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Discussing about the discrete cosine transforms and there we were also referring to the JPEG 

standard in which the DCT based image compression has been adopted as a compression 

technique in the JPEG standard. Now JPEG was also updated; there was a new standard called 

JPEG 2000 which came into being few years back and in that the discrete cosine transform was 

not considered and the wavelet transform instead, the discrete wavelet transform that was 

considered as a compression technique in the JPEG 2000. But DCT in fact is not only followed 

in the JPEG but even in the video sequences where we go in for the compression standards in the 

MPEG series the motion picture experts group MPEG-1 MPEG-2 they also adopted the DCT as 

a compression tool and the standards which have come up from the ITU the International 

Telecommunication Union regarding the video compression standards, they also have adopted 

either the DCT or some variants of the DCT like very recently in H.264 standard they have 

adopted transformation which is referred to as the integer transform which is a variant of the 

DCT but can be easily computed. Because one thing which you understand is that the DCT 

computation that involves a real multiplication because after all it is the cosine values which is a 

real number in the range of having a magnitude in the range of 0 to 1 so there it has to be 

represented by the real numbers and the multiplication also is informed. 

  

Now, in the DCT discussion there were some points which I mean I could not get time to lay 

some emphases on certain points and one of those is the aspect of bit allocation. Because what 

we had essentially said is that the image is first divided into a set of non-overlapping blocks and 

on each block the DCT will be applied and then we will be finding that in each of these blocks 

one has to consider the coefficients and allocate certain bits to the coefficient because ultimately 

it is the bit stream that we are sending. 
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Now, on what philosophy is this bit allocation done?  

Now, there are two basic policies: one is what is referred to as the zonal coding and the other is 

what is referred to as the threshold coding. Now, the essential philosophy of the bit allocation is 

that whenever you are considering a block to be encoded; a block of pixels means that it is a 8 by 

8 that is there will be 64 pixels in the block so accordingly there will be 64 transform 

coefficients. Now what we will be doing is to measure the variances of each of these coefficients. 

 

Now how do we measure the variance?  

In order to measure the variance we need some statistical data. So what we have to do is to have 

an ensemble of such images and using those ensemble of images we should be able to find out 

the variances and wherever we will find that the variance is higher we will be allocating more 

bits and wherever the variances are lower the bit allocation will be less that is a very simple 

philosophy that we can follow. 

 

So typically what we can consider is that if capital B is the total number of bits to be allocated 

and if we have totally M number of such coefficients M number of transform coefficients to 

which we are allocating the bits in that case what we have to do is that simply B by M becomes 

the average. But what we do is that for the ith coefficient we assign the bits which is equal to b i 

and that we can simply express like this that the number of bits allocated to the ith retained 

coefficient that will be given by B by M plus half log to the base 2 sigma square i; sigma square i 

is the variance that is associated with the ith coefficient and that minus 1 upon 2 M into 

summation i is equal to 1 to M log of sigma square i to the base 2. So there are M number of 

coefficients or rather to say you can say that M number of retained coefficients. 
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(Refer Slide Time: 7:22) 

 

 
  

Now how do we retain the coefficient? 

Again, to retain the coefficient we have to put some limitation on the variances. We have to put 

some threshold on the variances so that if it is higher than a certain threshold then we will be 

retaining that; if it is lower than certain threshold we will not retain it. That is how we will be 

forming a mask and that mask will contain only that mask will be only a binary mask containing 

0s and 1s where the composition of the mask could be something like this. 

 

Supposing here I draw a grid of 8 by 8; 3 4 5 6 7 8 oh I drew one extra this is an 8 by 8; now in 

this grid this one is the DC (Refer Slide Time: 11:15); now naturally DC represents the intensity 

so DC we have to retain. So DC we put 1 in that mask; if we have to retain we put 1, if we do not 

retain we put 0s. Then the next one also is a low frequency. Generally the low frequency 

components are quite rich and we preserve the low frequency components. So, in the zonal mask 

we will be keeping some of the low frequency components and depending upon the variances 

that means those types of images what are the variances if we consider an ensemble of image and 

compute the variances may be we will find that these coefficients are really essential for us and 

some of the very high frequency coefficients they may not be needed by us at all.  
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(Refer Slide Time: 9:33) 

