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So, now we have been discussing this issue of random sequences. 
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That is just for a recap. We initially started with just one random variable and function of 

one random variable. Then, two random variables, then one function involvement two 

random variables and two functions involvement two random variables. Here, we try to 

generalize that to a set of n random variables which are ordered as sequences x 1, x 2 up 

to x n, and we first consider one function of such n random variables, and then n 

functions of such n random variables, right. 

 

So, there were several issues which we did not discuss last time. They are all you know 

just analogous to those issues which we considered in the case of two random variables. 

So, we will just continue from where we left last time, but just one remark. We have so 

long used to real value random variables, but random variables could be complex valued 

also. Now, suppose we have got this. 
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Suppose z 1 is x 1 plus jy 1 dot dot dot up to say z n x n plus jyn. So, z 1 to z n, we have 

got set of n complex random variables, but remember each of these, z 1 to z n, they have 

got two components. One is a real component and another is an imaginary component x 

1 y 1 and now, x 1 also is random variable, y 1 also is random variable. Similarly, x 2 is 

random variable; y 2 is random variable. So, a set of n complex random variable 

equivalent being is a set of twice n real value random variables which means probability 



 

density of z n is same as actually a probability density function of 2 n variables x 1 y 1 x 

2 y 2 dot dot dot x n yn. 
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Further, if z 1 dot dot dot z n, they are independent, then it means that p x 1 y 1 dot dot 

dot x n yn that will be like this which stands for probability density for z 1, because z 1 

has the two random variables, real value random variables x 1 y 1 in it, then p x 2 y 2 dot 

dot dot p x n yn. 
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Suppose we have got single function g x. X is a vector. Basically x means actually is a 

function of n random variables, say x 1 x 2 dot dot dot x n. Now, by extending our 

previous argument, we can then say that expected value of gx is nothing but times the 

corresponding probability density function dx 1 dot dot dot up to dx n. Obviously, if 

instead of these real variables x 1, x 2 up to x n, we are a set of complex n number of 

complex valued random variables z 1, z 2 up to z n. 

 

Then, instead of having n fold multiple integral, you would have had twice n fold 

multiple integral, and there probability density function would have been I mean this is g 

z 1 up to z n, and probability density function as we proved have been p of x 1 y 1 x 2 y 

2 dot dot dot x n yn and we would have a dx 1 dy 1 dx 2 dy 2 dot dot dot dx n dy n. Just 

that generalization also as before you can see that there is a linearity that is valued here. 

Also, that is expected value of say sum of functions c 1 g 1 x. Say plus c 2 g 2 x is same 

as c 1. Expected value of g 1 x plus c 2 expected value of g 2 x, and instead of having 

just two terms, you can always have n number of terms. So, the linearity works. 
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Given a set of complex valued in general, because now I wanted to be more general. So, 

complex valued random variables say x 1 instead of z 1, I am calling them x 1. Now, x 1 

x 2 x n, then covariance we now define first say E of x 1 say is mu 1 or E of xk is mu k, 

where k goes from 1, 2 up to n, that is x 1 as a mean value mu 1, x 2 as a mean value mu 

2 dot dot dot x n has a mu value mu n, and then we define covariance between say xi and 

xj as expected value. You can call it, sorry you can call it cij. This is expected value of xi 

minus mu i times. 

 

Now, the difference xj minus mu j and a complex conjugation here. Earlier we have dealt 

with similar things, but since that time we were dealing with only real value complex 

variables. We have more simplified expression for this covariance, where there was no 

complex conjugation, but the more general case, this is the definition of covariance. Why 

this complex conjugate is necessary? Simple because if now you are interested in the 

variance of say xi, say in variance of xi, now we all know that variance denotes power 

expected value of the power that is average power. So, average power has to be real and 

non-negative. 

So, if you put a star here, that will make the variance that is expected power real. How? 

