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Lecture - 14 

Linear Least Square Filters 

Our topic for today on the chapter of single layer perceptron is, Linear Least Square 

Filters. But, before we discuss about this, we have to complete our unfinished 

discussions related to the, earlier the unconstrained optimization approach. That is the 

Gauss Newton method. We had gone up to some expressions, but before we start from 

the point where we have left yesterday. We need to also discuss about some of the 

clarifications, because at the end of the class when I was talking to the students, I could 

realize that there are few things which required clarifications. 

Now, 1 of the clarification is related to the error expression that we had put forward. And 

some of the students were interested to know that what is the significance of that error 

expression, so let me go about that. See what we have done is that we are taking n 

number of observations. So, with a fix set of weight we are keeping the weight fixed and 

then, we are computing the error for n number of observations. 

And those errors we are designating by e 1, e 2, e 3 etcetera up to e n and then, we are 

defining the cost function as summation of half of e i squires. So, where i is summed up 

from 1 to n which is the number of observations. And then, we are our objective will be 

to minimize this half sum of e i squire or minimizing e i squire summation in fact. So, to 

do that what we did was, that we had derived an error expression. 

So that with the change of weight, because what we are doing is that at the end of n 

observations, we are going to update the weight. And the thing is that once you update 

the weight, then the errors that you had obtained for the n observations, those errors also 

change, because with change of weight, error is a function of the weights. So, when we 

change the weights that time the error also changes, so the error gets updated. 

So, what we are doing is that, we are operating the a whole thing, we are making a search 

at the point W is equal to W n, because weights are going to change. 
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So, at this point W is equal to W n, when we are going to find out a new weight, there we 

are finding out that with change of the weight that takes place, change of weight is 

definitely going to be W minus W n. Where W is going to be the new weight and W n 

going to be the older weight. So, with W minus W n being the incremental weight the 

new expression for the error that we are going to get for the, we are going to get new 

error components for each of the observations, that we already had. 

So, let us say that for the i th observation, the updated error that we must have is e which 

will be expressible as a function of i and W. So, i means that here we are considering the 

i th weight and then the W which is the weight and this is equal to e i plus dou e i dou W 

vector. And this will be evaluated at W equal to W n, because that is the point from 

which we are going to change the or update the weight W minus W n. So, this we have to 

update for all these i’s, all these observation we have to update the error expression. 

So, this is the updated error expression and then, what we are going to do is that for the n 

plus 1 th weight we must put forward the minimum value, we must find out the 

minimum value of this expression half of e prime n W vector norm of this squire. And 

the W vector corresponding to which it gives the minimum, that W vector we are 

choosing as the updated weight. 

So, our objective is to minimize this sum of the squares expressions, so this is what we 

were doing. So, those who had any doubt about the expression that we had written, I 

 



think we will clarified now that, this is change of the weight that we are making. And 

then accordingly, since we are changing the weight we also need to change the error 

expressions that we had obtained. So, e i was the old error and e i W that we have written 

on the left hand side is the updated weight, followed. 

So, that is clarification number 1, that some the students wanted and the second 

clarification is related to the multiplication that we had carried out. In fact, the 

expression that we had obtained for this equation only. 
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The expression that we had obtained in the matrix form was written as e n W equal to e n 

which is the older error plus J n, in fact it is the J n which directly gives you the Jacobian 

matrix. And it is signifies the partial derivatives or the derivative with respect to W 

vector, which in term in the matrix it translates to the partial derivative with respect to all 

the different components of the W’s. And then it is J n multiplied by the change in 

weight which is nothing but, W minus W n. 

So, this is what we had obtain and in fact, let us say that this is equal to the C, this is 

equal to A that is this one and this is equal to B. So, we are having C is equal to A plus 

B, where all these things C A and B these are vectors mind you, these are all m 

dimensional vectors. So, then any doubts from the students no, so in that case C vector 

transpose will be equal to A vector plus B vectors transpose which will be nothing but, A 

vector transpose plus B vector transpose. 

