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Today we are going to continue our discussions on the quantizer for speech signal and especially 

we will deal with the mu law and optimum quantizers.  
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Now we have described in the last class the logarithmic encoder and the decoder and there you 

must have noted that in the case of logarithmic encoder and decoder the signal to noise ratio is 

not dependent upon the variance of the signal and it is only dependent upon one upon sigma 

epsilon square which means to say that only the steps size is the deciding factor. So this really 

makes it a very good candidate for designing the quantizers for speech signals and we are going 

to consider this. In fact one of the difficulties which one faces with the logarithmic encoder 
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decoder combination is that the logarithmic encoder decoder essentially has got a very large 

dynamic range. And in fact the dynamic range here happens to be infinite and that is why we 

have to design with very large number of step sizes if we have to make it practical. So it is not 

actually practical. We have to really modify the scheme.  

 

And also, another aspect which we have noted in the last class is that we are providing some 

approximation to the logarithmic function. In fact you have seen that the exponential 

approximation we are doing, only that is leading to the derivation that the signal to noise ratio 

was independent of sigma x square. 

  

Now we are going to have another logarithmic encoder decoder where the transfer characteristics 

are slightly altered. in fact what we have is some kind of a log diagram like this where the input 

will be the x(n) and then we will be having a transformation function which we call as F which 

will be a logarithmic function basically and then this will be followed by the quantizer which we 

are calling as the Q function and then we are following it up with the encoder and the encoded 

output will give us c of n and there will be the step size so the step size which is the delta that 

will be controlling both the quantizer as well as the encoder. 

 

(Refer Slide Time: 4:17) 
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and in fact this The corresponding decoder will be that the input will be the c(n) and this will be 

followed by the decoder and then we are going to have the inverse transformation. So whatever F 

we are using, we have to use F inverse of this and that will generate the x cap of n which is going 

to be our reconstructed signal. So x of n is the original input and x cap of n is going to be the 

reconstructed output at the decoder end. So now we have to see what is the F function one can 

use instead of using the direct logarithm. Earlier we were saying that we will be using log of the 

Modulus of the x(n) and we will be also deriving the sign of the x(n); but instead, now we are 

going to consider a function which will take care of the deficiencies like utilizing the dynamic 

range as well as the approximation to the logarithmic characteristic.  

 

(Refer Slide Time: 5:33) 

 

 
 

So the transfer function or rather this transformation if that is what we design is like this that we 

say y of n....... in fact y of n will be nothing but the output of this F (Refer Slide Time: 5:50) so 

here we have the y of n available as the output of this transformation log and we are going to 

write y of n as F of x(n) and this is given by the x max which is going to be the maximum 

amplitude of the signal, maximum possible amplitude and this multiplied by log of 1 plus mu 

into mod of x(n) divided by x max and this upon log of 1 plus mu and this to be multiplied by the 

sign of x(n) where sign of x(n) we already said that will be equal to plus 1 if x(n) happens to be 
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positive and minus 1 if x(n) happens to be negative. So this is the expression and this is actually 

called as the mu law. So this is......... as per the mu law characteristic, the transformation F would 

be like this. 

 

(Refer Slide Time: 7:06) 

 

 
  

Now you can examine this equation y(n) is equal to x max multiplied by this expression, let us 

call that as equation 1 and you can see that if we substitute in this equation mu is equal to 0, but a 

direct substitution of mu is equal to 0 would mean that we get a 0 by 0 form so if we 

mathematically manipulate that by taking the derivative of the numerator and the denominator 

then what we derive is simply this that, you can derive that for mu is equal to 0 we are going to 

have y(n) to be equal to mod of x(n) into sign of x(n). This x max term gets cancelled ultimately. 