You can easily see variance of xi equal to say sigma i square is what expected value of xi 

minus mu i times again xi mu i star which makes it this because complex number and its 

own conjugate multiplied gives rise to the mod square, and as mod square means it is 

real function, right. It is happening, because of this star. So, this is a variance, this is a 



 

covariance. As before this covariance expression, you can simplify like before I repeat 

again here. 
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Our cij was I am just repeating. You can now bring it up one term is E xi xj star. Then, 

minus mu i E if this cross term xj star minus mu j star E xi plus mu i mu j star. Now, you 

see you have got a quantity like expected value of xj conjugate. What is that? Now, we 

know that you can write xj conjugate as a function of xj given xj, this function evaluate 

its conjugate. So, xj star is conjugate is a function of xj which means this simples 

expected value of xj star is nothing but expected value of gxj, and we have already seen 

this is nothing but gxj times pxj dxj, right and there is an integral gxj. It is a star. I 

replace this by xj star. Pxj is a real quantity. 

 

So, you can also write this like minus infinity infinity xj pxj dxj, and then star. That is 

first you replace gxj by xj star, but you see that other quantity that is pxj and dxj, they are 

real valued. So, you can take the integral first, and then conjugate. What is this integral? 

This is nothing but expected value of xj that is mu j. That is mu j star. So, I will use this 

fact here. 
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So, I continue this as before Exi xj star. In fact, this is called the correlation minus mu i, 

and you have seen while back, this is mu j star, and then minus mu j star mu i plus again 

mu i mew j star. So, essentially it becomes E of xi xj star minus. After simplification we 

only have 1 mu i mu j star which means Exi which is mu i and Exj star which is mu j star 

which means this implies if xi and xj are uncorrelated, then as before cij is equal to 0 

meaning Exi xj star is simple Exi Exj star. Either you can take xj star, and then excepted 

value of it or E of xj, then conjugate. Either it is same. As an example, suppose you have 

got, one more thing. If x 1 to x n, there are statistically independent, then obviously p of 

x 1 dot dot dot x n is nothing but p of x 1 into p of x 2 into p dot dot dot pxn, right. 
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Now, suppose we are given this that X is E of xk is mu k and variance E of xk minus mu 

k mod square is sigma k square. Then, firstly also x 1 to xk, they are independent. We all 

know and it is easily seen here that if two random variables are independent, they are 

also uncorrelated. Then, the covariance will be 0. For instance, if you just have doubt 

about it, where see that suppose say xi xj as before xi minus mu i xj minus mu j star 

expected value, these are covariance. I am saying that if xi and xj, they are statically 

independent, then they are uncorrelated. That means the covariance will be 0. That is 

easily seen here. After all if you take the expected value of this, that means, you take this 

quantity as a function of two random variable xi and xj. 

 

So, to find the expected value, you have to multiply by its joints probability in this 

function p of xi xj, but since xi and xj are statically independent, you can write p of xi xj 

as pxi into pxj and then integrate. So, one integral will be with respect to this xi minus 

mu i multiplied by p of xi integrated. That will be give rise to 0 because xi as a mean mu 

i. Similarly, the other integrals also give rise to 0. So, if they are statically independent, 

the correlation is covariance is 0 and we said that they are uncorrelated. So, we have 

given here the fact that x 1 to x n, they are n number of mutually; I mean they are n 

number of mutually independent random variables which means they are uncorrelated 

also. 
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So, then what happens to E of x? Obviously, E of x 1 plus E of x 2 dot dot dot E of x n 

using the linearity. So, it is nothing but sigma 1, sorry mu 1 plus mu 2 plus dot dot dot 

mu n. How about the variance E of this? I say mu x. How about mod x minus mu x 

square? As you know x is x 1 plus x 2 plus dot dot dot x n which means we can write I 

replace x by x 1 plus x 2 plus dot dot x n mu x also by mu 1 plus mu 2 plus dot dot mu n. 

Then, that means, you can write it as simple here. First x minus mu 1 plus dot dot x 

minus mu n and on the other side, x minus again mu 1 plus dot dot dot dot x minus mu n, 

but star. 

