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Lecture - 07 

Associative Memory Model 

In the last class, we were discussing about the Associative Memory and I mean, just the 

introductory part of it. And today we are going to continue with the detailed discussion 

on associative memories. And in particular we will be taking the associative memory 

model, both from the structural aspect as well as from the mathematical point of view. 

Now, yesterday we were listing out some of the characteristics of the associative 

memory. And one of that I think you must have noted, that is to say that the associative 

memory is highly distributed in nature. So, it is a distributed memory system it is not 

confined to one place, it is distributed and that is of course, motivated from the biological 

neural consideration. So, let us look at some modeling that one can make about the 

associative memories realized out of biological neurons. 

(Refer Slide Time: 02:03) 

 

Let us take certain number of neurons, let us say that we take m neurons, which are inter 

connected in an associative memory weight. So, what we will be having in that cases, 

that let us first consider the input layer, so we will be having from the input several 

neurons, which will be connected to the neurons at the output layers. So, here we will be 



having the input layer and here we will be having the output layer and in between these 

two we will be having the synaptic connections. 

So, all this synaptic junctions will be existing like this, that supposing we indicate the 

synaptic junction in this manner like this. So, these are I mean all these things nothing 

but, the synaptic junctions, so how is the association or the memory storage actually 

taking place. We are feeding the patterns at the input layer and we are obtaining the 

response from the output layer. 

So, whatever is stored is actually stored in the form of the synoptic weights. Now, this is 

one area of the memory, which is responsible for the storage of information and there 

what is being done is that we will be having a set of synoptic weights. But, this set of 

synoptic weights will act in such a way, that if you are feeding any specific pattern, let us 

say that you are feeding a specific pattern x k in form of a vector. 

By vector I mean to say considering all these m elements, let us say that there are a m 

elements at the input and there are m elements at the output. It is not mandatory that the 

input number of neurons and the output neurons, they have to be same in number they 

could be different. But, without any loss of generality one can consider it this way that 

we have I mean the same numbers of the input and output I mean perhaps just to ease out 

our analysis part. 

But, in fact the analysis can be carried out for even different number of inputs at the 

input and the I mean a different number of neurons at the input and the output layers. So, 

what happens is that, this memory or this synoptic junctions will be responsible for the 

storage of patterns. In the sense that, if we are feeding any input pattern let us say that a 

particular pattern x k in the form of a vector that we feed. 

In that case we should get the corresponding y k vector which is supposed to be the 

output. And if we get that, then one can say that there is an association between the input 

x k and the output y k both in the form of vectors. So; that means, to say that we are 

essentially looking for the association between the x k vector and the y k vector, where x 

k is the input and y k is the output. 

So, in affect what it is doing is that, it is as if to say memorizing the x k y k pair, but not 

explicitly what it does is that, in the form of this synoptic weights. So, that when x k is 



straight over here you get y k, similarly when x 1 is pair here you get y 1, so whatever 

pattern you feed, you can recall that pattern by feeding that pattern as a stimulus, you can 

recall that pattern I mean recall it is response from the output. 

So, that is what it is, so this is from the biological model point of view. And whenever 

we consider the ANN model, it is almost the same, but only that the representation is 

slightly different. So, there too also we can consider as an example, again in the case of 

m neurons and let us say that we consider any pattern, any particular pattern k. So, here 

by this k I mean to say the index of the pattern. 

So, x 1, x 2, x 3 and all these things will mean the first pattern, second pattern, third 

pattern like that and these are all in the form vectors. So, let us take the kth pattern and 

we will be having x k 1 has the first input let us say. Then, we will be having x k 2 as the 

second input and likewise we will be having x k m as the mth input, so these are 

available at the input layers. So, likewise will be having an input layer for the ANN 

model also. 

So, this is the ANN model of associative memory and these will be connected to the 

neurons or you can say the output neurons, which will do the processing part. Processing 

means, what kind of a processing in this case it is fairly simple, that take any neuron. Let 

us say that we take the neuron, that generates the output y 1 or in this case we will write 

y k 1. Because, for the pattern k the response that we are getting from the output neuron 

index task one. 

So, y k 1 will mean the output from neuron index task one for the pattern k. So, we will 

be having y k 1, y k 2, etcetera up to y k m. Just, because in this particular case we had 

considered the number of input neurons and the number of output neurons to be the same 

and as I tell told you that they could be different also. Now, what happens is that every 

neuron will be having the connections from the other inputs. 

