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So today, our topic is quantization of speech signals. Now, whenever we would like to have any 

waveform approximation coding or even for parametric coding also one of the essential steps 

that we require to store and process the digital samples is quantization. So, before quantization of 

course we require sampling of the speech signal. So, if we say that the speech signal is given by 

x as a function of time, in that case we are going to sample the speech where the samples will be 

denoted by x(nT) where T is the sampling period and n is the index of the sample. So we have n 

that varies from......., if we start the sampling from n is equal to 0 then n is equal to 0 1 2 etc etc 

that means to say that at those time instances means x of capital T, x of 2 T, x of 3 T etc there we 

are going to sample the speech signal and those samples which we can later denote by x of n 
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simply where n happens to be an integer that goes from 0 1 2 etc and we denote the speech 

samples by this and each of this samples are there after quantized and it is actually represented 

by just a set of discrete levels.  
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So, in the process of quantization what we have is actually a mapping from the input variable 

space to the quantized variables. So, if we tell the input variable as the variable x, then we 

indicate the quantized variable as x of cap x cap and these input variables x we can denote 

by........... there may be several independent steps for this so we can say that this is x 1, then this 

is x 2, then this is x 3, then this is x 4, x 5 and so on; these are the steps that we have along this x 

and the corresponding value that we would like to have for the x cap again will be in the form of 

difference steps. So we may say this could be our x of 2 cap then this could be x of 0 or x of 1 

cap could be here and then x 2 cap, x 3 cap, x 4 cap and so on though they are indicated as 

shown. 

 

Hence, actually what we will have is that if we have on the negative side also we have the steps 

as minus x 1, minus x 2, minus x 3, minus x 4 and so on then if it is what is called as a mid-tread 

quantizer then when the value is from rather it is better that we call these as x 0 x 1 x 2 x 3 and 
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so on (Refer Slide Time: 4:58) so that when the input signal is between x 1 to x 2 then it will be 

denoted by the level x 1 cap. So this is the input and this is the quantized variable so x cap is 

actually the quantized value of x. So when it is between x 1 and x 2 then its quantized value is x 

1 cap; when it is between x 2 and x 3 then its value will be x 2 cap; between x 3 and x 4 we 

would like to denote it by x 3 cap and so on and likewise on the negative side also we can have 

like here we can have minus x 1 cap (Refer Slide Time: 5:41) then minus x 2 to minus x 3 we 

can have minus x 2 cap, minus x 3 to minus x 4 we can have minus x 3 cap and so on. So this 

essentially realizes what is called as a mid-tread quantizer.  
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And similarly there may be what is called as the mid-riser quantizer and the mid riser quantizer 

will have the steps like this that here there is no level that is at the 0, here you can see that it is a 

mid-tread (Refer Slide Time: 6:26) so corresponding to the value of input between minus x 1 to 

plus x 1 we have the quantized value as x 0 cap whereas in the case of mid riser no such x 0s will 

be existing rather the quantization would go on like this. Like if we have this to be let’s say x 0 

then we have this as x 1, then we have this as x 2 x 3 x 4 and so on; then corresponding to the 

signal between x 0 and x 1 we can have the quantized signal as x 1 cap; x 1 to x 2 we can have 

this as x 2 cap; then x 2 to x 3 we can have as x 3 cap and on the negative side also we can have 
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this as minus x 1 cap; then here we can have minus x 2 cap so that if the signal is between minus 

x 1 to minus x 2 then we can denote it by minus x 2 cap level and this we can denote by minus x 

2 to minus x 3 could be minus x 3 cap and so on. So this type of quantizer we will be 

calling........................... so this is the input variable and this is the quantized variable and this 

kind of quantizers they are referred to as mid riser quantizers. 
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In fact the quantization step size, if we denote by a quantity delta then that is actually defined as 

x i minus x i minus 1 that is equal to delta. So this is the quantization step size. So delta is 

nothing but the quantization step size and likewise for the quantized values also a similar step 

size will be there. We can also write x i cap minus x i minus 1 cap that means to say that the 

difference between these two quantized levels, two successive quantized levels that also will be 

equal to delta. And now we assume that we have the number of levels that is to say the number 

of quantization levels we say as 2 to the power B where B is the so where each of the samples or 

each of the quantized values are represented by B-bit binary code word. 