 



So, when we are going to compute C vector transpose time C vector, the dot product of 

these two, if you are going to take, then it means that we have to take A vector transpose 

plus B vector transpose multiplied by A vector plus B vector the dot product of this. So, 

if you expand this, then what happens is A vector transpose A vector plus A vector 

transpose B vector plus B vector transpose A vector plus B vector transpose B vector. 

Now, that means to say that we get four expressions, in fact that is what people are 

pointing out to me that we defiantly require four expressions here. One is A by A which 

ultimately will turn out to be norm of A square, this will be turn out to be norm of A 

squire. This will turn out to the norm of B squire in fact, this B itself is a product these 

two, so B that we are writing is already a dot product of J n and W minus W n. So, J n is 

actually a matrix, this is an n by m Jacobian matrix and this one is m by 1 vector. 

So, in effect this becomes an n dimensional vector, in fact all these things, each of these 

things are m dimensional vectors, so not m, but n dimensional vectors. Now, the question 

is about this these two terms, these two cross terms that is A transpose B and B transpose 

A. Now, these being vectors A vector and B vector beings vectors, they are all going to 

be equal, both of them are going to be equal. Why, because A transpose B means what, 

A transpose B simply means… 
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If it is n dimensional vectors, let say in that case this can be written as summation i is 

equal to 1 to n, because this is in dimension. And if A vector composes of the terms a i b 

 



i a 1, a 2 etcetera up to a n and B vector consists of b 1 b 2 up to b n, then it will be 

summation a i b i i is equal to 1 to n. And similarly, B transpose A is definition also is 

this, i is equal to 1 to n a i b i, b i a i that is same in this case, so these both this things are 

equal. 

And that is why whenever you are trying to get a C transpose C vector, that is equal to A 

transpose A vector plus 2 times you can write A transpose B vector plus B transpose B 

vector. So, that is how we arrive at two terms, in fact what we are doing is that, we are 

multiplying everything by half. So that, we get here half term that means, to say that here 

we will be getting half norm of C square and here, we will be getting half norm of A 

square. 

And here we will be getting this term, there is no half associated with it, because it was 

already multiplied by 2, so when half comes in it becomes multiplied by 1. So, here this 

term remains as the A transpose B and then, this term is B transpose B which should 

have been a norm of B square, but because this itself is a multiplication. So, this itself is 

J n W minus W n, so what we are going to write as B transpose B is W minus W n 

transpose J n transpose J n W minus W n, so that is what we are going to get. 

So, B transpose B also will be written in that form, so that in effect we are going to get 

three expressions, so that was a doubt with some people had that. We are multiplying 

these two, but then instead of four terms we are getting three terms, but if you are 

looking carefully this term that you are getting, A transpose B here the coefficient is 1. 

That means, to say that those two equal terms have been combined. 

So, that is why it leads to when be substitute for C, A and B, we substitute the 

expressions that we had considered. Because, for C we have to put forward this A equal 

to put forward this and B equal to this. If we do that then, we are getting this expression 

very easily, in fact I would to like all of you to verify this yourself and feel convinced 

about it. 
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So, this is norm of e n W square is equal to half norm of e n square plus, the second term 

is going to be e transpose J n W minus W n this is very clear, this is may be A transpose 

B simply. And then, the B transpose B and B transpose B in this case is going to be half 

of W minus W n, this whole transpose J transpose n J n W minus W n. So, this is the 

expression that we are getting for B transpose B, so this is the term that we had obtained. 

Now, what we are doing this whole thing we are now differentiating with respect to W 

vector. So, the result is pretty simple, now here all these things mind you will be 

differentiated, so this is actually a scalar expression. And this we are a multiplying, this 

we are differentiating with respect to W and then, what happens is that this term is there. 

And then this expression is going to be equal to 0, then whenever you are differentiating 

this with respect to W vector, then it is a differentiation of this form. 