 

This is x, sorry this is x 1 to x n x 1 to x n. That is I am replacing x by x 1 plus x 2 plus 

dot dot x n mu x by mu 1 plus mu 2 dot dot mu n. So, taking x 1 with mu 1 x 2 mu 2 x n 

with mu n. Now, if you take the product, the cross products are 0 because the variables x 

1 to x n, they are given to be statistically independent which means they are uncorrelated. 

So, the covariance is 0. Only the direct products that is x 1 minus mu 1 primes x 1 minus 

mu 1 star expected value only, that is non-zero and that gives a variance of x 1. 

Similarly, the other one gives variance of x 2. So, that means this gives rise to what 

variance of x n x 1, that is sigma 1 square, then sigma 2 square plus dot dot dot sigma n 

square. We now consider a very interesting example which uses these concepts. 
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Suppose we are given means as before x n which you can say uncorrelated mutually, 

then define that is simple sample average of this n random variable. Just add them and 

divide by the total number of variables involved that is n, and this is new random 

variable call it is x tilde. Similarly, define random variable say v as 1 by n minus 1 times 

xi minus, this x tilde square. 

 

Question is what is E x tilde equal to what? Then, what is the variance? Just a minute. 

What is sigma x? May be instead of x tilde, it is better to remove the tilde just because 

there is no x anywhere. So, I remove x tilde. So, x is the sample average. X is an average 

of those n random variables x 1 to x n, and v is 1 by n minus 1 times this summation xi 

minus that average x average random variable. Mind you x also is random variable. So, 

xi minus x whole square, and we are assuming, I forgot to mention that all the variables 

are real here. They are all real variables that is n real random variable. 

 

So, question is what is E of x? That is this new random variable x which is formed by 

averaging the n random variables. What is the expected value? That is the mean value or 

expected value of x. Then, what is its variance? Sigma x square, sorry equal to what and 

the other one what is the expected value of this. What is Ev? I am not interested in 

squaring it up because then these terms will be rest to the power 4 and it is not of use to 

me here. So, just what is the expected value of Ev? It is some sort of average square, 

square of what deviation of xi from the average random variable. 



 

Just take that, square it up, add for all the variables and divide instead by n here, I am 

dividing by n minus 1. So, that is the difference. So, it is not exact averaging. Exact 

averaging would have meant division by n, but here I am purposefully dividing by n 

minus 1. So, these two things you have to find out. 
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First one is very simple. E of x using the linearity. Obviously, 1 by n summation E of xi. 

So, E of xi, what is E of xi? I forgot to mention that given for all random variables, they 

have the same mean mu, ad same variance for all of them. Since they are real value, I am 

not putting any mod. So, sigma square is given. I forgot to mention this that we are given 

a set of n uncorrelated, that is mutually uncorrelated real valued random variables x 1 to 

x n, where each of them has same mean constant mean mu and constant variance sigma 

square. So, that is same for all the random variables. 

 

Then, by just adding, and then averaging I found a new random variable. My question is 

what average value for that expected value of that. Then, each random variable is I found 

the difference between that. Each random variable with the average, what tilde square 

sum and average not exactly because that would have mean dividing by n. I am dividing 

by n minus 1. Then, we found this v. What is the expected value of v? That is the 

question. So, you first start with expected value of this x which obvious is in the 

linearity, and this formula expected value of x will be 1 by n summation. I can put the 



 

expectation operator inside the summation and E of xi for all i is equal to mu. So, mu 

times n n n cancel. So, this will be equal to mu. So, x as the same average same expected 

value as each of the random variables has. Then question is what the variance of x is? 

 

(Refer Slide Time: 30:04) 

 

 

 

That means, that is now we have to find out what is this quantity. Mean value of x mu, 

we have already seen. So, what is this quantity? Now, what is x? We know that x is 1 by 

n summation xi i equal to 1 to n, right and now we replace this x here. So, that means, 

you can write it like this. E of you can take 1 by n square summation xi within bracket 

minus n times mu whole square. Very simple, we replace x by this. Why? We want to 

take 1 by n outside the brackets. So, it becomes 1 by n square. So, mu gets multiplied by 

n which means you can take 1 by n square outside because it is not random expected 

value of again xi minus mu. Sorry you have to put it this way. 