 

 
 

Like say for example, may be if we consider all these coefficients this could always be 0s 

because these high frequency components these will be having very low variance so we can 

discard them and in between whatever coefficients are there some of them can be 1s, some of 

them can be 0; so depending upon the nature of the image and its variance characteristics one can 

decide that which ones are we going to retain. So this type of a mask containing 1s and 0s where 

1 indicates retained coefficients and 0 indicates discarded coefficients. This sort of a binary mask 

we refer to as a zonal mask. 
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(Refer Slide Time: 10:22) 

 

 
 

So, in the case of zonal coding what we do is that we apply a zonal mask like this and for each of 

the retained coefficients if you take that there are M number of retained coefficients (Refer Slide 

Time: 10:33) the bit allocation could be like this.  

  

You just see that if you add up all these b i’s where i is equal to 1 to m then what you are 

essentially getting is B because B by M is there for everything; there are M number of retained 

coefficients so B will be there and this is 1 by 2 M, a summation so if you are adding up for i is 

equal to 1, i is equal to 2 for the second term what you are getting is that it is leading to a term 

that is there in here so essentially you will be getting capital number of bits to be allocated. So 

the bit is allocated in proportion with the variance that is one philosophy of bit allocation. 

 

The second philosophy that is followed is what is called as the threshold coding. Now, threshold 

coding is like this that in the block in the transformed block that you are having; let us say that it 

is an 8 by 8 block, in that case the transformed coefficients we represent as S (k 1, k 2) so k 1 for 

an 8 by 8 block k 1 would be 0, 1,........... up to 7 and k 2 also will be likewise 0, 1,................ up 

to 7 so these are the transformed coefficients and in the case of threshold coding what we do is 

that these transformed coefficients we divide by a matrix. So there is a matrix whose elements 
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are given by T (k 1, k 2) where k 1 and k 2 also will be having a same index. That means to say 

that if it is a 8 by 8 block then we will have to use an 8 by 8 matrix for this. So T (k 1, k 2) is the 

corresponding element in the matrix and this matrix containing T (k 1, k 2) this is referred to as 

the quantization matrix. 

 

(Refer Slide Time: 12:57) 

 

 
  

So what we do is that the DCT coefficient at (k 1, k 2) position will be divided by the 

quantization corresponding quantization matrix element T (k 1, k 2). Now this is definitely this S 

(k 1, k 2) is a real number. Now you are dividing it by some matrix and the division is definitely 

going to be a real number. But if we want to represent it, if you want to quantize it there you 

have to truncate. So you can truncate this quantity to the nearest integer (Refer Slide Time: 

13:38) so you can write as NINT where the NINT function basically refers to the nearest integer 

and then this quantity you can represent as S dot (k 1, k 2). So, S dot comma S dot (k 1, k 2) will 

be represented as nearest integer of this quantity. 

  

So what is essentially S dot (k 1, k 2)? 

S dot (k 1, k 2) is nothing but the quantized DCT coefficient. So this is a quantized DCT 

coefficient. 
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Now what is important note is that how does one find out that what this T (k 1, k 2) is going to 

be? Now what values do we put into T (k 1, k 2) or what is the consideration for designing this 

quantization matrix?  

Well, to do that lot of psychovisual experiments are performed and it is seen from the luminance 

and the chrominance data; it has been analyzed very extensively that our human visual system is 

responsive to which luminance frequencies and to which chrominance frequencies; frequencies 

meaning spatial frequencies. So accordingly, after such extensive studies were made, purely 

from a psychovisual consideration purely from psychovisual consideration this kind of 

quantization matrix was designed. But mind you, do not think that a single quantization matrix 

can be universal. because after all the extent of this sensitivity could also depend as you know 

upon the distance from which you are viewing and the elimination conditions, so these things are 

also very important. So accordingly there will be some variations, that is why the people who 

framed the standard did not specify one single quantization matrix but rather they specified a set 

of quantization matrix which can be used under various conditions.  
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Therefore the essential philosophy is that the S (k 1, k 2) coefficients has to be divided by the 

quantization matrix whose elements are psychovisually motivated and then the quantized DCT 

coefficients S dot (k 1, k 2)s are obtained. 