X transpose W vector, this is an expression of this form the second term to say, for which 

we already know that the result of the differentiation is X. So, that is why if you are 

taking this to be a transpose form of expression. Then whenever you are differentiating 

with respect to W then, what is it that you are going to get, you are going to get J 

transpose e very correct, J transpose e is what we you are going to get. 

And then, here what is said that you are going to get out of this term, you are this thing if 

you look at it, this thing is a quadratic form of expression. So, we are having W minus W 

n, let us call it something, let us call it as y. So, half of y transpose and this one we call as 

 



R, the R matrix it becomes, because here this is going to be an m by n matrix and J n is 

going to be n by m matrix. So, in effect it is n by m R matrix that it becomes and then, 

this is becomes y. So, this is a quadratic form of expression for which the derivative is 

going to be R y. 

So, that is what we are going to write and then, this will be equated simply to 0, because 

what we are doing is that we are going to minimize this expression. So, we are finding 

out the derivate with respect to W and equating the derivate with respect to W to 0, this 

is what we are getting. 
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J transpose n e n plus J transpose n J n W minus W n this is equal to the 0 vector, we are 

going to get that how are we getting J transpose e n, J transpose e n simply we are 

obtaining from the second term. And what we are obtaining from this, this is this R y 

form, so R y form means we are going to get this is the R, so we are writing it directly J 

transpose J. And then this is our y, so y also we are writing this whole thing should be 

equal to the 0 vector. 

So, that means, to say that if we now take this on the right hand side, then we are going 

to get J transpose n J n multiplied by W minus W n, that is going to be minus of J 

transpose n e n. Now, if we pre-multiply the left hand side and the right hand side by the 

inverse of this product matrix. Now, this is a square matrix and let us assume that it is 

 



non-singular. So, what we going to do is that, we are going to take inverse of this product 

matrix J transpose J product matrix, we pre-multiply by that. 

So, that will give us W minus W n equal to J transpose n J n, this products inverse right 

times J transpose n e n. Just multiplying the left hand side and the right hand side by this 

matrix terms inverse. 

Student: ((Refer Time: 19:27)) 

Minus sign very good, so people have rightly pointed out that there is a minus sign over 

here. So, that is why the expression that we are getting for the updated W, instead of 

calling it as W we are now going to call it as W n plus 1, because this is the updated W. 

So, W n plus 1 is W n minus J transpose n J n whole inverse J transpose n e n, so this is a 

very important relation that we have got. And this is the pure form of Gauss-Newton 

method, so this is the Gauss-Newton method in it is pure form. 

Now, that means, to say that using this expression it should be possible for us to 

calculate the updated weights. And all we need to know now is that, the knowledge of 

the Jacobian matrix, this must be known to us. Because, only than we will be able to 

compute this, but is the computation of this always guaranteed. Because, we have in this 

case made an inherent assumptions that J transpose J is going to be a non-singular matrix 

and that is why it inverse exists. 

And with that assumption we have to proceed it, now one thing which can be shown that 

this J transpose J matrix that we are getting here all these are matrices. So, this J 

transpose J that we are getting it is definitely a non-negative definite, it is J transpose J is 

non-negative definite always, but there is no heard an first guarantee about non-

singularity. In fact, it will be non-singular only when this J transpose J is having a rank 

equal to n, rank equal to it is row that is n. 

So, if this J transpose J happens to be rank deficient, then J transpose J could be singular 

and in which case the inverse will not exist. So, it is not always guarantee that for every 

n, there is no guarantee that J transpose J is going to be non-singular. So, there is a risk 

that it becomes J transpose J becomes rank deficient and what we need to do is to modify 

this slightly. So, that the rank deficiency is taken care of. 