Here there is one x max term over here (Refer Slide Time: 8:16) and here there is another x max 

term. This x max term will ultimately come to the denominator if you see so that ultimately you 

will be left with mod of x(n) multiplied by sign of x(n) which is nothing but x(n). So y(n) is 

equal to x(n).  
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So, at mu is equal to 0 the characteristic that we will be obtaining if we happened to plot y(n) 

versus x(n) then the characteristic will be a completely linear characteristic that would pass 

through the origin. So it would be exactly like this (Refer Slide Time: 8:54) in fact with a 45 

degree slope. So, if you are taking x(n); x(n) values if you are plotting in this direction and y(n) 

values you are plotting in this direction then x(n) is going to be equal then y(n) is going to be 

equal to x(n) so this is the curve that you will be having for mu is equal to 0. So somewhere at 

this point let us say that we have the maximum possible value of x(n) that is x max. So, when 

x(n) is equal to x max; likewise the y(n) also will be equal to x max according to this. 
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Now, if we go by this equation (Refer Slide Time: 9:36) and then try to plot the y(n) versus x(n) 

curves for different values of mu, we will be obtaining it like this. In fact this was for the case of 

mu is equal to 0 and then we can go to another extreme that is for very large mu. For large mu 

large values of mu if we plot this equation and also if we take the larger value of x(n) means x(n) 

which is more closer to x max as compared to x(n) closer to x(0); so when we take large mu and 

large x(n) then large mu and large x(n) would give rise to an approximation in the value of y(n) 

and we can write that mod of y(n) is equal to is approximately equal to x max into log mod x(n) 

upon x max. 
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(Refer Slide Time: 10:59) 

  

 
 

This is for large mu (Refer Slide Time: 11:02) and in fact if we directly go by the plot 

corresponding to this equation that is equation number 1, we will be obtaining the characteristic 

as something like this that for increased value of mu what do we expect? Should the curve be 

like this or should it be like this? What you feel? Should it go like this or should it go like this? 

Because this will approximate the logarithmic characteristics more so this will be upward so we 

will be having a characteristic like this for......... let us say if we take mu is equal to 5 we may 

find a characteristic which will lie above this mu is equal to 0 characteristic. So mu is equal to 0 

is actually the case of no compression; you see that there is no signal compression that is 

happening because whatever is the value of x(n), y(n) is having the same value whereas here you 

can see that for these values of x(n) you will be finding that the incremental change in y(n) is 

much smaller and if we increase the value of mu further then we will be observing the 

characteristic like this. So we may observe........... let us say for mu is equal to 50 we may 

observe a curve like this; for mu is equal to 255 we may be having a curve like this (Refer Slide 

Time: 12:41). So this will be for the large values of mu we will be having like this. 

 

 So this is a typical characteristic that we will be obtaining. So this is x max, so we will be 

obtaining for y(n) versus x(n) for different values of mu. 
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Now, in terms of the characteristic one can observe that if we are plotting the value of x cap n 

versus x(n); so x cap n means that at this point (Refer Slide Time: 13:25) when we quantize it so 

this was y(n) so y(n) is after the transformation and after the quantization this we are calling as 

the x cap of n so this x cap of n if we plot against x(n) then the characteristic will be something 

like this that we will be having (Refer Slide Time: 00:13:57 min); if you plot x(n) in this 

direction and plot x cap n in this direction then we will be observing a nature very similar to 

what we had just shown for y(n) versus x(n) because it is ultimately the y(n) which will be 

quantized not the x(n) directly and for different values of x(n) rather to say corresponding to the 

decision levels.  

 

So, if we mark the decision levels corresponding to x(n) then we will be observing; suppose this 

is x 1, this is say x 2, this is say x 3 and this is say the value of the ultimate x max, then we will 

be observing that the value of x cap would be something like this that here we will be observing 

the x 1 cap so x 1 cap would go like this and then we will be observing this to be the x 2 cap, this 

will be the x 3 cap then finally there may be some more intermediate levels like this but if it is 

just having let us say 1 2 3 four levels on this side....................in fact this will not be four levels, 

this will be eight levels; why? Why eight levels is because the signal is a bipolar signal so x of n 

8 
 



can have samples which are positive, can have samples which are negatives. So the actual range 

will be minus x max to plus x max. 

