that is lambda 1 lambda 1 star, they are same real. So, I 

write lambda 1 x 1 H, and then x 2 is present, and Rx 2 is given in the second equation is 

lambda 2 x 2. Replace Rx 2 by lambda 2 x 2, take all the terms to one side. So, you get 

lambda 2 minus lambda 1 times x 1 H x 2 equal to 0, which means since lambda 2 and 

lambda 2 are not same, this means only possibility is that this is equal to 0. 
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Now, I come to positive definite or non-negative is a more general case non-negative 

definite matrices. Here, positive definite I call it PD and non-negative definite, I call it 

ND. So, this is ND abbreviation and this is PDR. So, matrix R is PD. First positive 

definite if number 1, R equal to RH that is R is hermitian, and secondly for any non zero, 

any non-zero vector, the scalar number a hermitian Ra is greater than 0. Not only this is 

of course this is real and greater than 0, and then I add R ND. If R is non-negative 

definite condition, one remain same that is R has to be R hermitian and a hermitian Ra 

instead of greater than 0, it will just become greater than equal to 0 for all non-zero a. 

 

So, only difference is this in there is positive. You see in both the cases of positive 

definite as well as non-negative definite matrices, R is hermitian in the case of positive 

definite matrices. So, what we have is that if you take any non-zero vector a, then a 

hermitian Ra is a scalar number which is greater than 0 of course, and if it is non-

negative definite matrix, then a hermitian Ra is greater than equal to 0 still real. So, I will 

consider non-negative definite matrices, and then in fact you know because this is more 

general, I mean you can easily consider positive definite case as an extension of that. 

Then, my statement is R correlation matrix that is so long I was considering at general 

hermitian matrix, there were no connection with correlation matrices and all that. I will 

consider a general hermitian matrix and got those properties. 

 



 

Now, I am coming to R or may I first prove that if R is non-negative definite, actually I 

made a small mistake. I mean I said that for a hermitian matrix, Eigen values are non-

negative definite, i mean greater than equal to 0. That is not true as such. Actually at that 

time, I had in mind what is called correlation matrix which is always non-negative 

definite that I am coming now. So, I will just correct my statement. 
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Small correction actually for hermitian matrices values are real for PD matrices, Eigen 

values are PD, and then within bracket ND, either PD or ND Eigen values are real and 

positive within bracket non-negative, that is if it is a non-negative definite matrix, Eigen 

values are real. Not only that they are greater than equal to 0, that is they are not 

negative, but if it is positive definite matrix, Eigen values are of course real, and they are 

strictly positive, but these happens if the matrix is positive definite or non-negative 

definite. That is not just hermitian, but that additional condition is present. If it is 

hermitian, we can only say that Eigen values are real. 

 

So, previously I made a statement which was not fully correct because I just considered 

hermitian matrices. Actually I had in mind what is called correlation matrices. 

Correlation matrices I will now show that they are actually non-negative definite 

matrices. Now, how to show first that if a matrix is non-negative definite, Eigen value is 



 

of course they are real. We have shown, but they are also non-negative that is greater 

than equal to 0. 
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Now, suppose R is given to be non-negative definite, now Rx as you have seen is lambda 

x suppose, then I just pre-multiply it by x hermitian, and then what I get here is x 

hermitian x. Now, by definition x is an Eigen vector or R which means x is a non-zero 

vector, and it is R is given to be non-negative definite any x hermitian Rx for a non-zero 

x must be greater than equal to 0 must be, it is non-negative definite. If it is strictly 

positive definite, it is strictly greater than 0. If it is non-negative definite, it is greater 

than equal to 0 which means lambda times x hermitian x is greater than equal to 0 

lambda times x hermitian x, but we have also seen what is x hermitian x, that is you take 

each component of x to the mod of that and square and sum. 

 

So, that is always greater than 0 because x is non-zero vector. So, at least one entry will 

be non-zero. So, its mod value is positive, square is positive which means x hermitian x 

cannot be 0 which means it cannot be negative or cannot be 0 which means lambda has 

to be greater than equal to 0 say x hermitian x is always positive because x is Eigen 

vector. So, not that x can be 0 that there will be at least one entry of x which is non-zero. 

So, mod square of that is positive which means x hermitian x is always positive, strictly 

positive. So, lambda times that if it is greater than equal to 0, the only competition is this. 