So, this will connected to x k 1 x k 2 and up to x k m, likewise y k 2 will be connected to 

x k 1, x k 2 up to x k m and likewise y k m continuing this way, y k m will be connected 

to x k 1, x k 2 up to x k m, this is the ANN model. So, it is essentially the same only and 

in this case what happens is that we will be designating each of this connections by their 

synoptic weights. 



So, in this case what we have to consider is that, if we are taking a particular pattern k 

and we are considering this connection let us say, this connection means what, that it is a 

connection that is there between 1 and 1, output 1 and the input 1. So, we will be writing 

it as w 1 1, but just to indicate the pattern number also, what we do is that within 

parenthesis we give a pattern number. So, we will be calling this synoptic connection by 

w 1 1 k, what we will be calling this connection that is x k 2 to y k 1. 

Student: ((Refer Time: 10:18)) 

W 1 2 k, so like this, this connection from x k m to x k 1 we will be calling as w 1 m k. 

And now going over to the second output neuron, that is output neuron number 2, we 

will be having the synoptic connection as I mean from between this x 1 and the y 2 the 

synoptic connection will be w 2 1 again within bracket we have to write k. So, the very 

purpose that we are writing k is that, these weights, at least we know that these weights 

have been designed. 

So, that for the pattern k, this weights are suited to this pattern k, so that when the input x 

k is applied you get the output as y k. But, there lies a question does this network have 

only I mean memory for only one pattern, certainly not we are going to store a large 

number of patterns within this memory. But, then why is it that we are writing it as w 1 

k, because the moment we write anything with a bracket or suffix or superscript 

whatever with k. 

That means, to say that it is only for the kth pattern that I am considering, for the time 

being we consider one pattern or rather the kth pattern only. But, in effect when we 

design the total combination of these weights, when we design this set of weights that 

time we have to consider the effects of all the pattern. So; that means, to say that the final 

weights that we will be having will be from the combined contributions of all the 

patterns. 

This I am writing as k just to indicate that for the association of x k with y k, this will be 

the synoptic weights w 1 1 k, w 1 2 k like that up to w 1 m k again w 2 1 k, w 2 2 k up to 

w 2 m k finally, up to w m 1 k, w m 2 k up to w m m k all right. Now, let us I mean in 

these lines we can easily formulate the mathematical part of it, I think the representation 

now is going to be pretty simple. Let us see, that what is going to be our definition of the 

vectors as such. 



Now, we started with two vectors, the input stimulus which we called as the x k vector 

and the output corresponding output, which is associated with this input is y k vector. 
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So, what is this x k and y k. So, x k vectors definition is essentially it is x k 1, x k 2, 

etcetera up to x k m. And we will be having the, in fact we can write this as I mean it is 

custom attitude write this as transpose meaning, that by vector we will be meaning the 

column vectors. So, likewise y k vector will be defined as y k 1, y k 2, etcetera up to y k 

m again the transpose of this. 

And so now, we consider the response for any one of the neurons, ((Refer Time: 13:57)) 

let us say that we consider the response of I mean these are the outputs y k 1, y k 2 up to 

y k m. So, we consider the response of the jth neuron in the output layer for the pattern k 

again, so we are considering y k j all right. So, what can be the representation of y k j 

here y k j we could represent as summation of w, what j and then again some other index 

we to say. 

So, we can say w j i for the pattern k and here we have to write x k, what x k i and we 

have to summit up over i is equal to 1 to m. So, what is the index i, the index i in this 

case is for the inputs, so i is equal to 1, i is equal to 2 up to i is equal to m, these are the 

input numbers. So, these are all the x k i’s and then these are the w j i’s are the 

corresponding weights between the output neuron j and the input neuron k and the 

neuron i for the pattern k and we are adding it up this from over i is equal to 1 to m. 



So, this is what we are getting for y k i and this in the matrix form we can translate like 

this. 
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So, the same y k j we can now write as y k j equal to w what are we going to write here, 

w j 1 k, w j 2 k, etcetera, etcetera up to w j m k these being the weight vector. So, 

weights are also written in the form of a vector and this will be multiplied by what this 

will multiplied by x k 1, x k 2, etcetera, etcetera up to x k m. So, this is the matrix 

representation of the same equation ((Refer Time: 16:39)) that we had described earlier. 