 

X 1 minus mu plus x 2 minus mu plus dot dot dot x n minus mu whole square. In the 

whole square, the cos terms will be 0 as before because of uncorrelatedness. So, this will 

give rise to just variances for each of them and each of them as a same variance sigma 

square. So, there will be total n times sigma square. So, n into sigma square will come on 

the top n square here. So, you get sigma square by n. So, our second question is 

answered. 
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Now, the third question is so that I rewrite again. We formed the variable v. Question is 

what is equal to what? For that we already know that mean of xi is mu mean of x is mu. 

We first consider this thing E of what is this xi minus mu. That is the covariance between 

xi and x, xi minus mu and x minus mu because xi also as mean mu x also as mean mu. 

So, the covariance between any xi and x, what is that? Let us find it out. 

 

Now, as before we replace x by its expression, so 1 by n summation xi minus mu 1 by n 

comes out and you can write this as x 1 minus mu plus dot dot dot dot x n minus mu. 

Once again all the terms will be 0 expected for the case, where from here I have got xi 

minus mu. So, only square of that will remain other terms like xi minus mu times x 1 mu. 

Expected value will be 0 because x 1 and xi, they are uncorrelated and likewise. Only 

when we have got a term xi minus mu from here, so square of that will come up expected 

value which is nothing but the variance for xi, and variance of xi we all know is a 

constant independent of i which is sigma square, right. 

 

So, this will become nothing but sigma square n. So, we now come to this question. 

What is Ev? So, if we apply E here using linearity, we will have this and you can write 

here 1 by n minus 1 and same summation i equal to 1 to n E, but inner quantity you can 

write like this square. Now, here there will one term xi minus whole square expected 

value which will give x to variance of xi which is sigma square you know. Similarly, 



 

another term will have expected value of x minus mu whole square which is the variance 

of x, and we have already seen variance of x also be square by n, and there is a cross 

term twice expected value xi minus mu x minus mu. There is covariance between x xi 

and x which is also sigma square by n. We have just now seen. 

 

(Refer Slide Time: 36:57) 

 

 

 

So, if we use those figures here, first is sigma square, then minus twice sigma square by 

n from the covariance term, the cross term, and then from the variance of the other one 

sigma square by n, and this sigma square. Now, we are summing that is a summation, 

right. Then, that is the summation of n. So, that means now what is it? If you take sigma 

square common, this is n times sigma square. If you take common sigma square by n 

minus twice sigma square root by n, so you are left only minus sigma square by n taking 

this sigma square common. So, you get n minus 1 by n and this n, this n cancels. You are 

left with just sigma square. This is answer. Few definitions when the two random, when 

the random say x 1 to x n, they are independent. We have seen they are uncorrelated. 

Obviously, same applies for the complex random variables also.  
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For instance, if say z 1 is x 1 plus jy 1, z 2 is say x 2 plus jy 2 and we say that z 1 and z 

2, they are statistically independent. That means that if z 1 z 2 are independent, this will 

imply that probability density z 1 z 2 which is nothing but some px 1 y 1 x 2 y 2 will be 

same as x 1 y 1 which goes for z 1 times px 2 y 2, and if this is given, then for complex 

variables also complex random variable also, they will be uncorrelated. That is E of z 1, 

z 2 star will be Ez 1 into z 2 star. That is very easily seen, that is E of z 1 z 2 star will be 

nothing but z 1 z 2 star multiplied by the joint density integrated, but joint density can be 

written like this. It can be broken like this. So, there will be one on one side, we have got 

z 1 times px 1 y 1 dx 1 dy 1, and again z 2 star px 2 y 2 dx 2 dy 2. Obviously, this will 