 

So we have a B-bit binary code word and the number of levels will be 2 to the power B. So what 

we can has is that the number of levels being 2 to the power B and if we assume that the samples, 
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the samples now we are indicating by x of n where n is an integer so x of n can vary, let us say 

that it is going to have a dynamic range of minus x some value which we can call as minus x 

max to let us say that it can go up to plus x max. 
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Therefore, it is minus x max to plus x max is the complete variation that is possible in the signal 

level and we can denote x of n as the mod value of x of n because x of n can be positive and also 

it can be negative. in the negative side its minimum value could be minus x max and on the 

positive side it could go up to plus x max so that the overall so that we can represent the same 

thing as mod of x(n) is less than or equal to x max. And then if we have a total variation from 

minus x max to plus x max then this entire dynamic range; if you want to make use of this entire 

dynamic range for quantization then we can say that minus x max to plus x max which means to 

say that two times x max that is going to be delta that is to say the quantization step size into the 

total number of levels that is 2 to the power B. 

 

 

 

 

5 
 



(Refer Slide Time: 11:29) 

 

 
 

What is delta into 2 to the power B indicating? 

because delta is Delta being the delta being one step size and 2 to the power B being the number 

of total steps then delta into 2 to the power B is nothing but indicating the overall range of the 

signal which we have assumed to be 2 to the power which we have assumed to be 2 x max if the 

variation is from minus x max to plus x max as we just now said. 

  

Now the quantized samples as such we are going to represent by......... individual quantized 

samples then we will be calling as x cap of n. So, corresponding to the sample x of n, its 

quantized value is going to be written as x cap of n. Now, x cap of n will be equal to x of n only 

when there is no quantization error. So x cap n will be equal to x(n) provided there is no 

quantization error but think that when you have a quantization step size; take any of these cases 

mid-riser or mid-tread whatever you can see that when you take any such value that lies in the 

middle of this x 1 and x 2 let us say that we take some value over here (Refer Slide Time: 13:05) 

now its actual value is this much but because of the quantization we have already quantized this 

to the level x 2 cap. So this total step size being delta; so this being equal to delta that is the step 

size, you can see that.............. whereas the actual value should have been somewhere over here 

we are having the quantized value to be x 2 which means to say that the maximum what you can 
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say the quantization error varies from minus delta by 2 to plus delta by 2. So, taking the 

quantization error also into consideration, we would like to write the x cap of n as x of n that is 

the original sample plus a term we add e(n) where e(n) is the quantization noise. 
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Obviously because delta happens to be the quantization step size we can definitely express this in 

terms of the inequality that e(n) will then range between delta by 2 to minus delta by 2. Now, this 

being the quantization noise, we can assume some simple statistical models for quantization 

noise. And what are these simple statistical models? 
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First of all we assume that the quantization noise is a stationary white noise process and under 

this assumption we can write that the expectation of e(n) and its product with e(n plus m) where 

m is nothing but a displacement because e(n) is the nth sample and e(n plus m) is a sample that is 

m samples ahead of this sample e(n). Now e(n) and e(n plus m) they should be ideally 

uncorrelated. That means to say that if it is a stationary white noise process then no signal no 

noise component is going to have correlation with the other noise components which means to 

say that e(n) can have correlation with only e(n) and it cannot have correlation with e(n plus 1) or 

e(n plus 2) or things like that e(n plus m) which means to say that we can write that this is equal 

to sigma square e where sigma square e we can assume to be the variance in the quantization 

noise so this is equal to sigma square e for n is equal to 0 and the expectation value is equal to 0 

otherwise. So this otherwise condition obviously takes into account that the quantization noise is 

completely uncorrelated. So this is the first assumption that we are making about the statistical 

model of quantization noise. 
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The second and a very valid assumption is that the quantization noise is uncorrelated with the 

input signal. Hence, this also we write that the quantization noise is uncorrelated with the input 

signal.  
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So how do we express that mathematically? 

We have to write again in terms of expectation only so we have to take the signal term. The 

signal term will be denoted by x of n and the noise term will be will be denoted by e of n. So we 

can write the correlation property as E of x of n into e of we take for any m we take e(n plus m). 

So we take the signal and this is the error of the quantization noise component which is for the n 

plus mth sample. 