So, if call these as equation number 1 in that case equation number 2 is nothing but, a 

matrix representation of equation number 1 only. And mind you, that this equation will 

be valid for j is equal to 1, 2 etcetera, etcetera up to m all right, so if this is valid for j is 

equal to 1, 2 up to m. In that case, it is possible for us to write down m such equations we 

can write y k 1 is equal to in this case we will be having w 1 1 w 1 2 up to w 1 m y y k 2 

will be equal to w 2 1 w 2 2 etcetera up to this. 

So, we can write m such equations and if we write m such equations and take all the left 

hand sides of it. So, all the left hand sides will now indicate y k 1, y k 2, y k 3, etcetera 

up to y k m, so if all this outputs we take together and represent the outputs in the form 

of a vector, then what do I get, then I will be getting the vector of the output y as follows. 
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So, we will be having the y vector represented as y k 1, y k 2 up to y k m all right and 

that will be equal to something, we have to see that what is that. But, essentially all these 

individual inputs will be equal to I mean will be a function of all these x k 1s ((Refer 

Time: 16:37)) is not it I mean in every equation this part will be common, may I right. 

This vector I mean it has to be I mean the individual weight vector, this weight vectors 

will be different. 

Because, for the case of j is equal to 1 it will be w 1 1 w 1 2 up to w 1 m, for j is equal to 

2 it will w 2 1 2 2 up to 2 m like that. So, this will change with every j it changes, but this 

remains the same, so essentially since this is going to change, then for every such j’s we 

are going to have a different weight vector. But, in effect; that means, to say that it will 

give rise to a weight matrix. 

So, we are going to write it down as w 1 1 k w 1 2 k up to w 1 m as the first row of this 

and in the x vector we will be having x k 1 x k 2 up to x k m. So, as you can see that y k 

1 is going to be equal to w 1 1 x k 1 w 1 2 x k 2 up to w 1 m x k m, so all this will be 

added. So, this is what we want is not it, so this really verifies the equation. 

So, whatever we had if we put j is equal to 1, you can get w y k 1 from the multiplication 

of this with this all right. And likewise y k 2 you will be getting as w 1 2 k w 2 2 k up to 

w 2 m k. 
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That is very correct yes, you have pointed out a mistake it should be w 2 1 k, because all 

the time our notation is that whenever we are writing the weight it should be first the 

output index, in this case 2 and then the input index in this case 1. So, it is 2 1 2 2 up to 2 

m and is this will be w m 1 k w m 2 k the last line, the last row will be w m 2 k up to the 

last element will be w m m k. 

So, this is the full matrix representation which gives us effectively the relationship 

between y k vector this is nothing but, the y k vector and this is nothing, but the x k 

vector. So, this relationship gives us the representation or rather the associations between 

the pattern x k and y k, so this is giving this association. Now, this is not the only pattern 

we are going to have many such patterns, let us say that we have got patterns which can 

be indicated by k 1, 2 etcetera, etcetera up to q all right. 

So, we will be having lot of such patterns, but now let us look at this matrix equation that 

we have got. So, how we can represent it, we can simply represent it as y k vector will be 

equal to what w k, in this case w k will be a matrix this particular matrix that we have 

got. So, this matrix w k times what the x k vector, so it is w k and x k vectors product 

which will be y k. 

So, what we are going to have is that y 1 vector will be equal to w 1 vector x 1 vector 

like that as if to say that with every pattern, we are going to have a different set of 

weights. As if to say that for every pattern it has to memorize a different set of weights, 

but that is not a case. In fact, what happens is that I mean as we keep on feeding the 

patterns. Now, for every pattern it learns it associates this y k with x k; that means, to say 

that it forms w k, but then it keeps on adding to it is existing weight. 

So, initially we can say that we begin with the weight as w 0 could be that all the 

synoptic connections, they are initialized to 0. And we then feed the first pattern get w 1, 

feed the second pattern we get w 2 and then, whenever we are getting the second pattern 

we are adding w 1 with w 2. When, we feed the third pattern we are adding w 1 w 2 and 

w 3. 



So, what we are putting into the memory is memory also is going to be in the form of a 

matrix now is not it, all this w matrix elements will go into the memory. But, in the 

memory what we will be actually storing is the summation of weight matrixes. 
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So, in the memory we will be storing like the M matrix will be equal to summation of all 

the w matrix w k's, but for k is equal to 1 to q assuming that there are q such patterns. So; 

that means, to say that what is this, so this what this M matrix is an m by m memory 

matrix. So, m by m memory matrices definition is this, that it indicates say summation of 

weight matrices. 