  

Now as you had seen, in the last class we had presented the block diagrams and all these things 

where the quantized coefficients will thereafter be I mean, we do a zigzag coding and the zigzag 

coding is followed by the entropic coding because from the zigzag what we do is that we form 

run level pairs. In run level pairs what we do is that.............. when we have an array like this 

(Refer Slide Time: 17:20); supposing this is an 8 by 8 array 3 4 5 6 7 8 and again here 4 5 6 7 8; 

2 3 4 5 6 7 8 so this is an 8 by 8 array and then in order to then after scanning these coefficients 

what we do is that we form a run level pair and this run level pair means that what will be the 

runs of zeros that we have which is terminated by a nonzero level. 

  

So, a simple example is that; supposing here we have a 0 say all these things are 0s and say here 

we have some nonzero value let us say minus 5 over here and here also some nonzero value was 

there let us say 10 was there so here what we have is that here the runs of 0s start so 1 2 3 4 5 6 7 

8 there will be eight 0s and after eight 0s there is a level of minus 5. So we will call it as (8, 

minus 5). Supposing the next coefficient here is again nonzero one say 6 in that case how do we 

represent 6; the run is 0 but the level is plus 6 so the next one will be (0, 6). Supposing now we 

have 0 0 0 minus 1 so in this case what it will be 1 2 3 so three 0s so runs of three 0s followed by 

minus 1 so we will call it as (3, – 1). So this is how the run level pairs are formed. 

 

Essentially please remember that what we have to do is to proceed in the zigzag scan fashion and 

pick up the runs of continuous zeros; count how many zeros you have included in that. If you 

have included eight 0s just say that your first quantity first parameter run is 8 and where the run 

ends it is invariably ending with a nonzero value so put that nonzero value as a level.  

  

Now it will be possible that we will be having different combinations of run level pairs possible. 

Now it is not that all these run level pairs are equally probable to occur. Again one has to find 

out from an ensemble statistics that which run level pairs are highly probable and which run level 

pairs are not so probable. So based on that you follow it up with an entropy coding and entropy 
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technique what it does is that it will find out that wherever the information content is 

less................... in fact we will be allocating more bits to less probable symbols and we will be 

allocating less bits to more probable symbols. 

 

(Refer Slide Time: 21:34) 

 

 
 

So what are the symbols? 

The symbols will be this like say (8, minus 5) this is one symbol; (0, 6) it is one symbol; (3, 

minus 1) this is another symbol so like this there will be table which will be prepared and from 

that table one can find out that what should be the corresponding Huffman code and one can use 

the Huffman code for this. Or instead of Huffman code one can also go in for an arithmetic 

coding. Whether one goes in for an arithmetic coding or Huffman coding, some entropy coding 

technique is applied on the extracted run level sequences.  

 

Hence, this is what we obtained and some of the salient points that one should mention is that is 

it so that the DCT is good all the time and in all respects. Well, every technique has got some 

short comings and DCT also has got certain basic short comings. 
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You see what you are essentially doing. The first step is that you are dividing the image into a set 

of non-overlapping blocks and your block is of size let us say 8 by 8. Now each and every block 

you can quantize with different parameters like what to say is that do not think that we will be 

always doing S (K 1, K 2) divided by T (k 1, k 2). In fact it is possible that we can apply some 

scaling in the quantization process also. Like say for example, if we decide to multiply this T (k 

1, k 2) by a number which is other than 1 that means to say that we are incorporating some 

scaling; say if we say M is equal to 2 and multiply this T (k 1, k 2) by a factor of 2 in that case 

what we are doing we are coarsely quantizing; we are coarsely quantizing it further. If we put N 

is equal to 3 we are furthermore coarsely quantizing.  

 

Therefore, the extent of coarseness in quantization can vary from block to block that is one point 

that one should remember and as a result of that the statistics can vary from block to block. In 

fact the variance statistics also varies from block to block and as a result of that from block to 

block this variation becomes quite visible especially at very low bit rates. Whenever one is over 

quantizing the DCT coefficients then some artifacts are visible and those artifacts are referred to 

as blocking artifacts.  