 



So, in order to correct for the rank deficiency what we do is that, we simply add some 

something to this J matrix, this product matrix that is J transpose J. So, to that we add a 

diagonal matrix which is of the form delta I. 
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I being the identity matrix and we are multiplying that identity matrix by a constant term 

delta, so delta actually we have to choose delta as a small positive constant. So, delta is a 

small positive constant, so in this case delta I becomes a diagonal matrix, so what we are 

going to do is in order to correct for the rank deficiency of J transpose n J n. We are 

adding this diagonal matrix to that, so instead of taking J transpose J, we are going to 

take J transpose J plus delta I. 

And in fact, the small positive constant is chosen, so that this J transpose plus delta I is 

ensured to be positive definite for all n. So, if we can choose a small positive constant 

such that, this J transpose J plus delta I is going to be positive definite for all n in that 

case our job is done. So, what we have to do is that, if this remains as positive deficient, 

then simply in this expression that we had got for the Gauss-Newton method. 

All that we need to do is this term, J transpose J which should be replaced by J transpose 

J plus delta I.  
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So, if we do that, then this is the expression that we have getting as the modified form of 

Gauss-Newton method which is W n plus 1 equal to W n minus J transpose n J n plus 

delta I inverse J transpose n e n. So this modification that we have done effectively is a 

solution of this equation. The cost function C W, actually we were earlier solving C is 

equal to half of summation i is equal to 1 to n e i square, this is what we were solving 

earlier. But, now what happens is that it becomes say, because of the introduction of this 

delta I, it becomes a solution of delta times norm of W minus W 0 where W 0 is going to 

be the initial value of the weight vector. So, this square plus this term, plus this sum of 

the square errors. So, effectively it is a minimization of this expression where W 0 is the 

initial value of the weight vector. So, here what you see is that as we increase the value 

of n, then this term that is sum of e i square this will be more and more dominant as 

compare to this one. 

So, the effect of this could be neglected as you go in for larger and larger values of n, so 

this method is applicable. And now with the knowledge of Gauss-Newton method we 

have learnt how many three optimization techniques. Number 1 is the simple stiffest 

descent method, number 2 is the Newton, so simple Stiffest descent method was nothing 

but, the first order approximation of the Taylor series expansion. 

Then, the second optimization approach that we had studied is Newton's method, which 

made use of the second order terms of that Taylor series expansion, that is minimization. 

 



And now we come to the Gauss-Newton method where as the cost objective function, we 

are keeping the sum of errors square and we are minimizing that. So, this is what we 

have got as the optimization tool and the reason, why we have got all this optimization 

tools with our disposure, is that we are ultimately going to use the perceptron as a linear 

adaptive filtering problem. In fact, this quite simple to understand. 
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You see simple perceptron model would look like this, that say this is the neuron and we 

are going to have an m dimensional input, so these are nothing but, x 1 x 2 up to x m 

forming an x vector. And then, we are going to have the weights as W 1 W 2 up to W m, 

we are going to call that as the weight vector the input as the X vector and then, we are 

going to have an output of this which will be in the form of y. 

So, y is going to be nothing but, either you write as X transpose y or you instance was W 

or you write as W transpose X whatever and then, this will be compared a against some 

d. So, there will be a comparison that we are going to get between the d and y, d is the 

desire response. So, if I take any vector x i and we obtain y i, then the error that is going 

to be y i minus d i or d i minus w i. And then, this error that is there is going to change 

all these set of weights again. 

So, this system ultimately adapts with the change of weights, the system will be adapted 

to give the desire the actual output to be as slows as possible to the desired output; doing 

the errors minimization. So, that is why this can be looked upon as a linear adaptive filter 

 



in problem. And in this linear adaptive filtering problem, the kind of functions that we 

are going to use are pretty simple one. So, in fact now we are going to study about the 

linear least square filter approach. 
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So, linear least square filter, in fact what we are going to do is pretty simple, we are 

going to consider two things first is a single linear neuron. Following our perceptron 

model we are going to take a single linear neuron that works, according to the equation y 

is equal to x transpose W or W transpose X whatever. And in the cost function of that 

you use the sum of error squares, as we have taken just now. 

