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Lecture -15 

Least Mean Squares Algorithm 

Squares Algorithm and as before, we start the actual topic for today, we have firstly 

some unfinished parts pertaining to the last lecture. And I would again like to begin with 

some doubts which were expressed at the end of the class last time. Now, last time we 

were actually going through the linear least square filter. 
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And in that we had actually developed 1 quite interesting relation, which is that W n plus 

1 is equal to X transpose n X n whole thing inverse X transpose n d n. This is the 

relationship that we had got as the n plus 1 th weight of the system. Now, as we 

discussed last time that, this is actually independent of W n, so it is not a recursive form 

of the expression. That we are using W, without using W n we are able to use W n plus 1 

as if to say. 

That if X n and d n they are known to us, then we will be able to compute W n plus 1, 

but this had raised one serious doubt at the end of the class last time. That whether we 

can forget about all the past observations, is it so that it is only the present observation 

that we are considering. Now, about d n it is ok, because d n is the expected output of the 



target output of the n th observation, but this one, please note that these are capital X. So, 

some people must have wrongly thought by assuming this to be small x. 

And I had intentionally made one distinction between the small x vector and the capital 

X vector. Actually if you remember that the capital X vector, we were indicating the 

capital X vector for n observations as a collection of n such small vector, we should we 

should write it as X n should be equal to the vector that we will get out of X 1 X 2, so on 

up to X n. Where X 1 is nothing but, an m dimensional vector, so this is nothing but, an 

m dimensional vector which is the first observation. 

And like wise x 2 will be the second observation, x n will be the n th observation and this 

X n, this capital X n matrix that we are getting effectively. In fact, we are getting this we 

has define this to be this transpose, that means to say that we are going to get it as n by m 

dimensional matrix. So, those who had wrongly inferred that W n plus 1 is only 

dependent upon X n is wrong, because what we mean is that here the entire X 1 to X n is 

to be considered. 

So, in other words, the matrix X n includes X 1 to X n all these observations and we are 

making a note of all these observations together in this matrix X n. So, if all these things 

are known, then only we are able to compute W n plus 1, so this is the idea that I wanted 

to convey that in this case. This W n plus 1 please remember that it is indeed dependent 

upon all the observation. 

Only thing is that, in the earlier case you remember that we were deriving W n plus 1 in 

terms of W n plus something, which was in fact, a recursive relationship were as here 

this convert just to a single iteration. Because, all that we need to know is the set of X 

n’s, the set of inputs of n observations and the n th target output. So, this is one of the 

things that we were discussing and then, towards the end of the class actually we were 

considering the limiting case of the linear least square filter. 
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And as we said that in order to describe the limiting form of the linear least square filter 

we had assumed that, this X n and d n they are basically taken from an ergodic process, 

they are basically taken from an ergodic environment. So, as I discussed in the last class 

that ergodic necessarily means that it is a stationery environment. So, that we will be able 

to obtain the expectation by averaging only one sample function in the time domain. 

So, from this consideration we said that such an environment will be described by in 

terms of second order statistics, where we were considering we had define two things. 

One is the correlation matrix of x, which we are calling as the R x which is nothing but, 

the correlation matrix, which we had defined last time as R x being equal to the 

expectation of X i, X i matrix to say X transpose i. So, this is the correlation matrix, the 

definition of that. 

And the second parameter that we had defined is the cross correlation vector, between X 

i and d i. So, that we were defining as R x d which was. In fact, define as the expectation 

of Xi d i, so this is the cross correlation. And this is the cross correlation between this X i 

and the d i. So, now let us see that how we can express this R x and R x d. 
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In fact, the correlation matrix R x can now be expressed as follows, that R x is E 

expectation of x i x transpose i, which is equal to limit of n tending to infinity, this is 

because it is ergodic. So, we are taking n number of observations where n is sufficiently 

large, so that is why we are having n tending to infinity and what it means is that we 

have to sum up these. 