Now, in effect; that means, to say that this m matrix basically indicates to us the total 

experience that is gain out of q different patterns. So, M indicates the total experience 

gained, now how do we gain experience, we feed patterns one by one. And we formulate 

their weight matrix and we add that weight matrix to the m matrix, with to the existing M 

matrix. In fact, this equation which we can now write it as equation number 4, equation 

number 4 can be written in the form of a recursive relation. 

So, equation 4 can be rewritten in a recursive form and what is it that we can write, we 

can write that the M vector I mean the M matrix after feeding the kth pattern. Now, kth 

pattern means we are assuming that we are feeding the pattern from 1, 2, etcetera, 

etcetera in sequence. So, 1, 2 up to q we are feeding, so we are feeding the kth pattern, 

now after feeding the kth pattern the memory matrix composition will be the memory 



matrix composition which we had at the end of k minus 1 patterns plus the weight w k 

that we have gained from the experience again. 

I mean kth patterns experience gives us the weight w k, which we add to this M k minus 

1. That is, the previous experience that we had gained plus the present experience that we 

are getting is our new experience which is M of k. So, this is in the form of a recursive 

relation, so; that means, to say that if we write it in this recursive form in that case 1 I 

mean the two boundary conditions that we have to note is that. 
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M 0; that means, to say that before feeding any pattern, we are assuming that the 

memory was 0. That means, to say we did not have any experience to begin with and 

finally, I mean since we are assuming q number of patterns. I mean the experience that 

we have gain after feeding the qth pattern will be nothing but the M matrix I mean 

((Refer Time: 27:41)) given that the m matrix definition is this summation from k is 

equal to 1 to q of this W k. 

So, these are the boundary condition, now what you were doing is that ((Refer Time: 

27:55)) you are adding this W k to M k 1. Now, the question is that can you really I 

mean retain the identity of this W k in this M k matrix, you are only adding to it. And if 

there are large number of such patterns and you if you are adding one by one, it is as if to 

say like adding droplets to the ocean I mean you have already got a large collection of 

patterns and you are only adding the experience of the new pattern to it. 



So, it is an incremental addition, but again this incremental addition is necessary, why 

because ultimately this M matrix indicates our total experience gained, this M matrix 

will now indicate the set of synoptic weight. So, again if we are taking the associative 

memory model as we had done in the beginning. So, when it goes through all the q 

patterns, then we will be having a matrix M indicating the total synoptic inter connection 

over here, which will be such that you feed a pattern x k next time, you should get the 

pattern y k retrieved from that I mean it should have an exact retrieval of patterns. 

Now, whether we can do the exact retrieval or the our retrieval is prone to some errors, 

that is something that we have to see. Again, one can also ask another question at this 

point, ((Refer Time: 29:40)) that well and fine we are feeding such kind of individual 

patterns we are feeding with k is equal to 1, 2 etcetera, etcetera. Now, can we guarantee 

the exact retrieval aspect I mean that is what I think I was trying to talk to and we will be 

coming to that. 

So, let us see I mean this particular equation, that we have written in a recursive form let 

us remember that I mean I just now remember what I was trying to say over here. Well 

and fine I mean we know I mean we have already said that, this M matrix is going to be 

the total experience gained. So; that means, to say that we are as if to say computing the 

weights, but how do we compute the weights on what bases are we computing the 

weights in order to reaching this figure. 

We have not formulated any learning rules or not that it is as per the I mean arbitrary 

weights that I mean we did not define any updating equation. So; that means, to say that 

as if to say that we have to somehow estimate that weights in some manner. And then, 

once again when we estimate the memory matrix; that means, to say in that case instead 

of M matrix we are going to have M cap matrix as the estimated matrix. 

So, again it depends that how good our estimates are our estimates may be good our 

estimates may not be all that good. So, how do we estimate that, so this has given rise to 

a concept of what is called by the correlation matrix memory. 
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So, that is what we are going to discuss now all right, now. 

Student: ((Refer Time: 31:55)) 

Yes, please any question. 

Student: ((Refer Time: 31:57)) 

Yes. 

Student: ((Refer Time: 31:59)) 

Yes. 