Now, we have already taken the sum of error squares in our Gauss Newton approach 

discussion, but we did not use their any single linear neuron, because we were only 

considering the cost function optimization approach. Earlier our emphasis was only on 

the cost function optimization, we temporarily forgot about the neuron network. But, 

when we are designing a linear least square filter, we are going to consider a single linear 

neurons. 

So, where we are going to make use of this expression, because it is linear. So, now in 

this case, so linearly square filter we will use both the single linear neuron, as well as a 

cost function of this nature. Now, the errors vector e n in this case can be simply 

represented as what as d n, where n again is the number of observations. So, errors for 

 



the n observations, the n th observation is en equal to d n minus and or in fact, we are 

writing directly in terms of vector only. 

So, e n vector which will include e 1, e 2, e 3 up to e n which is equal to d n vector minus 

this will be X 1 vector X 2 vector up to X n vector transpose of this times W n, so this is 

understood. So, d n again is the desired response vector, so this we are going to write in 

the form of d n minus we are introducing X matrix over here, X n W n where the 

definition of this X matrix is this X n is the n by m data matrix. 

It is the n by m data matrix defined as X n will be nothing but, X 1 vector X 2 vector, so 

on up to X n vector transpose means this one. So, m by n m by n means what here each 

of these, so if you take the transpose of this transpose of this means in the column, we 

will be getting X 1 vector X 2 vector like that. And each of this vectors is going to be an 

m dimensional vector, there will be n such vectors in the row. 

So, there will be n number of rows and the columns will encompass the elements of each 

of the vector, so since there are m elements, so their will n rows and m columns. So, X n 

is going to be a complete data matrix, that contains all the observation, all the m 

observations are contain into it. And then, d n is going to be simply the data, the desired 

responses, for each of the observation. 
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So, here d n is simply defined as d 1, d vector containing d 1, d 2 up to d n this whole 

thing transpose. Now, this equation that we had obtain that is e n equals this, let us call it 

as equation number one for today. Now, if we differentiate this expression with, this 

equation with respect to W n, then what we are getting, in that case we are going to 

differentiate this with respect W n. And differentiating this with respect to W n gives you 

what the gradient of the error vector, the gradient of the error vector is what we are going 

to get. 

And what will be the differentiation of this term 0, because d n is independent of W and 

what will be the differentiation of this expression minus x transpose n, very good. This is 

going to be minus x transpose n, because this is the expression of earlier for, it is of the 

form X transpose W already. So, X transposes transpose is going to be, so X the 

transpose itself will be this term, so that whenever you are ultimately deriving the 

solution, then it will be transpose of this expression. 

So, differentiating, so what we are doing that differentiating equation 1 with respect to 

the w vectors is going to be grad of e n, which will be equal to minus X transpose n. And 

as we already know that the Jacobian matrix is going to be the transpose of the gradient 

matrix, that we have derived in the last class. Because, gradient matrix is what, gradient 

matrix is simply going to be the n by m matrix, whereas the Jacobian is going to be m by 

n. 

So, it is just the transpose of that, so that is why the Jacobian matrix J n is going to be 

what in terms of X minus X of n, because we have to take the transpose of the gradient 

matrix. So, transpose of the gradient matrix means, transpose of this once again means 

we are back again to X n. So, J n equal to X n and what we are simply going to do, this is 

the very interesting expression that we have got and now we are in a position to this 

relation how did we obtain, we obtain it from the perceptron equation. 

Simple perceptron equation we had obtained that the errors term is equal to X into W X 

being the input, so this X into W is the perceptron expression. So, we had defined the 

error that way d minus x times W and this is what we had obtain by simple 

differentiation that. Now, the Jacobian is already obtain and because, we obtain Jacobian 

now we can substitute this Jacobian expression, in terms of this input vector into the 

error expression that we have got. 

