
Neural Network and Applications
Prof. S. Sengupta

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 14

Linear Least Square Filters

Our topic for today on the chapter of single layer perceptron is, Linear Least Square

Filters. But, before we discuss about this, we have to complete our unfinished

discussions related to the, earlier the unconstrained optimization approach. That is the

Gauss Newton method. We had gone up to some expressions, but before we start from

the point where we have left yesterday. We need to also discuss about some of the

clarifications, because at the end of the class when I was talking to the students, I could

realize that there are few things which required clarifications.

Now, 1 of the clarification is related to the error expression that we had put forward. And

some of the students were interested to know that what is the significance of that error

expression, so let me go about that. See what we have done is that we are taking n

number of observations. So, with a fix set of weight we are keeping the weight fixed and

then, we are computing the error for n number of observations.

And those errors we are designating by e 1, e 2, e 3 etcetera up to e n and then, we are

defining the cost function as summation of half of e i squires. So, where i is summed up

from 1 to n which is the number of observations. And then, we are our objective will be

to minimize this half sum of e i squire or minimizing e i squire summation in fact. So, to

do that what we did was, that we had derived an error expression.

So that with the change of weight, because what we are doing is that at the end of n

observations, we are going to update the weight. And the thing is that once you update

the weight, then the errors that you had obtained for the n observations, those errors also

change, because with change of weight, error is a function of the weights. So, when we

change the weights that time the error also changes, so the error gets updated.

So, what we are doing is that, we are operating the a whole thing, we are making a search

at the point W is equal to W n, because weights are going to change.

(Refer Slide Time: 03:37)

So, at this point W is equal to W n, when we are going to find out a new weight, there we

are finding out that with change of the weight that takes place, change of weight is

definitely going to be W minus W n. Where W is going to be the new weight and W n

going to be the older weight. So, with W minus W n being the incremental weight the

new expression for the error that we are going to get for the, we are going to get new

error components for each of the observations, that we already had.

So, let us say that for the i th observation, the updated error that we must have is e which

will be expressible as a function of i and W. So, i means that here we are considering the

i th weight and then the W which is the weight and this is equal to e i plus dou e i dou W

vector. And this will be evaluated at W equal to W n, because that is the point from

which we are going to change the or update the weight W minus W n. So, this we have to

update for all these i’s, all these observation we have to update the error expression.

So, this is the updated error expression and then, what we are going to do is that for the n

plus 1 th weight we must put forward the minimum value, we must find out the

minimum value of this expression half of e prime n W vector norm of this squire. And

the W vector corresponding to which it gives the minimum, that W vector we are

choosing as the updated weight.

So, our objective is to minimize this sum of the squares expressions, so this is what we

were doing. So, those who had any doubt about the expression that we had written, I

think we will clarified now that, this is change of the weight that we are making. And

then accordingly, since we are changing the weight we also need to change the error

expressions that we had obtained. So, e i was the old error and e i W that we have written

on the left hand side is the updated weight, followed.

So, that is clarification number 1, that some the students wanted and the second

clarification is related to the multiplication that we had carried out. In fact, the

expression that we had obtained for this equation only.

(Refer Slide Time: 06:38)

The expression that we had obtained in the matrix form was written as e n W equal to e n

which is the older error plus J n, in fact it is the J n which directly gives you the Jacobian

matrix. And it is signifies the partial derivatives or the derivative with respect to W

vector, which in term in the matrix it translates to the partial derivative with respect to all

the different components of the W’s. And then it is J n multiplied by the change in

weight which is nothing but, W minus W n.

So, this is what we had obtain and in fact, let us say that this is equal to the C, this is

equal to A that is this one and this is equal to B. So, we are having C is equal to A plus

B, where all these things C A and B these are vectors mind you, these are all m

dimensional vectors. So, then any doubts from the students no, so in that case C vector

transpose will be equal to A vector plus B vectors transpose which will be nothing but, A

vector transpose plus B vector transpose.

So, when we are going to compute C vector transpose time C vector, the dot product of

these two, if you are going to take, then it means that we have to take A vector transpose

plus B vector transpose multiplied by A vector plus B vector the dot product of this. So,

if you expand this, then what happens is A vector transpose A vector plus A vector

transpose B vector plus B vector transpose A vector plus B vector transpose B vector.