 

(Refer Slide Time: 16:44) 

 

 
 

Since we are having four levels; in this example since we are having four levels corresponding to 

the positive signal we will be correspondingly having four levels for the negative signals as well 

and this characteristic will be anti-symmetric about the origin. So if we just make an anti-

symmetric version of this curve and then we plot x(n) over its range from minus x max to x max 

and just extend the characteristic on the negative direction with an anti-symmetry then what 

results is eight different quantization levels that is what we will be obtaining. 

  

Now with a characteristic like this, I mean, when we have x cap n versus x(n) being plotted this 

way now we can derive the expression for the signal to noise ratio in a manner very similar to 

what we did earlier for the uniform quantizers. For uniform quantizers, as you remember, we had 

obtained the signal to noise ratio which I am just reproducing for your reference that the signal to 

noise ratio was computed like this: (Refer Slide Time: 17:35); for uniform quantizers for uniform 

quantizer we had obtained the SNR in dB which was equal to 6B plus 4.77 minus 20 log to the 

base 10 of x max divided by sigma x and for mu law quantization what we are describing here. If 
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we are following the similar derivation approach then one observes the SNR dB to be like this: 

SNR expressed as dB is equal to 6B plus 4.77 so after this the terms are equal but not beyond 

this. After this there will be a term that is 20 log to the base 10 1 plus mu minus 10 log to the 

base 10 and this will be 1 plus x max upon mu sigma x; this term square (Refer Slide Time: 

19:08) plus root 2 into x max upon mu sigma mu sigma x.  

 

(Refer Slide Time: 19:27) 

 

 
 

This is going to be the total expression you can see you can just compare these two equations and 

here you will be finding that here there is a direct term 20 log of x max by sigma x. In fact this is 

the term which we criticized (Refer Slide Time: 19:49) because we had said that if sigma x 

happens to be small; if the ratio of sigma x by x max that happens to be small in that case we are 

going to have a reduction in the signal to noise ratio. 

  

Now, in this case also there is a reduction firstly that there are two terms which are contributing 

to the reduction. One is this minus 20 log of 1 plus mu but for a particular design of the quantizer 

mu is fixed so this is a constant quantity which will be subtracted. We are not bothered about that 

but we are more bothered about the term that is signal dependent. There is a sigma x term so you 

can see that x max by mu sigma x square but if this is a small quantity in this case there is a 
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square term which is coming over here so this is further more reduced and you can see that this 

term is much less sensitive to this variation in x max by mu sigma x. In fact mu also happens to 

be a larger quantity. So if you are finding, so as a result of this the term that is going inside this 

logarithmic argument that term is not very sensitive. Therefore, as a result of that if we happen to 

plot the signal to noise ratio from this equation, if we plot signal to noise ratio against the 

quantity x max by sigma x in that case we will be finding more or less a constant, I mean, much 

less variation will be found whereas in this case we will be observing a fall although it is 

logarithmic fall. 

 

(Refer Slide Time: 22:44) 

 

 
 

So now better to plot the two situations that is to say uniform quantizer and mu log quantization 

we can plot, on semi-log scale if we plot where this x max by sigma x will be plotted on the 

horizontal axis which will be on the logarithmic scale then the SNR in dB if we change it.........., 

so here if we happen to just take the............ if we happen to plot this then we will be observing a 

characteristics that is very similar to this. So we will be having 10 let us say that here we have 

100 and here we have 1000 because we are going to plot it in the logarithmic scale so x max by 

sigma x we plot it like this and then the SNR is plotted this way (Refer Slide Time: 23:33). then 

we will be having, for B is equal to 5 let us say; see here you see (Refer Slide Time: 23:45) that 
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it is dependent still upon the B that is the number of bits; so here it is 22 and we can see that it is 

like this. So this is for B is equal to 5 and then we will be observing that B is equal to 6 would be 

something like this; this is for B is equal to 6 and for B is equal to 7 this starts from 34 dB 

onwards and then we are observing it like this. So this is for mu is equal to 100 and we can see 

that here the variation is something of this nature that for B is equal to 5 then for B is equal to 6. 

Therefore, this is for the case of the uniform quantization. So this will be the characteristics for B 

is equal to 7. These solid lines are all for the mu law. 