give rise to Ez 1 and this will give rise to Ez 2 star. So, that means I write separately 

here. 
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Here we see easily. Finally, suppose sorry suppose are independent. That means if you 

take instead of x 1, a function gx 1 instead of x 2, a function gx 2 dot dot dot a function 

gx n is same as after all. This whole product is again another function you calculate g 1 

sorry. You can write g 2 gn different function. X 1 as a function I mean I take a function 

g 1 which works on x 1. Then, a function g 2 which works on x 2 gn works on x n, and I 

consider the products which is basically a function g of x 1 x 2 x n. Expected value will 

be what this product multiplied by the joint density integrated, but if they are 

independent, joint density is nothing but product of individual and marginal densities. 

 

So, you just separate out the integral one with respect to x 1. Thus, g 1 x 1 times 

probability density of x 1 integrated same for x 2 same for x n. So, this will give rise to 

first one. Integral give rise to the expected value of that is g 1 x 1, then expected value of 

g 2 x 2 dot dot dot expected value of gn x n. Now, I come to a very important topic that 

is correlation matrix and covariance matrix for a set of n random variables in general 

complex value to random variables in general complex valued. 
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I need to define you know certain things like what is meant by hermitian transposition, 

definition of hermitian transposition given a vector x as say x 1 dot dot dot x n hermitian 

transpose which we denote by x hermitian. This will be given by actually by conjugate 

transpose. You have to transpose the vector, and then conjugate all the elements. It is not 

ordinary transposition. Ordinary transposition means just transpose the elements row 

vector becomes column vector or column vector becomes row vector likewise, but here 

we have to do one more step, that is conjugate the elements also. 
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So, xH is nothing but you can either write x transpose. So, if it is a column vector, it 

becomes a row vector and vice versa, and then complex conjugation or equivalently first 

conjugate and transpose is called hermitian transpose, and is denoted by xH. Similarly, 

for matrixes, same for matrixes, that is given a matrix A. AH is nothing but either A 

transpose. Then, conjugate restrict the matrix transpose. You get another matrix. Then, 

conjugate all the elements or equally you first conjugate all the elements, and then 

transpose either we will get the same thing. Also, my notations if any symbol, any letter 

as a bar or underscore, then it is either a vector or a matrix. 

 

Now, if it is written using capital letter, then it is a matrix. If it is written using lower 

case letter, then it is a vector, but both have an underscore that difference differentiates it 

or differentiates from scalars. One more thing you will see x hermitian x, this will what 

X is a column vector. So, it becomes a row vector transposition, and then conjugates it, 

and this is original x. So, basically it means mod of x 1 square, then mod of x 2 square 

dot dot dot mod x n square, all that which is also called non square of the vector, and this 

is always greater than equal to 0 and real. 
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On the other hand how about x xH? This will not become a scalar. Previous xH x was a 

scalar number because xH was a row vector, x was column vector. So, product was a 

scalar, but now here we have x as a row column vector as before x 1 dot dot x n and 



 

obviously, xH will be first is transpose which is row vector, and then conjugate it. So, x 1 

star dot dot dot x n star which means we have trans like this. Mod x 1 square, then x 1 

star x 2 star dot dot dot x. Sorry I make a mistake x 1 x 2 star. Then, x 1 x n star, then 

again x 2 x 1 star, and then mod x 2 square likewise. 

 

You see the first row and second column element is x 1 x 2 star and second row first 

column element is there conjugate of this x 2 x 1 star, and this works. This matrix 

actually is called a hermitian matrix which means if you have trans like say A 1 1 A 1 2 

dot dot dot say A 1 n. If I transpose it, A 1 2 comes here, and then conjugate. So, this 

place will be A 1 2 star. This remains A 2 2 and likewise. Now, this matrixes are 

hermitian matrixes, but before that you see one thing. 
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A B hermitian is B hermitian A hermitian. This is not difficult to see after all AB 

hermitian means you take AB transpose conjugate, and AB transpose is B transpose A 

transpose conjugate and conjugate of products means product of the conjugate. You have 

to take the conjugate on each of them, right. So, that means, B transpose conjugate A 

transpose conjugate which is nothing but B hermitian A hermitian. 