Now, that means to say that we get four expressions, in fact that is what people are

pointing out to me that we defiantly require four expressions here. One is A by A which

ultimately will turn out to be norm of A square, this will be turn out to be norm of A

squire. This will turn out to the norm of B squire in fact, this B itself is a product these

two, so B that we are writing is already a dot product of J n and W minus W n. So, J n is

actually a matrix, this is an n by m Jacobian matrix and this one is m by 1 vector.

So, in effect this becomes an n dimensional vector, in fact all these things, each of these

things are m dimensional vectors, so not m, but n dimensional vectors. Now, the question

is about this these two terms, these two cross terms that is A transpose B and B transpose

A. Now, these being vectors A vector and B vector beings vectors, they are all going to

be equal, both of them are going to be equal. Why, because A transpose B means what,

A transpose B simply means…

(Refer Slide Time: 10:13)

If it is n dimensional vectors, let say in that case this can be written as summation i is

equal to 1 to n, because this is in dimension. And if A vector composes of the terms a i b

i a 1, a 2 etcetera up to a n and B vector consists of b 1 b 2 up to b n, then it will be

summation a i b i i is equal to 1 to n. And similarly, B transpose A is definition also is

this, i is equal to 1 to n a i b i, b i a i that is same in this case, so these both this things are

equal.

And that is why whenever you are trying to get a C transpose C vector, that is equal to A

transpose A vector plus 2 times you can write A transpose B vector plus B transpose B

vector. So, that is how we arrive at two terms, in fact what we are doing is that, we are

multiplying everything by half. So that, we get here half term that means, to say that here

we will be getting half norm of C square and here, we will be getting half norm of A

square.

And here we will be getting this term, there is no half associated with it, because it was

already multiplied by 2, so when half comes in it becomes multiplied by 1. So, here this

term remains as the A transpose B and then, this term is B transpose B which should

have been a norm of B square, but because this itself is a multiplication. So, this itself is

J n W minus W n, so what we are going to write as B transpose B is W minus W n

transpose J n transpose J n W minus W n, so that is what we are going to get.

So, B transpose B also will be written in that form, so that in effect we are going to get

three expressions, so that was a doubt with some people had that. We are multiplying

these two, but then instead of four terms we are getting three terms, but if you are

looking carefully this term that you are getting, A transpose B here the coefficient is 1.

That means, to say that those two equal terms have been combined.

So, that is why it leads to when be substitute for C, A and B, we substitute the

expressions that we had considered. Because, for C we have to put forward this A equal

to put forward this and B equal to this. If we do that then, we are getting this expression

very easily, in fact I would to like all of you to verify this yourself and feel convinced

about it.

(Refer Slide Time: 13:09)

So, this is norm of e n W square is equal to half norm of e n square plus, the second term

is going to be e transpose J n W minus W n this is very clear, this is may be A transpose

B simply. And then, the B transpose B and B transpose B in this case is going to be half

of W minus W n, this whole transpose J transpose n J n W minus W n. So, this is the

expression that we are getting for B transpose B, so this is the term that we had obtained.

Now, what we are doing this whole thing we are now differentiating with respect to W

vector. So, the result is pretty simple, now here all these things mind you will be

differentiated, so this is actually a scalar expression. And this we are a multiplying, this

we are differentiating with respect to W and then, what happens is that this term is there.

And then this expression is going to be equal to 0, then whenever you are differentiating

this with respect to W vector, then it is a differentiation of this form.

X transpose W vector, this is an expression of this form the second term to say, for which

we already know that the result of the differentiation is X. So, that is why if you are

taking this to be a transpose form of expression. Then whenever you are differentiating

with respect to W then, what is it that you are going to get, you are going to get J

transpose e very correct, J transpose e is what we you are going to get.

And then, here what is said that you are going to get out of this term, you are this thing if

you look at it, this thing is a quadratic form of expression. So, we are having W minus W

n, let us call it something, let us call it as y. So, half of y transpose and this one we call as

R, the R matrix it becomes, because here this is going to be an m by n matrix and J n is

going to be n by m matrix. So, in effect it is n by m R matrix that it becomes and then,

this is becomes y. So, this is a quadratic form of expression for which the derivative is

going to be R y.

So, that is what we are going to write and then, this will be equated simply to 0, because

what we are doing is that we are going to minimize this expression. So, we are finding

out the derivate with respect to W and equating the derivate with respect to W to 0, this

is what we are getting.