 

(Refer Slide Time: 25:23) 

 

 
 

Now, for the uniform quantization, see, again because we are plotting in the logarithmic scale 

and this also is in the logarithmic scale (Refer Slide Time: 25:30) and the expression of SNR also 

is logarithmically changing, so we can expect a straight line for the uniform quantization. So you 

can see that B is equal to 5 characteristic would be like this and B is equal to 6 characteristic may 

be like this, B is equal to 7 characteristic could be like this and B is equal to 11 characteristic 

could be like this. So all these dotted lines are for uniform quantization. 
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(Refer Slide Time: 26:23) 

 

 
 

Now you can see what is the conclusion that we can draw out of it; that for lower value of x max 

by sigma x, lower value x max by sigma x means where the value of sigma x is closer to x max, 

means for very large signal variants we can see that the uniform quantizer is having a much more 

value of the signal to noise ratio; it is having a much better signal to noise ratio.  

 

Just look at this point (Refer Slide Time: 27:12) here for B is equal to 5 and for a very low value 

of maybe this 2 or 3 will be the value of x max by sigma x over here, you can see that the B is 

equal to 5 curve happens to be at a much higher level as compared to the B is equal to 5 curve for 

the mu law. So definitely it leads to the conclusion that as if to say this is better. But again you 

see that for the variation of sigma, once it crosses this point may be that this is with x max by 

sigma x at a value of 7 and beyond that we are finding that this uniform quantization curve falls 

rapidly so in this case for B is equal to 5 the mu law characteristic is giving a much better SNR. 

It is more or less constant. It is only beyond certain stage that we are finding that for further 

larger value of x max by sigma x we are going to have a falloff. In fact this is quiet expected also 

from this equation (Refer Slide Time: 28:29). 
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(Refer Slide Time: 28:33) 

 

 
 

You can look at this equation that if this term......... if x max by mu sigma x that happens to be 

sufficiently large only then there will be some fall in the characteristics. This is what is 

happening for the mu law quantized version. But very interestingly you can see that for a 

reasonably higher value of x max by sigma x which is typically expected you can see that the 

value of the so you can see that the value is equal, the SNR is equal at this stage that is to say that 

near about 100 we are finding that the SNR is almost the same. So you can see that whatever 

value we are expecting with only 7 bits, I mean, for mu law with only 7 bits we are having the 

SNR to be equal to that of B is equal to 11. So this suggests that the characteristic will be much 

so i mean This really suggests that for the case of mu law we can go in for much lesser number 

of bits as compared to what we will be doing for the uniform quantization.  
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(Refer Slide Time: 30:13) 

 

 
 

Then we can have a very similar plot for a higher value of mu. Let us say that we plot the same 

thing for mu is equal to 500 and in that case what are we going to obtain. This is for mu is equal 

to 500. Now tell me that, again look at this equation and tell me that if the value of mu is higher. 

Instead of 100 if we make it 500 what would you expect out of the SNR value? SNR will drop 

down. In fact it is seen that going by this equation the SNR will drop down. In this case I mean, 

from 100 to 500 if we use the actual values we will be finding that the SNR drops down by 

nearly 2.5 to 3 dB. So here we will be observing that it will be at 19.5 and then it drops down 

much later. So this is for B is equal to 5 and for B is equal to 6 it would be like this, for B is 

equal to 7 it would be like this. The values instead of 22 has come down to 19.5 here this has 

come down to 22.5 dB and here it has come down to 31.5 dB a uniform drop of 2.5 dB has 

happened and then again we will be observing, I mean I am not showing the other things but 

again for B is equal to 11 we can see that the characteristic makes an intersection at this 

particular point (Refer Slide Time: 32:36) which means to say that beyond this value of x max by 

sigma x we are going to find that this mu law is going to give us a better characteristic. In fact it 

will not intersect at two places; it will be something like this, not exactly what I have shown. So, 

beyond this value of x max by sigma x we will be finding that the mu law is going to perform 

better whereas for smaller values or x max by sigma x the uniform quantizer is going to perform 
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better. But this means to say that although we may be having a better signal to noise ratio for the 

uniform quantizer case and the signal to noise ratio in this case suffers somewhat but this nature 

of the characteristic that it is totally uniform with respect to this, this helps a lot. 