So, what are these we have to sum it up sum of this X i X transpose i, this we have to 

some up over i is equal to 1 to n and then, we have to divide it by 1 upon n, in order to 

get this R x. So, in fact if we can of course, take it to be the, by applying this definition it 

is possible for us to say this is again the small x’s. Please remember these are the small 

x’s, so this is x i, so x i means the m dimensional input vector, x i is the i th observation 

of the input vector x transports i is just the transpose of that x i. 

So, this is the i th observation and we have got n such observation, so this in other words 

can be expressed as the limit intending to infinity. And we can expressed it as 1 by n 

capital X transpose n, times X n, so this is what we are getting as the R x. So, this is the 

limiting form of the equation of R x and the cross correlation vector that is R x d, that 

can be expressed as the expectation of X i d i, which is equal to limit n tending to infinity 

1 by n summation i is equal to 1 to n X i d i. 

Again X i here is the small x i small x i d i, which becomes equal to limit n tending to 

infinity 1 by n capital X transpose n d n, so these two quantities are expressed as follows 



this the correlation matrix R x. And the cross correlation between the x and d i and then, 

we can formulate the linear least square solution as follows. 
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You see the linear least square solution as we had obtain is for W n plus 1, we are 

obtaining the W n plus 1 th vector, which can be defined as the limiting vector W. Where 

this W n plus 1 we have to compute as the limit n tens to infinity, so the limiting solution 

of these least square filter is limit of W n plus 1 as n tends to infinity. And this limiting 

solution is also called as the Wiener solution, so the expression that we are getting for W 

is the wiener solution. 

And now, here we can substitute the expression for W n plus 1 that we had already 

obtain for the linear least square filter. What is the relation that we had got, we had we 

had got these expression the W n plus 1 was equal to X transpose n X n the whole thing 

inverse times X transpose n. This itself was defined to be the pseudo inverse of X n times 

d n, this is what we have got as W n plus 1. 

So, here in place of W n plus 1, we can as well substitute that which leads to limit n 

tending to infinity X transpose n X n inverse X transpose n d n. Where it is possible to 

show that this can be split up into product of two limits. And what are they this can be 

split up into limit n tending to infinity 1 by n x transpose n X n inverse times limit n 

tending to infinity 1 by n x transpose n d n. 



And this by our basic definition is the R x matrix, this is nothing but, the R x matrix, so 

here it becomes R x inverse, this becomes the R x inverse matrix times R x d. So, that 

means, to say that here the Wiener solution that we are getting is a product of these two, 

yes any questions on that. 

Student: ((Refer Time: 15:39)) 

1 by n 

Student: ((Refer Time: 15:46)) 

Yes, this can be actually shown that if we break it up, if we break up this quantity, then 

there is a 1 by n square, because you see that here we are taking two products separately 

like this. So, if we break it up, then it can be shown that it is 1 by n times this. 



Student: ((Refer Time: 16:23)) 

Inside the bracket 

Student: ((Refer Time: 16:28)) 

No, here, no you see this is, no this is the basic definition of R x you see, so we are 

applying the basic definition of R x as follows, so this whole quantity. So, R x is limit n 

tending to infinity of this entire quantity. 

Student: ((Refer Time: 17:12)) 

I have got your point, you are saying that R x inverse yes, R x inverse is equal to limit n 

tending to infinity I apply the basic definition, that is 1 by n into x transpose n X n the 

whole thing. 

Student: ((Refer Time: 17:44)) 

Whole thing inverse, so this is actually the whole thing inverse, but the question is that 

becomes R x inverse, so here your observation is correct that it should be 1 by n should 

go inside the bracket, very, very correct yes. 