(Refer Slide Time: 16:56)

J transpose n e n plus J transpose n J n W minus W n this is equal to the 0 vector, we are

going to get that how are we getting J transpose e n, J transpose e n simply we are

obtaining from the second term. And what we are obtaining from this, this is this R y

form, so R y form means we are going to get this is the R, so we are writing it directly J

transpose J. And then this is our y, so y also we are writing this whole thing should be

equal to the 0 vector.

So, that means, to say that if we now take this on the right hand side, then we are going

to get J transpose n J n multiplied by W minus W n, that is going to be minus of J

transpose n e n. Now, if we pre-multiply the left hand side and the right hand side by the

inverse of this product matrix. Now, this is a square matrix and let us assume that it is

non-singular. So, what we going to do is that, we are going to take inverse of this product

matrix J transpose J product matrix, we pre-multiply by that.

So, that will give us W minus W n equal to J transpose n J n, this products inverse right

times J transpose n e n. Just multiplying the left hand side and the right hand side by this

matrix terms inverse.

Student: ((Refer Time: 19:27))

Minus sign very good, so people have rightly pointed out that there is a minus sign over

here. So, that is why the expression that we are getting for the updated W, instead of

calling it as W we are now going to call it as W n plus 1, because this is the updated W.

So, W n plus 1 is W n minus J transpose n J n whole inverse J transpose n e n, so this is a

very important relation that we have got. And this is the pure form of Gauss-Newton

method, so this is the Gauss-Newton method in it is pure form.

Now, that means, to say that using this expression it should be possible for us to

calculate the updated weights. And all we need to know now is that, the knowledge of

the Jacobian matrix, this must be known to us. Because, only than we will be able to

compute this, but is the computation of this always guaranteed. Because, we have in this

case made an inherent assumptions that J transpose J is going to be a non-singular matrix

and that is why it inverse exists.

And with that assumption we have to proceed it, now one thing which can be shown that

this J transpose J matrix that we are getting here all these are matrices. So, this J

transpose J that we are getting it is definitely a non-negative definite, it is J transpose J is

non-negative definite always, but there is no heard an first guarantee about non-

singularity. In fact, it will be non-singular only when this J transpose J is having a rank

equal to n, rank equal to it is row that is n.

So, if this J transpose J happens to be rank deficient, then J transpose J could be singular

and in which case the inverse will not exist. So, it is not always guarantee that for every

n, there is no guarantee that J transpose J is going to be non-singular. So, there is a risk

that it becomes J transpose J becomes rank deficient and what we need to do is to modify

this slightly. So, that the rank deficiency is taken care of.

So, in order to correct for the rank deficiency what we do is that, we simply add some

something to this J matrix, this product matrix that is J transpose J. So, to that we add a

diagonal matrix which is of the form delta I.

(Refer Slide Time: 23:00)

I being the identity matrix and we are multiplying that identity matrix by a constant term

delta, so delta actually we have to choose delta as a small positive constant. So, delta is a

small positive constant, so in this case delta I becomes a diagonal matrix, so what we are

going to do is in order to correct for the rank deficiency of J transpose n J n. We are

adding this diagonal matrix to that, so instead of taking J transpose J, we are going to

take J transpose J plus delta I.

And in fact, the small positive constant is chosen, so that this J transpose plus delta I is

ensured to be positive definite for all n. So, if we can choose a small positive constant

such that, this J transpose J plus delta I is going to be positive definite for all n in that

case our job is done. So, what we have to do is that, if this remains as positive deficient,

then simply in this expression that we had got for the Gauss-Newton method.

All that we need to do is this term, J transpose J which should be replaced by J transpose

J plus delta I.

(Refer Slide Time: 24:50)

So, if we do that, then this is the expression that we have getting as the modified form of

Gauss-Newton method which is W n plus 1 equal to W n minus J transpose n J n plus

delta I inverse J transpose n e n. So this modification that we have done effectively is a

solution of this equation. The cost function C W, actually we were earlier solving C is

equal to half of summation i is equal to 1 to n e i square, this is what we were solving

earlier. But, now what happens is that it becomes say, because of the introduction of this

delta I, it becomes a solution of delta times norm of W minus W 0 where W 0 is going to

be the initial value of the weight vector. So, this square plus this term, plus this sum of

the square errors. So, effectively it is a minimization of this expression where W 0 is the

initial value of the weight vector. So, here what you see is that as we increase the value

of n, then this term that is sum of e i square this will be more and more dominant as

compare to this one.