So, if this is greater than equal to 0, this only means lambda has to be greater than equal 



 

to 0 and lambda is real. You have already seen, and if it is positive definite that instead 

of greater than equal to, we have that symbol greater than. So, in that case lambda is 

greater than 0. 
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Now, I am coming to my main issues which promote me actually to get into the 

properties of hermitian matrices or positive definite matrices and all that, that is R which 

is a correlation matrix is non-negative definite. First part of this is that R must be 

hermitian which you have already proved. We have dealt with that link. So, I am not 

coming to that. You have come to the second property that is for any non-zero vector x 

or a hermitian Ra is a number which is non-negative, either zero or positive, but it is a 

non-negative number. 

 

How to show that? So, you take a, to be a non-zero vector take as before a, is a non-zero 

vector. That is a vector whose at least one entry is a non-zero element. It is not that all 

entries are 0. Then, what is a hermitian Ra? For any such non-zero a, if a hermitian Ra is 

first real greater than equal to 0, then we can say that R is non-negative definite because 

R is hermitian. We have already proved that. Now, what is a hermitian a? You can write, 

but mind you a is constant a is not random. You have to just pick up some vector a by 

your choice, but there is no random element in it. Now, R is as we now E of, and then a. 

Since, the elements of a are constant, you can bring them within the expectation 



 

operations. It does not change anything. You can write it like this a hermitian H may be 

you can put it in the bracket, and then x hermitian H. 

 

Now, a hermitian x this is a scalar number, right row vector column vector and you see 

what is x hermitian a. This is nothing but complex conjugate or this is a scalar number 

and if you take the hermitian transposition, just a minute this is what you can write. X 

hermitian a is nothing but hermitian transposition of a hermitian x. If really a hermitian x 

and take the hermitian transposition of that, x hermitian comes first a hermitian hermitian 

is that comes second and remember that a hermitian x is a scalar number. So, it is 

hermitian transposition is nothing but there is no transposition involved here. Only 

complex conjugation which means this gives rise to E of mod a Hx square which means 

this is a real number first because this is mod involved and mod square. 

 

So, it cannot be expected values of this cannot be negative. It is greater than equal to 0. 

So, it is non-negative definite. If it so happens, we can ensure that it is always greater 

than 0. Then, we can also say R is positive definite. Now, when can we do that? Before 

that consider this if I say that expected value of a random variable say x or say z 

expected value of z is 0, that means, z is a random variable which always takes the 

values 0, and then only its expected value will be 0. 

 

Now, if R is non-negative definite and not positive definite as such, that means expected 

value of this mod square of aHx, this is as such we know this has to be greater than equal 

to zero, but if it is non-negative definite, it means that you can find at least one a one 

non-zero a for which aHx is random variable. It takes zero value always, then only its 

mod square expected will be 0. I repeat again if it is R is given to be strictly non-negative 

definite and not just positive definite. That means, for some a that means, it is not just 

greater than 0. It is greater than equal to 0 which means sometimes it can be equal to 0 

also, but when it equals to zero, that means for some a that is there you can find at least 1 

a if not more for which a is non-zero for which aHx answer to be zero always. Then only 

its mod square upon expectation also would always gives rise to 0, and you can put an 

equal to 0. 
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When does that happen? That leads to linear dependence and independence is set x 1, 

sorry is linearly independent. If it is linearly independent, that means, there is no linear 

relation involved in these random variables means any of the random variable here of x 1 

to xn can be written as a linear combination of the rest. Then, it is called a linearly 

independent relation which means actually using (( )) theory or linear (( )), it appears that 

you really want to form a combination like a 1 x 1 plus a 2 x 3 plus dot dot dot and xn 

equal to 0 is only way you can do is that a 1 equal to 0, a 2 equal to 0 dot dot dot an 

equal to 0. That is you can easily see. 

 

Suppose what I mean here is this if you really form an equation like equal to 0. That 

means if you linearly combine these linear variables and equate to a zero random 

variable, right hand side is a zero random variable which means it always takes the value 

0. If you really want to find out such a 1, such a 2 and such an, which maintains its 

equality, then if they are linearly independent, the only way we can do is by putting a 1 

equal to 0, a 2 is 0 and an equal to 0. According to b, under this condition you can never 

express any of the random variables say x 1 as a linear combination of the rest. 