Student: ((Refer Time: 18:14)) 

Yes very very correct, there is no 1 by n square term, there is no 1 by n square term, in 

fact what happens is that this 1 by n goes into the inverse and that effectively nullifies 

this in turn. So, this can be shown, we are not going in to the details of the matrix 

manipulation, but this effectively becomes the r x d and this becomes the R x inverse, 

does it solve the doubt, perfectly thank you very much. So, now what we are, there is 

some after thoughts that we should get on this. 
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That here you see that W 0 vector is equal to R x inverse times r x d vector, now here 

you see that, that means say that solution of this Wiener. So, in order to obtain the 

Wiener solution, we must have a idea about this R x inverse and r x d. But, the question 

is that, if we are knowing the statistical parameters or the statistical nature of the data 

before hand, then that we are in fact, really going to have. 

That beforehand we will be knowing the correlation matrix, as well as the cross 

correlation between the inputs and the observed outputs. So, since we are not knowing 

that beforehand, it is not possible for us to calculate this W 0 vector in such kind of 

environments. So, in fact for any practical purpose that means, to say for any unknown 

environment we have to go in for an adaptive filtering. 

So, we have to go in for what is called as adaptive filtering, and one such kind of 

adaptive filtering that we are going to adopt is the least mean square or in short form we 

are going to call it as the LMS. So, we are going to describe the LMS algorithm now. 

Now, LMS algorithm mind you has got very much similarity to the linear least square, 

that we have formulated, but the major dissimilarity lies in the fact. 

That in the case of linear least squares, we were taking the cost function to be the 

summation of all the error squares. So, the cost function C W that we were taking was 

actually e 1 square plus e 2 square up to e n square. Whereas in the case of least mean 

square we are taking only, as the cost function we are taking only the instantaneous value 



of the error. That means, to say the cost function C W calculated at w is equal to W n is 

simply equal to e n square. 

Or rather half of e n square, because we are all the time inserting that factor of half, 

because of our convenience in computing the derivative. 
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So, LMS takes the instantaneous value of the cost function, which is C W is equal to half 

of e n square or e square n. Now, differentiating, now if we differentiate this C W with 

respect to the W vector what we get is we get e n times dou e n dou w. Now, like the 

linearly square filter, again here we are operating with a linear neuron, so this operates 

with a linear neuron. 

So, that it is possible for us to calculate this dou e n dou w easily, because we know that 

for a linear neuron e n is equal to e n is equal to d n minus X transpose W X transpose n 

W n. So, that is why we can compute dou e n dou W is equal to, what is equal to minus 

X n simply, because this is X transpose. So, differentiating by the vector means it is the 

transpose of the transpose and this becomes minus X n. 

We are differentiating with respect to W over here and the derivative of d n with 

reference to W is definitely going to be 0. So, this is equal to minus X of n, so that it is 

possible for us to write that dou C dou W. 
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So, we can write dou C W dou W is equal to minus n X n and this is actually the estimate 

of the gradient mind you that this is not the exact gradient. Because, for exact gradient 

we would have required the error as a vector e 1 e 2 up to e n we do have got, but in this 

case we have got only the e n. So, we can express these the derivative of C with 

reference to W as the gradient estimate. 

So, gradient estimate can now be written as in fact, whether we write it as minus e n X n 

or whether we write it as, because in this case e n is a scalar quantity, e n is equal to d n 

minus this. So, we are taking only one neuron and this is the n th observation of that, so e 

n is a scalar d n is a scalar. And this x transpose W, that itself becomes a scalar although 

individually X is a vector and W is a vector, so this is simply the linear neuron model, 

that is what we are considering. 

So, this minus e n X n can also be written as X n e n does not matter, so this is the 

estimate of the gradient. So, since this is estimate we are indicating as g hat not as g 

exactly. In the case of steepest gradient we were indicating it has g n, but here we are 

writing it as the estimated g n. And because it is equal to minus n minus of this quantity, 

what is going to be our updating equation or what is the LMS algorithm equation. 

In fact, are we correct in writing that W n plus 1 is equal to W n plus, because it is the 

gradient, so we have to move in a direction opposite to the gradient. So, that is why it is 



W n plus eta X n e n, where X n e n or eta g n, or eta g n is equal to minus, g n is equal to 

minus X n e n. So, it become W n plus 1 becomes equal to W n plus eta X n e n. 