Student: ((Refer Time: 32:06)) 

I mean let me repeat the question, because I mean the audience might may not be all the 

time audible. So, let me the repeat the question, the question which was asked to me just 

now is that, we are formulating the memory matrix as a summation of the individual 

weights. Now, the question was that what is the guarantee, that when we feed the kth 

pattern as a stimulus, we will be retrieving the kth component of the weight. 

Because, the kth component of the weight is no longer there, it has all got mixed up into 

the memory matrix M only. So, this was the question, in fact just to clarify your doubts I 



mean similar doubts, which others also may be having, we are not retrieving the weights, 

please do not make this mistake. What we have to do is that, given that memory matrix 

M now the W k component is lost we have got the updated memory matrix M. 

Now, the question is that given the memory matrix M is it possible for us, that if we feed 

the input pattern x of k to it, can we retrieve the output pattern y k exactly. If the given 

matrix M permits us to do that our job is done, because we are only noting the 

association between y k and x k, we are not bothered about. Whether, we could really 

identify the W k component or not, you are adding a spoon of sugar to water. 

Now, you are ultimately interested in testing a sweet water, you do not want that what is 

the exact sugar that you have put it to it something of that I mean I do not know whether 

this ideology is too simplified or not. So, is that understood anybody having any similar 

doubts to it. 

Student: ((Refer Time: 34:41)) 

Yes. 

Student: ((Refer Time: 34:43)) 

Yes. 

Student: ((Refer Time: 34:48)) 

Yes, so what happens is that yes the y k is equal to yes, y k we are saying to be equal to 

w k x k. And then, we are adding this w k to the memory matrix and then, we are also 

saying yes that y k is equal to M x k, we are saying that I mean; that means, to say that 

this M is containing all the w’s. So, this M is the total experience of learning, so now, 

yes indeed that is what is going to happen, that we are now going to retrieve the pattern 

out of this combine memory matrix M forgetting about what we had as w’s very right. 

So, we can discuss about the correlation matrix memory and in this case, we have to see 

that how do we estimate this memory matrix M. So, we come up with an estimate of the 

memory matrix and estimate we are writing as M cap, so M cap is the estimated memory 

matrix, again indicating it with the vector notation. Because, it is the matrix and we have 

just make a postulate. 



So, this is a kind of postulate that we are presenting over here that this M matrix could be 

considered as a summation of k is equal to 1 to q y k vector times x k transpose vector 

and summation of this, let us come to the interpretation of this. Now, what was our 

problem what I said was that, we are not knowing any explicit weight, so we are going to 

estimate these weights w k’s. But, now we are saying that we are going to estimate this 

total matrix, we are going to have we are going to come forward with an estimate of this 

matrix M, which we are calling as M cap. 

Now, what is this expression, this is defiantly a vector multiplication and what form of 

product is this, is it an inner product or is it an outer product. You see, this 1 y k vector is 

what this y k vector is an m by 1 vector, so this is y k which is m by 1 vector. And then, 

we are considering x k transpose vector and what is that, that is 1 by m vector and we are 

taking the outer product of this two and summing it up for all the patterns k is equal to 1 

to q. 

So, when you do the product of an m by 1 vector with 1 by m vector, what do you get 

you get m by m matrix. So, this is the matrix that you will be getting out of this and you 

are summing up all the matrices well and fine. Because, what you actually have is the 

input stimulus and the output response, you are having only these. So, essentially you 

have stored the response in response to a stimulus. 

So, you take the outer product of that and you store it into the memory. So, this memory 

M will ultimately contain the summation of all the outer products of this pattern 

association. Now, this equation can be now I mean this is a summation of all this outer 

product the vectors and we can reformulate this equation as follows, now what was our 

last numbering of the equation. Remember, that was 4, in fact this recursive relation we 

can make as number 5. So, that now we can number it to be equation number 6, now I 

can reformulate the equation 6 in this way. 
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So, equation 6 may be reformulated as M cap again we have to take the M cap as the 

matrix ultimately. And writing this way y k x k transpose inevitably means, that we 

could indicate it by the combination of vectors. So, we can I mean since it is going to be 

a summation for K is equal to 1 to q what we can write is that, we can write the 

individual vectors that is y 1 vector, y 2 vector up to y q vector again. 

Because, we have got q patterns weight to the system and the input stimuli's 

corresponding to that are x 1 transpose vector, x 2 transpose vector up to x q transpose 

vector. This we are going to represent in the form of a column vector I mean arranging 

all this vectors into again another column vector. So, this in affect can be written as y 

vector, where y vector is actually whose each elements are all this individual pattern 

vectors is it understood. 