 

But because we already said that the quantization noise is uncorrelated with respect to the input 

signal its value is going to be equal to 0 for all values of m for all values of m. So no matter even 

if m is equal to 0 we have x(n) e(n); even x(n) and e(n) should be completely uncorrelated with 

each other. And take any other e(n), take x(n) e(n plus 1) or x(n) e(n minus 1) or x(n) e plus 2 

anything these are going to be uncorrelated. So this is the second assumption that we are making 

about the statistical model of quantization noise. 

 

(Refer Slide Time: 19:23) 

 

 
 

The third is that the distribution of quantization errors is uniform over each quantization interval 

so the distribution of quantization noise is uniform and it is uniform over all quantization 

interval, for each quantization intervals and we are going to express that as the probability 
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density function of (e) so p(e) with respect e so it is the probability density function of the 

quantization error and because it is uniform how we are going to write we are going to write it as 

1 upon delta, delta being the step size which I already mentioned. 

 

Thus, this is equal to 1 upon delta where the value of e is going to e or e(n) whatever you write. 

Now we are not writing e(n) every time; we can write it as p(e) directly. The value of e rather 

lies between minus delta by 2 to plus delta by 2. So this is the range of the quantization errors 

and definitely the uniform probability density function is required that it is p(e) of e is equal to 1 

upon delta and this is equal to 0 otherwise. So it is of uniform PDF. So you can say that if you 

sketch it, it would be like this (Refer Slide Time: 21:21) that here it will be delta by 2, here it will 

be minus delta by 2 and this height is going to be this height is going to be 1 upon delta. This is 

how you are going to plot if e is there and if p(e) of e is plotted like this then you are going to 

have a uniform distribution as something like this. Hence, this is the third property. 

 

(Refer Slide Time: 21:47) 

 

 
 

So three very very important not property rather I should say assumptions. So what are the 

assumptions is that it is a stationery white noise process which means to say that the error 

samples are completely uncorrelated with each other; second assumption is that the quantization 
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noise is uncorrelated with respect to the input signal; and the third property and the third 

assumption that we have made is that it is uniformly distributed. I mean, it may be something 

other than uniformly distributed also but of course there the expression would definitely change 

accordingly. 

  

Now it has been well experimented for speech that these assumptions these three assumptions 

they hold good quite reasonably for speech signals. And taking this assumptions into 

consideration we can write now the signal to noise ratio of the speech signals like this that we 

can express the SNR, okay, the signal to noise ratio will be written as the signal variance which 

we write as sigma square x because x we are assuming to be the signal and the variance of the 

error signal is going to be written as sigma square e. So it is sigma square x by sigma square e 

and sigma square x is nothing but the expectation of E[x square (n)] and that of the error is E of 

[e square (n)] so this is the energy of the signal and this is the energy of the error. And this can 

be written of course n summation form also. Summation over n x square n divided by summation 

over summation over n e square of n.  
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And if we take the peak to peak quantizer range to be 2 x max; this we have already shown. In 

fact we have already indicated this that is 2 x max is equal to delta into 2 to the power B. So 

from this the quantization step size delta can be expressed as two times x max divided by 2 to the 

power B. And then one of the assumptions, the third assumption that we have made is that the 

quantization noise is uniformly distributed. And for uniformly distributed it is a very simple 

derivation that we would be having the error or the noise variance as sigma square e which 

should be written as delta square divided by 12; so that is how it comes for the uniform 

distribution case; uniform PDF for the quantization error and this is going to be expressed 

as.............. if we just substitute this expression that is instead of delta if we write 2 x max by 2 to 

the power B in that case we directly get it as x max square divided by 3. It is coming out to be 3 

because there is a two term over here so delta square makes it 4 and there is a 12 in the 

denominator so in total we have a multiplication factor of 3 in the denominator. Therefore, it is 3 

into 2 to the power 2B again because it is 2 to the power B for delta; for delta square it is 2 to the 

power 2B. So this is the sigma square e term and now what we can do is that we can make this 

we can substitute this into our original SNR equation. 

 

Hence, if we substitute this value of sigma square e (Refer Slide Time: 25:57) into this this this 

expression sigma square e into this sigma square x by sigma square e and in place of sigma 

square e we write this, then we can write the corresponding signal to noise ratio as......... I mean, 

if we take this to be equation number 1 and if we take this to be the equation number 2 in that 

case simply substituting equation number 2 in equation number 1 we get the SNR as 3 into 2 to 

the power 2B because this expression is coming in the denominator of sigma square e so 3 into 2 

to the power 2B that goes to the top and in the denominator term this x max square is there and 

sigma square x which is in the numerator term if it is brought on the denominator side then we 

have to express this as x max by sigma this quantity whole square. Therefore, this is going to be 

our signal to noise ratio. 
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Now this is just a ratio and if we would like to express the signal to noise ratio in dB, we are 

going to write it like this. 