Nobody is objecting to it, is it the same as the that of the gradient decent that we have 

discussed, steep as decent, steepest in decent approach that we have discussed is it same 

as that, exactly same as that, it is not. Because, after all we have made an estimate of the 

gradient and because we have made a estimate of the gradient even the weight that we 

are computing is also an estimated weight. 

So, it is not right for us to indicate this by simply putting W or W vector, we should put 

it as W cap vector both for n plus 1 and n. So, W cap n plus 1 is equal to W cap n plus 

eta times x e n, this is our weight updating equation for the LMS algorithm. So, can we 

now call it, because our basic objective was to make it an adaptive filter, now can we call 

it an adaptive filter yes are no. Anybody disagreeing that it is not an adaptive filter it is 

an adaptive filter, but why is it an adaptive filter. 

You see we are starting with the first observation, so what is our error our error is e 1, so 

we are having half of e 1 square to be our cost function, we begin with any arbitrary 

weight to start with we have W 0 as the initial weight. So, we start with any arbitrary 

initial weight assignment W 0 and first time we operate with e 1, which we are getting as 

the difference between d 1. D 1 is the expected output for the first pattern, d 1 minus X 1 

transpose W 1 or W 0 here. 

Or rather to say the first one if we you are calling as zero vector, then everything is your 

e 0 will be equal to this, so your observations will be actually e 0 onwards. W 0 is the 

starting weight and you are getting the first error. And then, based on that first error you 

are updating your weight and the weights are getting updated as you are learning more 

and more. So that means, to say that even if the environment changes, then also we are 

updating the weight according to the changes that we are observing in the observations. 

It is not that we are taking all the n observation together and then, doing the updating we 

are doing the updating with every observation. So, there lies one great this thing, but one 

thing is there that here we are not getting the exact idea about the weight, we are getting 

the estimated weight. If we are comparing it with respect to the steepest decent approach. 

Now, one thing which we had pointed out for the case of steepest decent approach is 

that, the steepest decent approach follows a definite trajectory. 



As we iteratively go on the steepest decent will follow a definite trajectory, remember 

that we had illustrated that with a simple two dimensional space where we were taking 

just two vectors W 1 and W 2. And we were considering the controls like this and then, 

we were considering one operating point. And then, it was going into the solution 

following a fixed trajectory. Here the in that case the weight that we were obtaining, 

where the exact ways whereas in this case this is going to be estimated way. 

So, you cannot expect as good a trajectory that you could imagine in the case of steepest 

decent, because what we are doing is actually an approximation to the steepest decent. 

So, that is why the trajectory that we will be getting is more like a random there will be 

some randomness in the trajectory. So, that is why this approach, which is actually in 

tune with steepest decent, but not exactly the steepest decent, is very often refer to as the 

stochastic steepest decent. 

So, here the very fact that we have use the word stochastic before the steepest descent, 

means that it is behavior is having some deviations from the perfect steepest descent, that 

we are going to have. So, here we will be having such kind of variations. Now, we are 

going to consider the convergence aspects of this LMS algorithm, but before we going to 

that let me again invite some questions from the participants here, any questions. So, we 

go over to the convergence consideration. 

(Refer Slide Time: 33:30) 

 



Now, one point that we note here is you say that the equation that we had obtained I W n 

plus 1 or W cap. In fact, W cap n plus 1 is equal to W cap n plus eta of this terms. And 

what is after all eta of this term it is dependent on e n and e n is nothing but, d n minus x 

n w n. So, in other words the weight that we are getting is following some dependence on 

the x n and d n. 

Now, in this case one thing that we should consider is that a of course, and first and for 

most it very much dependence upon this eta. So, that is why any convergence criteria. 

So, if we fix up this x n for example, if we fix up this n, that means to say that we fix up 

the environment then the e n’s are also fixed up because e n’s then well depend only 

upon the weight because if x n’s are fixed. 