So, the effect of this could be neglected as you go in for larger and larger values of n, so

this method is applicable. And now with the knowledge of Gauss-Newton method we

have learnt how many three optimization techniques. Number 1 is the simple stiffest

descent method, number 2 is the Newton, so simple Stiffest descent method was nothing

but, the first order approximation of the Taylor series expansion.

Then, the second optimization approach that we had studied is Newton's method, which

made use of the second order terms of that Taylor series expansion, that is minimization.

And now we come to the Gauss-Newton method where as the cost objective function, we

are keeping the sum of errors square and we are minimizing that. So, this is what we

have got as the optimization tool and the reason, why we have got all this optimization

tools with our disposure, is that we are ultimately going to use the perceptron as a linear

adaptive filtering problem. In fact, this quite simple to understand.

(Refer Slide Time: 28:26)

You see simple perceptron model would look like this, that say this is the neuron and we

are going to have an m dimensional input, so these are nothing but, x 1 x 2 up to x m

forming an x vector. And then, we are going to have the weights as W 1 W 2 up to W m,

we are going to call that as the weight vector the input as the X vector and then, we are

going to have an output of this which will be in the form of y.

So, y is going to be nothing but, either you write as X transpose y or you instance was W

or you write as W transpose X whatever and then, this will be compared a against some

d. So, there will be a comparison that we are going to get between the d and y, d is the

desire response. So, if I take any vector x i and we obtain y i, then the error that is going

to be y i minus d i or d i minus w i. And then, this error that is there is going to change

all these set of weights again.

So, this system ultimately adapts with the change of weights, the system will be adapted

to give the desire the actual output to be as slows as possible to the desired output; doing

the errors minimization. So, that is why this can be looked upon as a linear adaptive filter

in problem. And in this linear adaptive filtering problem, the kind of functions that we

are going to use are pretty simple one. So, in fact now we are going to study about the

linear least square filter approach.

(Refer Slide Time: 30:37)

So, linear least square filter, in fact what we are going to do is pretty simple, we are

going to consider two things first is a single linear neuron. Following our perceptron

model we are going to take a single linear neuron that works, according to the equation y

is equal to x transpose W or W transpose X whatever. And in the cost function of that

you use the sum of error squares, as we have taken just now.

Now, we have already taken the sum of error squares in our Gauss Newton approach

discussion, but we did not use their any single linear neuron, because we were only

considering the cost function optimization approach. Earlier our emphasis was only on

the cost function optimization, we temporarily forgot about the neuron network. But,

when we are designing a linear least square filter, we are going to consider a single linear

neurons.

So, where we are going to make use of this expression, because it is linear. So, now in

this case, so linearly square filter we will use both the single linear neuron, as well as a

cost function of this nature. Now, the errors vector e n in this case can be simply

represented as what as d n, where n again is the number of observations. So, errors for

the n observations, the n th observation is en equal to d n minus and or in fact, we are

writing directly in terms of vector only.

So, e n vector which will include e 1, e 2, e 3 up to e n which is equal to d n vector minus

this will be X 1 vector X 2 vector up to X n vector transpose of this times W n, so this is

understood. So, d n again is the desired response vector, so this we are going to write in

the form of d n minus we are introducing X matrix over here, X n W n where the

definition of this X matrix is this X n is the n by m data matrix.

It is the n by m data matrix defined as X n will be nothing but, X 1 vector X 2 vector, so

on up to X n vector transpose means this one. So, m by n m by n means what here each

of these, so if you take the transpose of this transpose of this means in the column, we

will be getting X 1 vector X 2 vector like that. And each of this vectors is going to be an

m dimensional vector, there will be n such vectors in the row.

So, there will be n number of rows and the columns will encompass the elements of each

of the vector, so since there are m elements, so their will n rows and m columns. So, X n

is going to be a complete data matrix, that contains all the observation, all the m

observations are contain into it. And then, d n is going to be simply the data, the desired

responses, for each of the observation.

(Refer Slide Time: 34:51)

So, here d n is simply defined as d 1, d vector containing d 1, d 2 up to d n this whole

thing transpose. Now, this equation that we had obtain that is e n equals this, let us call it

as equation number one for today. Now, if we differentiate this expression with, this

equation with respect to W n, then what we are getting, in that case we are going to

differentiate this with respect W n. And differentiating this with respect to W n gives you

what the gradient of the error vector, the gradient of the error vector is what we are going

to get.

And what will be the differentiation of this term 0, because d n is independent of W and

what will be the differentiation of this expression minus x transpose n, very good. This is

going to be minus x transpose n, because this is the expression of earlier for, it is of the

form X transpose W already. So, X transposes transpose is going to be, so X the

transpose itself will be this term, so that whenever you are ultimately deriving the

solution, then it will be transpose of this expression.