 

So, expressing in dB we can write the SNR and let us write within bracket (dB) SNR dB would 

be 10 log to the base 10 of this signal to noise ratio and this is already expressed in terms of the 

power so this is 10 log 10 sigma square x by sigma square e from its original definition of the 

signal to noise ratio, so we are just taking 10 log 10. And if we are substituting all these things, 

means instead of sigma square x by sigma square e if we simply substitute this (Refer Slide 

Time: 28:02) and then take the logarithm then we can just very easily verify that it comes out as 

6B plus 4.77, the 4.77 is coming, you can well understand that there is a 3 over here, log of 3 to 

the base 10 happens to be 0.477 and then everything gets multiplied by 10 so that is why you get 

4.77 as the term arising out of that isolated 3.  

 

And this 2 to the power 2B of course is the one that is ultimately contributing to this 6B quantity 

and then this x max by sigma x the term is left over at the denominator of this signal to noise 

ratio expression. Since this is in the denominator and we are taking the signal to noise ratio as 10 
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log 10 of this entire quantity the denominator obviously gives rise to a minus sign so it is minus 

20 log to the base 10 of course as X max by sigma X. 

 

So we can write the whole thing as 6B plus 4.77 minus 20 log to the base 10 X max by sigma X 

and just very simply you can see that if we said our value of sigma X if we said to be just four 

times sigma X. So if we said that then we get the SNR in (dB) as simply 6B minus 7.2; this we 

can say as equation number 3. 

 

(Refer Slide Time: 29:57) 

 

 
 

Now this equation that we have written so far this is valid subject to certain assumptions. What 

are these assumptions? 

The first assumption is that we can list what kind of assumptions we make in this process. First is 

that the signal fluctuation is rapid, the signal fluctuation is rapid and that is why the statistical 

model of noise what we have already assumed those three assumptions which we stated and the 

statistical model of noise is valid. 
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Mind you, the statistical noise, the statistical model of noise is valid for very rapid signal 

fluctuations because then only you can take that the noise signals are uncorrelated with respect to 

each other and noise is also uncorrelated with respect to signal. So without this, without rapid 

signal fluctuation you cannot have that assumption anymore.  

 

The second assumption is that you have delta as small and only if you have delta to be small then 

there is no signal that is correlated with the noise. Delta is small so that no signal is correlated 

with noise. In fact for large delta that is what you are going to have.  If you have a very large step 

size then your quantization error simply follows your signal then the error then the noise and the 

signal they get correlated with each other. So, if delta is small no signal is correlated with noise. 

 

The third assumption is that the range of the quantizer is set so as to match the peak to peak 

range of the signal, the peak to peak range of the signal.  

 

 

 

 

16 
 



(Refer Slide Time: 32:57) 

 

 
 

Now, this is a very what you can say it is a very important assumption. In fact you must have 

already seen that we have talked about this sometime back already because we have been 

taking.......... that delta we were taking to be delta into 2 to the power B we were taking to be 2 

times X max. So, because we have already taken that we took this point into consideration that 

this range is matched with the peak to peak range of the signal. 

  

Now, for the first two assumptions that we have made that is reasonably valid. Especially for 

delta to be small what we require; we require that the number of step sizes should be large 

because that is only what can make the delta to be small. So it is seen that for speech signal the 

first two assumptions are quite valid for number of levels greater than 2 to the power of 6 and 

generally for speech signals it is so; for speech quantization the number of levels should be 

greater than that of 2 to the power 6 so definitely that means to say that we will be having more 

than 6 bits for our representation of the quantized samples. 