 

So blocking artifacts as the name implies; blocking artifacts means that from one block to the 

next block there will be some variations in the overall characteristics. Like say for example the 

simplest that you can think of is that supposing the overall intensity varies, the overall intensity 

is different; if this block is having some DC level and the next block is having a different DC 

level in that case what are you going to observe you are going to observe some kind of an 

artifact. After all, the DC value is also computed it is computed out of the local properties so the 

local properties also can change from this block and the next neighboring block may not have 

exactly identical local properties so as a result of that the overall intensity varies, the low 

frequency components would vary so this gives rise to some kind of gradations in the 

quantization of every individual block and this gives rise to some kind of a checkerboard effect; 

checkerboard effect means in the sense that, as if to say that, from the reconstructed image you 

will be able to find out that this is one block, this is another block so a blockiness an effect of 

blockiness would be there which is referred to as the blocking artifacts. This is a very serious 
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problem and this kind of blocking artifacts is highly disturbing in DCTs especially at the very 

low bit rates. 

 

(Refer Slide Time: 27:39) 

  

 
 

Again another phenomenon which is which happens is that after all what you are doing you are 

truncating the high frequency components. Because if you look at the composition of this T (k 1, 

k 2) matrix (Refer Slide Time: 27:01) there you will be finding that we give or rather from the 

psychovisual experiments whatever has been found it is found that our eyes are more sensitive to 

the low frequency low spatial frequencies as compared to the high spatial frequencies. 

  

So it is possible that in the T (k 1, k 2) matrix you will be having quite lower values........ I mean, 

if this is your block then you will be having lower values of T (k 1, k 2) on this side and you will 

be having higher values of T (k 1, k 2) on this side. So, as a result of that what will happen is that 

many of the higher frequency components will be very severely truncated and because of that 

what happens is because of such severe truncations you will be losing some details in those parts 

of the image. Means wherever a block is reaching high frequency components you will be 

missing some details as a result of such kind of truncation. And if you are using it in a low bit 

rate application where your total number of bits in the bit pool itself is less in that case even to 
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the low frequency components also you are assigning less bits and because of assigning less bits 

to it in very uniform region the regions which are otherwise quite uniform in nature, there you 

will be introducing some extra artifacts in the form of some graininess. So if you are over 

truncating the low frequency components it will result in what is called as graininess. 

  

Thus, blocking artifact is one major artifact, graininess due to truncation of the low spectral 

coefficients or lack of details or rather to say blurring which is due to the truncation of high 

frequency components these are some of the major deficiencies that one faces in the discrete 

cosine transform. 

  

Now what to what is being done is that because of these limitations it is found that beyond a 

certain bit rate it is not very advisable to use the DCTs because once the artifacts are visible to 

your eyes naturally you are not going to like those kinds of techniques for compression; you 

definitely look for better techniques. 

  

In fact just to tell you what are the kinds of figures that people normally have as compression 

efficiency achievable in the DCTs you see that if you are observing a black and white image, a 

black and white image is represented by 8 bits per pixel so this is black and white or what you 

call as the monochrome image, so every monochrome image is having 8 bits per pixel. It is 

generally found that up to 0.25 bits per pixel we write it as bpp up to 0.25 bits per pixel you 

normally do not notice any serious degradation in the quality of the image. Now 0.25 bbp means 

what that already you are having, from 8 bits per pixel you are down to 0.25 bits per pixel which 

means to say a factor of 32 is to 1. So I am saying that the redundancies in most of the images 

are to the extent that 32 is to 1 of compression factor is not causing any visible degradation. 

 

Now if instead of 32 is to 1 you go in for 64 is to 1; that means to say that from 0.25 bpp if you 

want to get to 0.125 bpp in that case the quality is going to suffer so you will be observing all 

these factors; all these artifacts that I was mentioning will be visible more and more you go in for 

higher compression factors. So there it is found that the wavelet transforms are very much useful.  
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So, before introducing the wavelet transform I found that it will be I mean, it is a good idea to 

have some introduction to the theory of Wavelets. I do not know, many students some students in 

this group or those who are listening remotely, some of you may be familiar with the basic the 

theory behind the Wavelets but let us brush up the theory to some extent so that our 

understanding about the wavelet transform becomes little better. 