 



So, we should substitute this in this weight updating equation, so let me just find out the 

place where I had derived this. So, in this equation which we had earlier obtained as 

Gauss-Newton method in the pure form. Here instead of J we can write minus of X 

agreed, so if we write minus of X in terms in place of J than what we are going to get as 

the expression for W n plus 1 is as follows. I am Going to write it down and you please 

take time to verify that. 
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W n plus 1 is equal to W n and then, what we are going to do is that we are going to do 

two things, you see we have got an errors expression here that is e n and e n mind you is 

d n minus X n W n. So, we are going to substitute this equation in place of en over here 

and in place of J n we are going to substitute minus X of n. So, if we do that then we are 

going to get W n plus 1 is equal to W n already is there. And then, we are going to get, 

because already a minus is their the Jacobian term is going to be a minus of X of n. 

Now, here there is already a Jacobian term, so which will be equal to minus of X 

transpose n, so we can write down this, so this minus and minus makes it a plus. So, it 

will be W n plus, now this term we had J transpose J, which is going to be X X 

transpose, which will be X X transpose inverse of that. So, this will be X X transpose 

inverse of that, X transpose n multiplied by no this, this will be X transpose X X 

transpose X inverse X transpose n and here instead of n I am writing d n minus X n W n. 

 



So, this is what we are getting, now something that you can see, so this equal to W n plus 

what is it that we are getting, we are simply getting X transpose n X n this inverse X 

transpose n d n minus what are we going to get. We are going to get this expression X 

transpose n X n inverse X n, now X transpose n X n W n, so this inverse and this direct. 

So, what is it going to be identity and then, this multiplied by W n mean this terms 

becomes equal to W n, so what is happening this is plus W n and this is minus of W n. 

So, that is why this term and this term are getting canceled with each other, so then we 

are getting the net expression as X transpose n X n inverse X transpose n d n as the new 

expression for W n plus 1. 

Now, this is very interesting, you see that earlier we had the W n plus ones expression 

written in terms of W n, that means to say that W n plus 1, we would have obtained 

alternatively means we needed the previous values of W in order to compute that. So, it 

was a recursive form of relationship that was established earlier, whereas this expression 

can be computed using single iteration, because all that we require is the n th input data. 

And if the n th input data is available to us we can compute what the n plus 1 th weight is 

going to be. 

So, W n plus 1 in this case is expressible directly in terms of this, now this expression 

that is X transpose X inverse this whole inverse times X transpose, this term is 

recognized as the pseudo inverse of the data matrix X n. This is the pseudo inverse this is 

recognized as the pseudo inverse of X n, in fact there is a proof for that which sum of the 

researches had already shown. 

That this is recognizable as the pseudo inverse of X n and we are going to indicate that as 

X plus n,  this being the pseudo inverse expression. So, that is why here we are going to 

get the solution as W n plus 1 equal to X plus n, which is the pseudo inverse of X n d n, 

so we are going to obtain, W n plus 1 as the pseudo inverse of X d n. 
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So, the weight vector, so thus the weight vector solves the linear least square problem, 

problem defined over the observation interval n. So, now what we are going to do is that, 

so this is form of expression that we have obtain and we are going to take a limiting form 

of the linear least square filter. So, we are going to take a limiting form of this limiting 

form of linear least square filter and that is called as the Wiener filter. 

In fact, we are going to obtain this limiting form as n tends to infinity, but in this case the 

assumption that we have to make is that, if you are taking this X and d to be a random 

process, because X is the input, d is the desired response. So, X and d if you take it to be 

a random process then, we have to assume that this is following an ergodicity property. 

So, I am not sure that, if you as well as the distant viewer are having some background 

related to the stationary and ergodic process. 

So, that is why we can spend just few minutes to explain that what the stationary process 

and ergodic processes mean. So, we will be briefly cover that and then, we will go over 

to the Wiener filter design aspect. 