 

But one very important aspect of the speech signal is that between different speakers we have a 

very large variation in its signal strength. The signal levels in fact can vary by as much as 40 dB 

for different speakers and again for the same speaker the speech signal level varies drastically 
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between the voiced speech and the unvoiced speech. So, taking the speaker to speaker variation 

into consideration and voiced to unvoiced speech signal levels variation into consideration these 

two factors leads to the fact that we really have a very tough task in fulfilling the property 

number 3 because the property number 3 says that quantization is set to match the peak to peak 

range of the signal but for which signal; if we say that it matches with the voiced 

signal................... for the voiced signal if we can happen to match this range then whenever the 

speaker goes to the unvoiced part of the speech then definitely that range cannot be satisfied 

because the unvoiced speech is going to have a much lower dynamic range which means to say 

that for the unvoiced part of the speech we are going to have a very poor SNR, the SNR may be 

good for the voiced speech but for unvoiced speech it is going to be very bad. Then if it is 

matched to one speaker, for a speaker having a good speech signal level, we change the speaker, 

that is, instead of one person if somebody else talks over the same speech signal quantization 

system then there is going to be a very drastic variation because from speaker to speaker also we 

have a large variation.  

 

Therefore, from this point of consideration the simple sampling is not the simplest scheme of 

quantization is not adequate. In fact we have to go in for something like adaptive quantization 

which we are going to talk about in the later lecture. But now at least we can say that what is 

actually used for the speech quantization process.  

 

It is generally seen that for high fidelity consideration B is equal to 11 that means to say 11-bit 

representation is necessary. So B is equal to 11 is necessary for high quality for high fidelity 

considerations whereas it has been seen that B is equal to 7 with SNR equal to 36 dB provides 

adequate quality in a communication system. So this fact we remember; in a communication 

system and of course with a uniform quantizer.  
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Again mind you that whatever expressions we wrote down those expressions are valid for 

uniform quantization because only for uniform quantization you can have that delta square by 12 

coming in. So now we can see another aspect. That means to say that to take the large variation 

in the dynamic range of speech signals into consideration. One thing which we employ is a 

logarithmic encoder and decoder because by taking the logarithm we can appropriately take care 

of the dynamic range because logarithmic transformation essentially reduces the dynamic range 

of the original signal and then it is easier for us to handle. 

 

So how do we have the logarithmic encoder and the decoder? 

We have to consider the blocks like this; so logarithmic encoder decoder and they will be using a 

transformation which is given by y of n equal to log mod of x of n. So we have to realize this and 

how do we realize that; we take x of n that is the speech sample as an input and then we have a 

logarithmic transformation block. So it is log mod so definitely this output will be nothing but y 

of n. But then after making the logarithmic transformation for the signal y(n), now instead of 

taking the quantization for x of n we take the quantization for y of n. 
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After y of n, after obtaining y of n we put the quantization which we just write as Q and this is 

the quantized output and then we also take.............. because we are taking the modulus what we 

have lost in this case is the sign of the original signal x of n, original sample x of n sign that must 

be preserved so we have a block that preserves the sign. So this is sign of x of n that is what we 

will be taking. So sign value which is a one bit representation that whether it is positive or 

whether it is negative, this 1 bit information has to be encoded and then also the quantized value 

of y(n). So there will be an encoder that accepts the quantized signal and also the sign of x(n) and 

this gets encoded into the bit stream. So c(n) is the bit stream corresponding to the nth sample. 

So this is what we are having at the encoder end. 

 

(Refer Slide Time: 41:55) 

 

 
 

No, at the decoder end we must have a corresponding inverse transformation. Because here we 

have made logarithmic transformation, so definitely to get x of n back; obviously we will not be 

able to get x of n directly back because there is a quantizer in between and quantizer is definitely 

going to provide losses. So, instead of x of n we are going to have x cap of n which will be 

ultimately obtained and that will be obtained at the decoder. So the decoder block diagram would 

go like this that it will accept this c of n that means to say these encoded bits will be received as 
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an input to the decoder and then ultimately it has to obtain x cap of n as an approximated form of 

x of n. The decoder block diagram can be shown here (Refer Slide Time: 42:57). 

 

This is c of n coming as an input here. We have the decoder, then we have y of n, we write it as y 

cap of n and then we have here the exponential. Because you have taken the logarithm you have 

to take the exponential just to get back this signal and the exponential of this actually helps you 

to get back the mod value of x of n. Because this y of n what we have taken is definitely the mod 

value because we already saw it for the encoder part that here (Refer Slide Time: 43:42) it is the 

magnitude of x(n) which is already taken and over that the logarithmic transformation has been 

applied so here also we get mod of x cap of n. But c of n contains the sign information also.  