So, the elements of this capital Y vector is all this individual pattern vectors times, we 

are going to write again going to define another vector, which will be the capital X 

vector. And capital X vector will be containing the elements as x 1 vector x 2 vector like 

that, so effectively we are going have the X transpose vector. So, Y vector times X 

transpose vector, in this case the inner product of these two vectors is going to give us 

the memory. 

In fact, since essentially the product of this y 1 and x 1 transpose, they are going to give 

us the M by M memory matrix, they are going to give us M by M matrix. Essentially it 



will mean to say that the dimensionality of this M cap is going to be of the order M by 

M. So, here I think I have already told, but just note it down that the definition of x 

vector is that it is x 1 vector x 2 vector up to x k vector and y vector will be nothing but, 

y 1 vector y 2 vector etcetera up to y k vector y q thank you very much, this is y q. 

Because, we are going to have q patterns, k is only an index which will vary from k is 

equal to 1 to q thank you for this correction. Now, again this expression that we have got 

that M cap matrix is equal to Y vector matrix times X transpose vector. 
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This could be restructured again in the recursive form, how we can write it in a recursive 

way as M corresponding to the iteration k. That means, to say that after feeding the kth 

pattern we I mean we should write it as M k cap matrix will be equal to M k minus 1 cap 

matrix plus y k pattern. So, you have fade the kth pattern, so this was the earlier 

experience gained. 

And you have now fade the kth pattern and you are taking the outer products of the 

response and the stimulus. And this you are going to have for k is equal to 1, 2 up to q 

((Refer Time: 43:51)). So, this is nothing but, a recursive form of equation 7, so if I take 

it to be equation 7 this or this whatever this is nothing but, the recursive form of 7 is 

going to be this. 



So, we can call it as the recursive relation we can call it as equation number 8. And just 

we can depict it pictorially as follows, that we can feed as an input to this system the y k 

vector coming from here. Again, from the other input we are getting the x k, in fact I 

mean I should have told it like this, see here x k is the stimulus for the kth pattern and the 

corresponding association or the corresponding output is y k. 

So, we are trying to memorize this y k, so how that we have got an association of x k and 

y k already. So, we are taking the product of these two and then what we are doing, we 

are taking the outer product and we are accumulating that into the M array. In what 

manner, we are going to have let us say that this is the M cap matrix that we have got, 

this we can put through a unit delay. 

So, which we can write as z to the power minus 1 indicating an unit delay and 

multiplying it by the identity matrix I. And this we will be getting from the output as M k 

minus 1 cap vector, because this is one delay letter. So, if this is M k then this is going to 

be M k minus 1 the earlier, so what we are doing is that this M k minus 1 we are adding 

to the present pattern. 

So, this is what we have already gained and we are adding it to the present association of 

y k and x k and we are updating the memory matrix as M k all right. So, this is just a 

pictorial representation of this anybody having any doubts yes please. 

Student: ((Refer Time: 46:25)) 

Yes. 

Student: ((Refer Time: 46:29)) 

We are getting no, we are getting see effectively what it means is that, you have got an 

association of y k with x k. And you are taking the outer product of that association and 

you are storing it into your memory, I mean you are incrementally adding that your 

memory. Now, once that memory is there the updated memory that you have got which 

is in fact, indicating the sum total of all the experience that is gained. 

Now, what you are having is that you are I mean you will later arrive, once you have a 

memory matrix M already available with you. Then, you can feed a stimulus, let us say 

that you again repeat a stimulus x j from this set of patterns which you have already gone 



through. Now, if your learning is proper, then it should give in response to this x j if you 

can retrieve the pattern y k I mean y j exactly in that case, that is we are wanting is not it, 

that later on any pattern association that we are making we can get it back. 

So, the estimate of M k is coming from x k and y k, you are very correct. And then, 

ultimately what we are doing is that, when we want to retrieve any pattern we will be 

feeding an x k and we will be seeing that if out of that we get the y k or not. 

(Refer Slide Time: 48:23) 

 

In effect; that means, to say that if we get I mean if we feed a pattern, let us say that we 

have already formulated the memory matrix M. So, this is M cap our estimated memory 

matrix and we have fade a pattern x j I mean after learning I mean after we have already 

stored. So, this is a total I mean this is the last iteration that we gone through, so we have 

gone through all the q patterns. And now in order to test this system I take I just happen 

to pick up the jth pattern out of it and I feed the jth pattern as an input. 