So, differentiating, so what we are doing that differentiating equation 1 with respect to

the w vectors is going to be grad of e n, which will be equal to minus X transpose n. And

as we already know that the Jacobian matrix is going to be the transpose of the gradient

matrix, that we have derived in the last class. Because, gradient matrix is what, gradient

matrix is simply going to be the n by m matrix, whereas the Jacobian is going to be m by

n.

So, it is just the transpose of that, so that is why the Jacobian matrix J n is going to be

what in terms of X minus X of n, because we have to take the transpose of the gradient

matrix. So, transpose of the gradient matrix means, transpose of this once again means

we are back again to X n. So, J n equal to X n and what we are simply going to do, this is

the very interesting expression that we have got and now we are in a position to this

relation how did we obtain, we obtain it from the perceptron equation.

Simple perceptron equation we had obtained that the errors term is equal to X into W X

being the input, so this X into W is the perceptron expression. So, we had defined the

error that way d minus x times W and this is what we had obtain by simple

differentiation that. Now, the Jacobian is already obtain and because, we obtain Jacobian

now we can substitute this Jacobian expression, in terms of this input vector into the

error expression that we have got.

So, we should substitute this in this weight updating equation, so let me just find out the

place where I had derived this. So, in this equation which we had earlier obtained as

Gauss-Newton method in the pure form. Here instead of J we can write minus of X

agreed, so if we write minus of X in terms in place of J than what we are going to get as

the expression for W n plus 1 is as follows. I am Going to write it down and you please

take time to verify that.

(Refer Slide Time: 39:29)

W n plus 1 is equal to W n and then, what we are going to do is that we are going to do

two things, you see we have got an errors expression here that is e n and e n mind you is

d n minus X n W n. So, we are going to substitute this equation in place of en over here

and in place of J n we are going to substitute minus X of n. So, if we do that then we are

going to get W n plus 1 is equal to W n already is there. And then, we are going to get,

because already a minus is their the Jacobian term is going to be a minus of X of n.

Now, here there is already a Jacobian term, so which will be equal to minus of X

transpose n, so we can write down this, so this minus and minus makes it a plus. So, it

will be W n plus, now this term we had J transpose J, which is going to be X X

transpose, which will be X X transpose inverse of that. So, this will be X X transpose

inverse of that, X transpose n multiplied by no this, this will be X transpose X X

transpose X inverse X transpose n and here instead of n I am writing d n minus X n W n.

So, this is what we are getting, now something that you can see, so this equal to W n plus

what is it that we are getting, we are simply getting X transpose n X n this inverse X

transpose n d n minus what are we going to get. We are going to get this expression X

transpose n X n inverse X n, now X transpose n X n W n, so this inverse and this direct.

So, what is it going to be identity and then, this multiplied by W n mean this terms

becomes equal to W n, so what is happening this is plus W n and this is minus of W n.

So, that is why this term and this term are getting canceled with each other, so then we

are getting the net expression as X transpose n X n inverse X transpose n d n as the new

expression for W n plus 1.

Now, this is very interesting, you see that earlier we had the W n plus ones expression

written in terms of W n, that means to say that W n plus 1, we would have obtained

alternatively means we needed the previous values of W in order to compute that. So, it

was a recursive form of relationship that was established earlier, whereas this expression

can be computed using single iteration, because all that we require is the n th input data.

And if the n th input data is available to us we can compute what the n plus 1 th weight is

going to be.

So, W n plus 1 in this case is expressible directly in terms of this, now this expression

that is X transpose X inverse this whole inverse times X transpose, this term is

recognized as the pseudo inverse of the data matrix X n. This is the pseudo inverse this is

recognized as the pseudo inverse of X n, in fact there is a proof for that which sum of the

researches had already shown.

That this is recognizable as the pseudo inverse of X n and we are going to indicate that as

X plus n, this being the pseudo inverse expression. So, that is why here we are going to

get the solution as W n plus 1 equal to X plus n, which is the pseudo inverse of X n d n,

so we are going to obtain, W n plus 1 as the pseudo inverse of X d n.

(Refer Slide Time: 45:34)

So, the weight vector, so thus the weight vector solves the linear least square problem,

problem defined over the observation interval n. So, now what we are going to do is that,

so this is form of expression that we have obtain and we are going to take a limiting form

of the linear least square filter. So, we are going to take a limiting form of this limiting

form of linear least square filter and that is called as the Wiener filter.