 



(Refer Slide Time: 48:30) 

 

Now, let us take a process X of t and then, we take any single realization of this process, 

single realization we are calling as X of t. So, then what happens is that this X of t is 

nothing but, a sample function of the process X of t. So, this is the process and a single 

realization of that, we are going to call these thing as a sample function. It is as if to say 

that you have got one random variable X, supposing in the form for vector you have got 

a random variable X 1, X 2 up to X n those are it is a elements, but you have got a 

random variable. 

And you take a single you collect the samples of those variables, let say that X vector 1, 

X 1 to X n this you take. In that case this X 1 vector X 2 vector up to X n vector what 

you have take is actually a single realization, a single instance of the whole process X. 

You cannot capture everything, you have only made n number of observations and you 

have only collected the n number of points out of it. So, this X 1 to X n the function that 

it covers can as basically described as a sample function. 

Now, we defined two quantities first is that what is a stationary process. The definition of 

stationary process is that, if the ensemble averages are independent of time. Just to 

understand a thing in a very qualitative sense, that stationary process is something where 

the statistical characteristics do not suddenly deviate. You take the ensemble average 

now and you take the average at some later instance, then that is not going to varying. 

So, drastically there is no change in the statistical characteristics. 

 



So, that is being defined as a stationary process, so in fact the stationarity assumption 

always we have to make in realization of this. Because, what the inherent assumption 

that you are making is that, when you are collecting the training samples when you are 

collecting x i d i’s. You are deriving this x i d i’s out of a stationary process and you are 

also going to use it in a stationary environment. 

If you are not going to use in an stationary environment, then you have to all the time 

train it, you have to make it adaptive. So, this is the stationary process definition that if 

the ensemble averages are independent of time. And ergodic process means, that if the 

expected values can be calculated by taking by averaging only one sample function that 

means, to say that here the n observations that we have made. 

That is one sample function and if you can calculate the average, if you can calculate the 

expectation based on this one sample function observation only, then that will be 

described as an ergodic process. 

(Refer Slide Time: 52:39) 

 

So, the definition of ergodic process says that if expected values can be calculated by 

averaging one sample function in time domain. So, now can you tell me is ergodic 

process a stationary process yes or no. 

Student: ((Refer Time: 53:28)) 

 



Definitely yes, all ergodic functions are going to be stationary, because you are in this 

case saying that using one sample function time domain itself you can calculate the 

expected values. So, all ergodic processes are stationary, but all stationary processes are 

not ergodic. So, what we are making as the assumption is that we are drawing this X 

vector and the d from ergodic environment. 

(Refer Slide Time: 54:38) 

 

So, our assumption is that X i and d i are drawn from ergodic environment, that means to 

say that whatever expectations we get that should be derivable from this sample function 

itself X i d i’s sample function. Now, this kind of environment is actually described by 

second order statistics. So, we define some second order statistics for this ergodic 

environment and those second order statistics are firstly the correlation matrix of X i. In 

fact, correlation matrix will be defined as, we will be indicating by the matrix R x. 

And the other second order statistics that we make use of is a cross correlation between 

this X i and d i, so this will be the cross correlation vector between X i and d i and this 

will be denoted by r x d. So, these two quantities they defined the second order statistics. 

And we are going to define these terms R x, in fact you must be knowing that in a very 

simple terms, where we will expand this in the next class, but talking in their basic 

definitions. 

 



(Refer Slide Time: 56:37) 

 

This R x is going to be the expectation of X X transpose, so X X transpose is what, X X 

transpose is going to be the outer product of these two vectors. So, that is going to be an 

n by m matrix, so this is the expectation of X i X transpose, this is the correlation matrix 

and r x d’s definition they cross correlation vector definition is that, it is expectation of X 

i d i. So, in terms of these two quantities we will try to express the updated weight. 

So, can we get this updated weight, in terms of the correlation matrix and the cross 

correlation vector between X i and d i. That is something that we are going to see in the 

coming lecture. 

Thank you very much. 

 