So, my output corresponding output will be again a vector, which will be y vector which 

will be equal to M cap matrix times x j vector. Now, what I should ideally have is, that if 

y vector is equal to what, y j vector if y vector is equal to y j vector, then I can say that 

the recall is perfect, is that understood all of you agreed. So, that is what we would like 

to investigate now, that whether our recall is going to be perfect or not, so we are going 

to study the recall aspect. 



Now, let us see that if it is, so or not and if not then what is the condition, that we have to 

fulfill for perfect association, this is what we are going to investigate. So, we do not 

know yet that if this is going to be true, so that is why I have just put a general vector y I 

did not intentionally designated by y 1 or y 2 or y j I mean I expect y j, but I did not 

intentionally put y j, because I do not know yet that whether I will get the exact y j or 

not. 

Now, let us expand this basically what we can write in place of the M vector I mean M 

matrix is this expression. I mean this was our definition is not it, I mean it is either you 

follow this or I mean a better expression is this ((Refer Time: 50:50)). So, this is the 

expression of the M cap matrix, which is the summation of all the outer products for k is 

equal to 1 to q. And now, what we are going to do is that in this expression we are going 

to replace this M cap vector by this expression M cap matrix by this outer product 

expression. 

So, if we put in that case we can write down the y vector as summation over k is equal to 

1 to let us say that we have got M different patterns. So, this we can have as y is that y k 

vector times x k transpose vector and x j, this x j remains the same, so this x j I am 

keeping as undisturbed and only in place of this M cap I have just put forward this. 

Now, you can see over here that I did not put the limit as k is equal to 1 to q instead I 

have put the limit as k is equal to 1 M. And what is M, you remember that as per our 

original definition this was our associative memory model ((Refer Time: 52:29)). So, we 

had M inputs and we had got M outputs, so that we can say that this network is having an 

M dimensionality. 

And we have somehow restricted, the total learning within it is dimensionality. That 

means, to say that if there are 100 neurons in this associative memory model, we are 

saying that we are not going to teach this more than 100 patterns. We can then see that 

whether our assumption is correct, if it is capable of learning more, we will teach him 

more, but if it is not then we have to restrict. So, that is why just to make a restriction I 

say that, if there are M inputs I am not going teach you, more than M at least should be 

less equal. 

So, I mean we can just teach up to M patterns only and now what we can do is that, this 

summation that we have got it is very much possible for us to rewrite this product 



expression. And I can say k is equal to 1 to m and I can now associate x k transpose x j 

transpose, now x j x k transpose x j’s. So, I associate this and then I multiply it by y k I 

can do that, I can do that and this now I expand, this is for k is equal to 1 to m. 

Now, very interestingly when in summing it up for k is equal to 1 to m, one of the 

indices that it has to pass through in the summation is when k is equal to j. And when k is 

equal to j, then very interestingly this term becomes x j transpose x j times y j and then 

other than j there will be all other M minus 1 term. So, what I do is that this summation 

that we have got, we are simply separating it out between the jth term and the non j terms 

summation. 

(Refer Slide Time: 54:51) 

 

So, we can write it as y vector this could be represented as x j transpose x j y j. So, taking 

the jth term out and then keeping the summation as it is from k is equal to 1 to m only 

restriction is that not for k equal to j. So, it is for k not equal to j that way sum up the rest 

of the terms keeping as it is x k transpose x j y k this terms remain as it is. Now, what is 

it, what is this term can you interpret this, this is the yes this the magnitude of the jth 

pattern, the squared magnitude of the jth pattern and what is that in effect it is the energy. 

Now, we can say that if each of the patterns x 1 x 2, etcetera, etcetera up to x m if all 

these patterns are normalized to have unit energy. So, if this is having unit energy, then 

what is the energy expression, the kth vector let us say the kth x vectors energy will be 



summation of x k l square n and l summed up from 1 to m. In this case this is going to be 

x k transpose x k. 

So, if this is equal to 1; that means, to say what that in this expression we substitute x j 

transpose x j to be equal to 1. And in that case what do we get, you get y is equal to y j 

plus this term, now you expected y to be equal to y j and there is one additional term, 

which is coming in between, which is creating the trouble for us, this additional term that 

we are getting is essentially a noisy term. So, in next class next class we will see that 

how to deal with this noisy term. 

Thank you very much. 