 

(Refer Slide Time: 33:43) 

 

 
  

Hence, now we can go in for the case of the optimum quantizer. You see that this mu law 

quantizer this achieves a constant SNR over a wide range of signal variants. Now there is some 

sacrifice in the signal to noise ratio performance but instead if we consider the design of optimal 

quantizers.  

 

In the case of optimal quantizers what we should do is that the quantization levels should match 

should match the signal variants and how do we do that. First thing is that the variants of the 

quantization noise we can write like this. it is given by sigma square E is equal to the expectation 

of e square n and this is equal to E of x cap n minus x(n) whole square and this let us call as the 

equation number 2.  
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(Refer Slide Time: 35:59) 

 

 
 

And in this case x cap n is equal to the quantized version that is Q of x(n) for an optimal 

quantizer. That means to say that x(n) will be directly followed by the quantizer. We are not 

using any other transformation. So it is just x(n) followed by the quantizer. So x cap n the 

quantized value is the Q of x(n) and in general we will be having M quantization levels. So if we 

use M quantization levels in that case we are going to have minus x cap minus M by 2 x cap of 

minus no not minus sorry x cap of minus M by 2 x cap minus M by 2 plus 1 so on x cap minus 1 

then x cap 1 up to x cap M by 2. These are the set of M different quantization levels.  
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(Refer Slide Time: 37:14) 

 

 
 

now what we do is that So in this case M will be considered to be an even number and the 

quantization level is associated so the quantization level is associated with associated with 

associated with the x j minus 1 to x j and this is denoted by x cap j. Now, when we have a zero 

mean amplitude distribution a zero mean amplitude distribution in that case we can define that x 

0 will be equal to 0 and then furthermore we assume that the density function is non-zero for 

very large values of x. 
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(Refer Slide Time: 38:29) 

 

 
 

Now, where we can have such kind of situations; when we have the Laplacian PDF or a 

Gaussian PDF in that case it is going to have zero value only at infinity. So going by that so if 

the density function is non-zero for large amplitude then we can also assume that x plus or minus 

M by 2 that means to say that this level and this level we are setting as the plus minus infinity. 

Now with this assumption we can write down the variants. the variants is expectation of x cap n 

minus x(n) square and x(n) square is nothing but this x cap n minus x(n) whole square is nothing 

but e square of n and when we have these two that is to say the zero mean amplitude distribution 

and then for large signals we are having for large amplitude we are going to have the nonzero 

values in that case we can write down the sigma square e as this that means to say the 

expectation; the expectation can be written as sigma square e is equal to the integral of e square 

times the probability density function of the error p e (e) d(e) and this directly follows from here 

when we incorporate this assumption. 

  

Now if we plot the error quantity that is to say e when we plot against the x, in that case we are 

going to have some kind of a situation like this that is supposing this is x 0 and if this is say x 1, 

if this is x 2 like that (Refer Slide Time: 40:41) and in this case we have x of minus 1 and here 

we have x of minus 2 all these different decision levels then corresponding to these decision 
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levels we are going to have the value of the quantizer making a discontinuity. The error term will 

lead to a discontinuity corresponding to the case when x is equal to x 0 or x is equal to x 1 or x is 

equal to x 2 at those points and again mid-way between this x 0 and x 1 what is going to be the 

value of the error that is also going to be 0 at the mid points that means to say that if we say that 

x 0 plus x 1 by 2 or x 1 plus x 2 by 2 at these points the value of the error is going to be 0. But 

when x 0 is making a as but when the signal just reaches the x 0 in that case it is making a 

transition from the negative error to the positive error. Again at this point it is becoming 0 means 

that from the positive error it drops and beyond this if we increase the value of x further in that 

case we are going to have a negative error and then at the value of x 1 it is again going make a 

transition. And if it is a uniform quantizer then all these levels should have been same but in the 

case of non-uniform quantization we are going to have a value we are going to have a 

characteristic which may be like this. 