Then like wise the d n’s are also fixed, if you are fixing the patterns then there expected 

outputs are also fixed. So, that is why the en’s that you are getting is only dependent on 

weight. So, in other words we can say that the weight updating equation will be 

dependent upon eta only, for fixed n, for fixed set of inputs the weight updating equation 

will very much depend upon eta. 

And as we discussed before that from all practical and convergence criteria’s, we have to 

take very small values of eta. It is a mass to that we have to take very small eta’s. Now 

what are the convergence consideration, that we are going to take. The first criteria that 

we normally take is the convergence of the mean. Convergence of the mean and this is 

described as the expectation of w n, expectation of W cap n. 

In fact, as n as n tends to infinity if you make the number of observations to be large, 

then what is it that its it is going to be what can you expect to be the expectation of W n 

equal to w naught, yes. You can expect it to be w naught, which is the Wiener solution. 

So, expectation of w n is tends to w naught as n tends to infinity, but this is of little 

practical value. Since a sequence of zero mean, but otherwise arbitrary random vector 

can also converge in this sense. 

And from a practical point of view better convergence to criteria that we normally see is 

that the expectation of its square error, that means to say e of e square n that becomes 

constant as n tends to infinity. So, in other words that if it becomes if the expectation of 

the error that becomes constant at as n tends to infinity. 



Then also we can say that the LMS algorithm has converged, yes or no we can say that 

because, if the error, if there is no change in the error if it has already gone into an 

constant error with iterations. That means to say that it is characteristic is something like 

this where this is the error of the cost function, then the cost function will get a fixed 

value here. So, this thing is a constant is of good measure that it has actually converged. 

So, for all practical consideration, we will be taking the convergence of the error, 

convergence of error to be, convergence of mean square error as the LMS algorithm 

convergence consideration. In fact, the convergence analysis is very much detailed 

involves quite complicated mathematics. So, that is why people have solved this problem 

only under some assumptions and those assumptions mind you are more all less this 

reasonable assumptions. 
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And what are the assumptions that people have adopted to solve the convergence 

problem. So, assumptions made in showing the mean square convergence criteria is 

number 1 assumption is that this x 1 the small x 1, x 2 upto x n they are all statistically 

independent. 

So, all the observations that you are having all the inputs that you are having they are 

statistically independent inputs. The second assumption is that the input x n the n th input 

x n is independent here all this x’s are the small x please do not feel confused. So, this x 



n the n th x, that means to say is independent of d i, where i is equal to 1 2 up to n minus 

1. 

That means to say that the n th input is independent of the previous target outputs not 

unreasonable to assume that. The third consideration is that although d n is dependent on 

x n very much. D n has to depend upon x n, but d n is independent of d 1, d 2 up to d n 

minus 1. Independent of d i, i is equal to 1 to n minus 1. The fourth assumption is that 

this x n and d n they are picked up from a Gaussian distribution, because unless the 

distribution of this x n’s are assumed in some form. 

It is not possible to show the convergence criteria, so the convergence criteria can be 

shown only under some distribution. And in absence of any definite knowledge about the 

exact distribution, it is not unreasonable to assume that x n and d n will follow a 

Gaussian distribution. So, we pick up the x n and distribute x n and d n out of a Gaussian 

distributed variable. 

So, now if we assume these four things, then it can be shown that the LMS algorithm 

converges in the mean square error sense. If this four are valid, then the LMS algorithm 

converges in the mean square error sense and this has been actually shown by Haykin. 
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And Haykin has shown that under these assumptions under these 4 assumptions. The 

LMS algorithm is convergent in the mean square sense provided that the value of eta lies 



within two and lambda max with is 0 and 2 by lambda max, where lambda max is the 

largest eigenvalue of the Rx matrix. 

So, it is the largest Eigen value of the correlation matrix. Now, in a typical application 

actually the idea of this lambda max is not available. And in such kind of cases were the 

lambda max is not available, then a more conservative estimate about this eta more 

conservative estimate. That one can have is more conservative estimate, when this 

lambda max, is not known is simply by looking at the trace of the matrix Rx. 