 

So, if we extract and separate out the sign information then what we can do is that we get this 

sign information. So this is sign of x cap n and if we multiply this x cap of n mod of x cap of n 

with the sign of x cap n where sign x cap of n is going to be either plus 1 for positive or minus 1 

for negative then at the output of this multiplier we will be getting x cap of n. So this is our 

decoder and we can write the inverse transformation equation as x of n is equal to exponential of 

y of n into sign of x(n). You see, this is exactly what we are going to do. The only thing is that 

here we are not saying y(n) we are saying y cap of n. But exponential of y cap of n is nothing but 

the mod of x(n) and that is actually multiplied by the sign of x(n). In this case we use the x cap. 
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We can write from the encoder side, the encoder has got............ in fact here y(n) and then after 

the quantization of y(n) here we are going to have y cap of n. And in fact y cap of n we can 

therefore write as the quantized value of log mod x of n. You see, we directly get from here: log 

mod x(n) and then take the quantized value of that so you get y cap of n which is quantized value 

of log mod x(n) which of course we can write as log mod x(n) and then we can write this as log 

mod of x(n) plus epsilon n because there will be quantization error. So the quantization error is 

denoted by epsilon n. And then once obtained once we obtain this y cap of n then x cap of n that 

is at the decoder end; x cap of n will be written by this equation directly: exponential of y cap n 

into sign of x(n). 
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Now here we simply have this; I mean, exponential y cap n can be written as mod of x(n) mod of 

x(n) into sign of x(n) this directly follows from our encoder where y cap of n we are getting as or 

rather to say exponential of y cap n is mod of x(n) into sign of x(n) and then we also have the 

exponential of........................because you see we are taking just this y cap of n and y cap of n is 

log of mod x(n) plus epsilon n so this whole quantities epsilon n we have to take; this whole 

quantity’s exponential we have to take so there will be a quantity exponential of this logarithm 

x(n) which is simply the x(n) and then there will be another term which is exponential of epsilon 

n. So, exponential epsilon n is a term that we will be getting outside this. So this is exponential of 

epsilon n and this whole thing mod x(n) sign x(n) is nothing but x(n) so this is x(n) into 

exponential of epsilon n.  

 

If epsilon n is very small for very small epsilon n we can approximate this exponential epsilon n 

as a linear quantity so a very small epsilon n we can write as the x cap of n; this whole 

expression we are making for x cap of n remember because we proceeded from this x cap of n 

(Refer Slide Time: 48:43) so x cap of n is this and for very small epsilon n I can write this as x(n) 

rather I have to put an approximation sign approximately equal to x(n) into............ instead of 

writing epsilon n we write as 1 plus epsilon n and this is equal to x(n) plus epsilon n x(n) which 
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is equal to x(n) plus f(n) where f(n) is equal to x(n) epsilon n. And since x(n) and epsilon n are 

assumed to be independent we have sigma square f equal to............ so f(n) is nothing but the 

product of x(n) and epsilon n and if the noise and the signal they are uncorrelated which we are 

assuming then we can have the variance of this f that is the product is equal to sigma square x 

into sigma square of epsilon so that the signal to noise ratio will be sigma square x divided 

by............... in this case we are going to have sigma square x into sigma square epsilon because it 

is sigma square x by sigma square f that is going to be the error term. So x cap of n because x cap 

of n is x(n) plus f(n) so that is why f(n) is basically the noise term so that the noise power is 

sigma square f and we have sigma square x by sigma square f and sigma square f is written as 

sigma square x into sigma square epsilon. 

 

(Refer Slide Time: 50:41) 

 

 
 

Now you see the beauty that from the numerator and the denominator this sigma square x that 

gets cancelled out and we simply get 1 upon sigma square epsilon to be the signal to noise ratio 

which means to say that the signal to noise ratio in this case for the logarithmic transformation 

by using the logarithmic transformation we see that the signal to noise ratio is independent of the 

signal variance. This we did not see for the regular quantizer, for the linear quantizer we did not 

see that but after the logarithmic transformation we see that the signal to noise ratio is becoming 
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1 by sigma square epsilon which means to say that it is not dependent on the signal and it is only 

dependent upon the quantization step size. 

  

So this much for today and in the next class we are going to talk about adaptive quantizers as 

applicable to the speech signals. Thank you.  
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