 

(Refer Slide Time: 42:27) 

 

 
 

Again, just extending the same thing on the negative side we are going to see some kind of error 

characteristic which would be like this sorry it should be more like the mid-way and then here it 

will be x of minus 2. So the error versus x characteristic would be something like this. So this is 

the quantization error versus x.  
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Now we can write down the error, the error is nothing but x cap minus x and then we can say that 

by making a so here with e is equal to x cap minus x we can write down that the probability of 

error the probability density function of error p e of e we can write down as p e of x cap minus x 

and this by change of variable we can write down as p of x by x cap into x by x cap and this 

could be defined as p x by p x of x. So, as a result of this we can write down the sigma square e 

as the summation i is equal to minus m by 2 plus 1 to M by 2 integral x of minus 1 to x i into x i 

cap minus x whole square into p(x) d(x) this is by direct substitution of this equation. the earlier 

integral equation what you have seen was in terms of the p e e so it was e square p e e the e and 

instead by change of variable we have made it as the e square remains as it is but it is changed to 

p(x) d(x). 
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Now what we have to do is that this variance term this error variance term this noise variance 

term this has to be minimized with respect to what, now we have to design the quantizer. So 

designing the quantizer means what are the decisions that we have to make, we have to make the 

decision about x 1 to x n by 2 so all the decision levels have to be decided and then all the 

reconstruction levels also are to be decided. All these happen to be the variables so what we have 

to do is to differentiate this error term with respect to the quantities with respect to the individual 

quantities like this x i’s and if we differentiate that and we equate them to zero in that case we 

are going to have a set of equations. Therefore, by differentiating by differentiating sigma square 

e sigma square e with respect to each parameter we can get this set of equations: integral x i 

minus 1 to x i of x cap minus x whole square p(x) d(x) that is equal to 0 for i is equal to 1 2 up to 

M by 2 and then we are going to have x i to be equal to half of x i cap plus x i cap i plus 1 for i is 

equal to 1 2 to M by 2 minus 1 and by our assumption we are having x 0 is equal to 0 and x plus 

or minus M by 2 is equal to plus minus infinity. 
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Now if we solve these equations in that case we are going to find out the value of these decision 

levels and the reconstruction levels and that give us an optimum quantizer. Now the point that 

we have discuss is that is optimum quantizer the best solution for speech coding? Unfortunately 

not; because although the optimal quantizer is going to yield a better signal to noise ratio because 

it is matched with the signal variance it is going to give a better signal to noise ratio but it 

performs poorly especially in the case when......... I mean, in between the speech waveforms we 

have got silence. So, for the speech signals the optimal quantizer may be okay but whenever we 

are having the silence in between; in the case of silence what is happening is that the signal 

amplitude is already too small and when the signal amplitude is too small in that case it makes a 

to and fro jump between the minimum quantization levels. So it will make a jump between x 1 

cap and x 1 cap, I mean it will make a jump between x cap 1 and x cap minus 1 and if the step 

size of this happens to be large in that case it is going to produce a much larger error. Whereas in 

the case of the mu law compressor one can design the step size of the minimum signal to be 

much smaller as compared to the step size for the larger signal. Therefore, as a result of that for 

the silence duration the change in the quantized levels will be much less for the mu law as 

compared to what we will be getting for the optimum quantizer. 
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Therefore, although it is called optimum quantizer, for the speech signal just let us remember 

that mu law is going to serve as the best performance, is going to serve with a best performance 

because it is also taking care of the non-speech condition that is to say when the silent case is 

considered it is going to be much better. With this now we can go in for the discussions on the 

next version of the quantizer which will be actually the adaptive quantizer. Because you see that 

ideally what we should do is that we should design a quantizer that suits or that adaptively suits 

to the signal level where, as the signal level changes as the signal variance change we should 

have the change of the deltas adapted accordingly; the step sizes must be adapted accordingly 

and that is what we will be studying about, the adaptive quantization session case, in the next 

class. Thank you.  
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