 

Suppose just to give an example, suppose a 1 and a 2, they are non-zero and rest are 0, 

that means a 1 times x 1 plus a 2 times x 2 will be equal to 0, say x 1 will be you can 

always write x 1 in terms of x 2, or say a 1 not equal to 0, a 2 not equal to 0, a 3 not equal 

to 0 and rest are 0. You can then write a 1 x 1 plus a 2 x 2 plus a 3 x 3 equal to 0, other 



 

elements are already become 0. So, x 1 then you can keep on the left hand side, right 

hand side I may put x 2 and x 3 terms. So, you can write x 1 in terms of x 2 and x 3 as a 

linear relation so on and so forth. In fact, suppose if a 1 is only one element, a 1 is non-

zero, other side zero in that case you have got just a 1 x 1 is 0. That means since a 1 is 

non-zero, x 1 equal to 0, that is x 1 is the random variable, and a zero random variably 

you know if you have a zero random variable in this set S, then the set is not linearly 

independent because zero random variable can always be written as linear combination 

of the rest. Just multiply each of the random variable by this scalar zero, zero times x 2 

plus zero times x 3 plus dot dot dot zero times xn. That makes it a zero random variable. 

 

So, just to test whether a set of linear, I mean random variables are linearly independent 

or not, form an equation like this with a 1 2 n being scalars equated to Zero random 

variables. See what choice of a 1 to n can give rise to can maintain this equality, and if it 

is such that only possibility is by taking a 1 equal to 0, a 2 equal to after n equal to 0, 

then you have this. You can say they are linearly independent. If they are linearly 

independent, then you can also see that any subset is linearly independent. That is easily 

seen because in the subset, you can express some element as a linear combination of the 

rest, then that applies for the entire set also because a linearly independent linearly 

dependent set. Linearly dependent subset is a bigger set that makes the overall set also 

linearly dependent. On the other hand, if you can find out some coefficients a to n when 

not all are 0, but this equality is maintained, then you say this set is linearly dependent 

set which means some elements i at least one element can be expressed as a linear 

combination of either the whole of the rest or part of the rest. Now, in the term we are 

running short of time. 
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So, I do ending of soon that means linearly independent; that means expected value of 

any x 1 you take the mod square. This has to be greater than 0. If a 1 not equal to 0, a 2 

not equal to 0 dot dot dot an not equal to 0 because if they are not equal to 0, this cannot 

be a random variable and if it is not zero random variable, its expected value of the mod 

square has to be greater than 0. So, I stop here today. From here I will continue in the 

next class. So, I will continue these remaining properties of the correlation matrices and 

all that.  

So, thank you very much. 
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So, in the last class, we were discussing these correlation matrices. We discussed some 

properties of hermitian matrices which are also I mean positive definite matrices. We 

will find out hermitian as such not even positive definite, they are always real, and their 

Eigen vectors are orthogonal to each other. We have found out. Then, if in addition the 

matrix is given to be positive definite, then Eigen values are also positive. If it is non-

negative definite, they are non-negative. This we have seen. 



 

 

Then, we are discussing the linear dependence and independence of random variables 

and all that. I just start from there. I continue with the previous discussion on the 

correlation matrices first. Do you remember our previous treatment on what is called 

vector space of random variables, where each random variable was treated as a vector in 

an obstruct vector space of all possible random variables in the world, and there we 

defined addition of two random variables, such addition of two vectors. What is meant 

by zero vectors? That is random variable which always takes zero values.  
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Then negative of a random variable means secondary random variable, which takes 

negative of the original random variable and likewise is just in that frame work we can 

discuss. Two entries of T times determinant of D times determinant of TH which is 

nothing but T inverse, and these two cancels. Determinant of T, determinant of T inverse 

is cancelled. So, you get back determinant of D. What is determinant of D? It is the 

product of Eigen values lambda 1 lambda 2 dot dot dot lambda n. As you have seen if the 

Eigen values are first real, so determinant of R is always real. That is done. I mean if 

they are all positive, if the Eigen matrix is positive definite, then each is positive. So, 

determinant is positive. So, that is all for today. We continue from here in the next class.  

 

Thank you very much. 