 

 

 

 



 

(Refer Slide Time: 52:27) 

 

 

Now, previously I considered a matrix of this form. You can call it A. My claim is this is 

a hermitian matrix, that is A, and its hermitian transpose, they are same. Hermitian 

transpose means I mean you take the transpose. So, I, j th element where i is the row, j is 

the column on transposition that goes to the j, i th position, and then you conjugate that 

also. So, after hermitian transposition j, i th position gets filled by the ij th element of the 

previous matrix with the conjugate, that is a hermitian transposition. So, you get back the 

same matrix, and then we call it hermitian matrix. 

 

Now, you can see one thing. This hermitian because what is AH, what is the 

transposition H, right and AB hermitian means hermitian x hermitian, right. You can see 

hermitian of a hermitian transpose. That gives you the original vector. After all this was a 

column vector by hermitian transposition. I mean in a row vector with conjugate, I mean 

elements conjugated. Again taking the hermitian transpose, so it again becomes a column 

vector and conjugation disappears. So, you get back x and here as before xH which is the 

original vector matrix A. So, a matrix which on hermitian transposition gives you back 

itself, then it is a hermitian matrix. 
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That is suppose you take A 1 1, A 1 2, A 1 3, A 2 1, A 2 2, A 2 3, A 3 1, A 3 2, A 3 3, 

and then what is AH transposition will not change the diagonal elements. 1 1 remains in 

1 1 only. Thing is that they get conjugated. Hermitian transposition means A 1 2 comes 

here with a conjugate, and A 2 1 goes here with a conjugate, A 3 1 comes here with a 

conjugate, A 1 3 comes here with a conjugate, A 2 3 comes here with a conjugate, A 3 2 

comes here with a conjugate. Like these two matrixes are same, then A will be called a 

hermitian matrix. That means firstly, the diagonally elements A 1 1 must be A 1 star 

which means it must be real valued element. 

 

So, the diagonal similarly for A 2 2, similarly for A 3 3. So, for a hermitian matrix 

diagonal entries are real and other entries are conjugate symmetric of each other, like 2 1 

th element of AH, that is second row first column. This is nothing but 1 2 th element of 

that is 2 1 th of AH is same as 1 2 th star of A. So, 2 1 th element is this and 1 2 th 

element of A is this. If you put a star here, you get back this element. That means AH 

this matrix it is ij th element is nothing but A matrix. It is ji th element star. That is a 

hermitian transposition. 

 

Now, if A and H are same, that means, A 2 1 and that is we should have A 2 1 is equal to 

A 2 1 should be just a conjugate of this A 1 2 star. A 3 1 should be A 1 3 star because 

this and this are to be same and likewise. So, the transmission of the hermitian matrix ij 

th element. That means I think I continue from here in the next class because some more 



 

properties are to be discussed because this hermitian matrices, they give rise to what is 

called the correlation and covariance matrices. So, that is all for today. We will continue 

from here in the next class because time is up.  

 

Thank you very much. 
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So, in the last class, we were discussing these correlation matrices and in that connection 

I talked about what is called hermitian matrices and hermitian transposition and things 

like that. So, today we will continue from there. 
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So, just to recall what we did last time given a matrix say A, we define a hermitian 

transposition that is AH which actually is nothing but A conjugate that is complex. Take 

the complex conjugate of each entry of A and their transpose which is also equivalent to 

doing in the other way. First take the transposition of A, and then a complex conjugate. 

That is very simple. So, if A is not a matrix, but just a vector, say column vector, then its 

hermitian transposition is what we first transpose. So, it becomes a row vector, and then 

takes the conjugate of each element. Similarly, if A is a row vector, there hermitian 

transposition will be a column vector with all the original elements are complex 

conjugated. So, it happens if A is a hermitian, and then A is called a hermitian matrix. 