If you are taking the trace of that matrix Rx that can be approximated for lambda max. 

So, a more conservative estimate for eta is where eta lies between 2, 0 and 2 by trace of 

Rx. And what is the trace of Rx, what is the significance of the trace of Rx? 

Students: ((Refer Time: 45:14)) 

Some of the diagonal elements, yes very good, then the, so that is the some of the 

diagonal elements and what are the diagonal elements signifying in the case of the 

correlation matrix. 

Students: ((Refer Time: 45:28)) 

Yes, the power terms, power terms means the means square values of the sensor inputs, 

because after all we have got the Rx matrix as the expectation of capital X transpose 

capital X. And what was capital X capital X was nothing, but the matrix that we had 

formed out of the input vectors x 1 to  x n. 

So, that was actually composing the big X matrix and that big X matrix that we had got. 

It is diagonal elements will be will be having all the x 1 squarer term, x 2 square term, x 

3 square term upto xn square term. So the trace of the matrix in fact, will be indicating 

the means square values of the sensor input. 
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So, what we will be getting is that the value of eta should lie between 0 and 2 by the 

summation of mean square values of the sensor input. So, you can see that for all 

practical consideration, the convergence that Haykin has shown under all this 

assumption. Basically says that it is convergent in the mean square error sense only when 

the value of eta is within this. Within this are a more conservative estimate would say 

that within this. 

So, this is very easy to compute, because we know that what our inputs are and if you 

now that about the inputs are, we simply adopt the inputs, thus the square of those inputs. 

And we sum it up of course, we have to make large number of observations on that and 

then if we have 2 by that quantity, that will give us the upper limit of eta and if eta is 

restricted to this bounds, then the convergence of the elements algorithm is guaranteed. 

So, this is and in fact, any large values of eta; obviously, will make the system unstable, 

because this aspect we discussed earlier also that the convergence will be only restricted 

for the case of the smaller etas. Another consideration that we should have is, you see 

that, let us go back again to this equation that W n plus 1 is equal to w n plus eta times x 

n en. 

Now, what is the effect of small eta and what is the effect of large eta on the learning 

itself. If you are having a small value of eta then; obviously, one point is there that it 

learns slowly. But when it learns it learns all the inputs that had been presented, so far 



mind you, because we are iterating upon this algorithm for n equal to 1, 2 etcetera, 

etcetera, right. So, every time we are making contributions which are getting embedded. 

So, what happens is that when we compute w n plus this quantity. 

First time it does this incremental learning and gets in to this updated w n plus 1, then 

these w n plus 1 is already containing. This w n plus 1 will be used in the next iteration n 

plus of w n. That means to say that it has already learnt the first one. 

Now, if eta is small then another small incremental learning is added to it, so that in the n 

n this w n will contain the learning that has been contributed from everything. Whereas if 

the value of eta is quite large, then what happens, then what happens is that as compared 

to w n this term will contribute more. 

That means to say that current input that you are providing is contributing more to the 

learning rather than the agglomerated effect of all the past inputs. So, a small eta makes a 

contribution of all the inputs that we have presented. So, far where as a large eta means 

that it gives more baseness towards the input that is presented at the last time. 

So, that is why from a memory point of view from a system memory consideration, we 

should say that a system that is having smaller values of eta has got better memory as 

compared to the systems which are having larger values of eta. So, it is not only the 

convergence criteria, but even the learning also is better. But only thing is that a small 

eta, the price we pay for a small eta is nothing, but the slower convergence that is all 

other we are gainer. 

So in fact, coming to the pros and cons of the least mean square approach, we can say the 

least mean square approach is definitely a very effective linear adaptive filter. There can 

not be any doubt about it an it. So, simple implement because it is cost function is just 

formulated as the instantaneous error square term. And the only price that we pay for in 

the least mean square algorithm is the slow convergence any question. 

Thank you. 