In fact, we are going to obtain this limiting form as n tends to infinity, but in this case the

assumption that we have to make is that, if you are taking this X and d to be a random

process, because X is the input, d is the desired response. So, X and d if you take it to be

a random process then, we have to assume that this is following an ergodicity property.

So, I am not sure that, if you as well as the distant viewer are having some background

related to the stationary and ergodic process.

So, that is why we can spend just few minutes to explain that what the stationary process

and ergodic processes mean. So, we will be briefly cover that and then, we will go over

to the Wiener filter design aspect.

(Refer Slide Time: 48:30)

Now, let us take a process X of t and then, we take any single realization of this process,

single realization we are calling as X of t. So, then what happens is that this X of t is

nothing but, a sample function of the process X of t. So, this is the process and a single

realization of that, we are going to call these thing as a sample function. It is as if to say

that you have got one random variable X, supposing in the form for vector you have got

a random variable X 1, X 2 up to X n those are it is a elements, but you have got a

random variable.

And you take a single you collect the samples of those variables, let say that X vector 1,

X 1 to X n this you take. In that case this X 1 vector X 2 vector up to X n vector what

you have take is actually a single realization, a single instance of the whole process X.

You cannot capture everything, you have only made n number of observations and you

have only collected the n number of points out of it. So, this X 1 to X n the function that

it covers can as basically described as a sample function.

Now, we defined two quantities first is that what is a stationary process. The definition of

stationary process is that, if the ensemble averages are independent of time. Just to

understand a thing in a very qualitative sense, that stationary process is something where

the statistical characteristics do not suddenly deviate. You take the ensemble average

now and you take the average at some later instance, then that is not going to varying.

So, drastically there is no change in the statistical characteristics.

So, that is being defined as a stationary process, so in fact the stationarity assumption

always we have to make in realization of this. Because, what the inherent assumption

that you are making is that, when you are collecting the training samples when you are

collecting x i d i’s. You are deriving this x i d i’s out of a stationary process and you are

also going to use it in a stationary environment.

If you are not going to use in an stationary environment, then you have to all the time

train it, you have to make it adaptive. So, this is the stationary process definition that if

the ensemble averages are independent of time. And ergodic process means, that if the

expected values can be calculated by taking by averaging only one sample function that

means, to say that here the n observations that we have made.

That is one sample function and if you can calculate the average, if you can calculate the

expectation based on this one sample function observation only, then that will be

described as an ergodic process.

(Refer Slide Time: 52:39)

So, the definition of ergodic process says that if expected values can be calculated by

averaging one sample function in time domain. So, now can you tell me is ergodic

process a stationary process yes or no.

Student: ((Refer Time: 53:28))

Definitely yes, all ergodic functions are going to be stationary, because you are in this

case saying that using one sample function time domain itself you can calculate the

expected values. So, all ergodic processes are stationary, but all stationary processes are

not ergodic. So, what we are making as the assumption is that we are drawing this X

vector and the d from ergodic environment.

(Refer Slide Time: 54:38)

So, our assumption is that X i and d i are drawn from ergodic environment, that means to

say that whatever expectations we get that should be derivable from this sample function

itself X i d i’s sample function. Now, this kind of environment is actually described by

second order statistics. So, we define some second order statistics for this ergodic

environment and those second order statistics are firstly the correlation matrix of X i. In

fact, correlation matrix will be defined as, we will be indicating by the matrix R x.

And the other second order statistics that we make use of is a cross correlation between

this X i and d i, so this will be the cross correlation vector between X i and d i and this

will be denoted by r x d. So, these two quantities they defined the second order statistics.

And we are going to define these terms R x, in fact you must be knowing that in a very

simple terms, where we will expand this in the next class, but talking in their basic

definitions.

(Refer Slide Time: 56:37)

This R x is going to be the expectation of X X transpose, so X X transpose is what, X X

transpose is going to be the outer product of these two vectors. So, that is going to be an

n by m matrix, so this is the expectation of X i X transpose, this is the correlation matrix

and r x d’s definition they cross correlation vector definition is that, it is expectation of X

i d i. So, in terms of these two quantities we will try to express the updated weight.

So, can we get this updated weight, in terms of the correlation matrix and the cross

correlation vector between X i and d i. That is something that we are going to see in the

coming lecture.

Thank you very much.