 

In wavelet, basically the theory of the wavelet follows from this that, you see; what we are doing 

after all in the DCT, we are taking a block which is a local block of 8 by 8 and there we are 

having the there we are representing the block from the spatial domain to the frequency domain, 

now, when we represent it in the frequency domain what we are getting is a characteristic that is 

representative of the entire 8 by 8 block; we will not be able to precisely pin point that in which 

part of this 8 by 8 block the low frequency component is happening and in which part is the high 

frequency component is happening, so the local property the localization property is restricted in 

the sense that we are only within that 8 by 8 block that is all but within that 8 by 8 block there 

could be variations and we will not be able to find out that where exactly is the high frequency 

located and where exactly is the low frequency located. The same thing happens for the time 
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domain signals also. Like say for example, the speech signals which we were considering few 

classes back. 

  

 (Refer Slide Time: 34:52) 

 

 
 

Now you see that supposing we have got a waveform like this and now we want to find out that 

exactly where the high frequency component has appeared. Say here (Refer Slide Time: 35:06) 

there is a sharp change, here there is a sharp change, here there is a sharp change, some of the 

other regions may be uniform. So if I take the FFT of the entire signal I cannot really say that 

where exactly did the high frequency appear. My spectrum will show something that some high 

frequency part had appeared but it is not telling me that exactly where it appeared. So what is the 

alternative; we can go in for shorter and shorter frames and for shorter and shorter frames if we 

do the analysis, or rather to say if we go in for a short time Fourier transform then we will be 

able to extract such kind of localization properties better. 

  

But again just see, short time Fourier transform means that you are taking the Fourier series as 

the basis or rather to say you are taking the trigonometric functions as basic functions and those 

are the functions that is extending from minus infinity to plus infinity and you are incorporating a 

truncation a forcible truncation that is what you are doing so as a result of that there is the 
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windowing effects etc which you all must be familiar with so this is what really disturbs the 

performance to a large extent. So as a result of that we have to go in for some technique where 

the localization will be better and in this case we are talking about the space frequency 

localization. Why space frequency; because our signal that we are considering for the images is 

represented as f of (x, y) it is a two variable x coordinate and y coordinate so x and y those are 

the spatial signals and we are talking in terms that exactly which spatial frequencies had 

happened, to know that. So, to know that we go in for a new kind of transformation which is 

called as the wavelet transform. as the name implies we are not calling it as wave, we are calling 

it as the wavelet means wavelet means it is a small wave like this 

 

(Refer Slide Time: 37:53)  

 

 
 

This is just one cycle of sign wave but the actual sign wave is like this going to infinity starting 

from minus infinity. So this is a wave. 
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(Refer Slide Time: 38:18) 

 

 
 

But if I consider a function like this (Refer Slide Time: 38:24) and symmetrically obtain here 

what you find is that this is not a wave anymore, this is a small wave or a wavelet as if to say that 

on a lake containing still water you just drop a pebble and after dropping the pebble the ripples 

that go through that ripples are definitely going to die down after certain distance so you see that 

the oscillations are dying down and otherwise the responses are oscillatory in nature. So this is a 

wavelet. So this is instead of using the waves if we use wavelets as our analysis. But how the 

theory of the wavelet follows; so, to understand that let us go to some aspects of Mathematics.  
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(Refer Slide Time: 39:22) 

 

 
 

What we have is that lets say let us first develop the theory with one dimensional signal and then 

it will be its two dimensional expansion will be extension will be quite logical. so let us say that 

if we have a function f(x) defined in the real space it is possible for us to express this real valued 

function in terms of an expansion function like this that we can we can express it as sum as a 

product of the coefficients alpha k times phi k of x and it will be summed up over k. Now in this 

case k is an integer index of summation. So what I mean to say is that the real valued function 

f(x) will be approximated by a series summation of a set of functions given by phi k’s. So when I 

have phi when I have k is equal to 1 it is alpha 1 phi 1; when I go in for k is equal to 2 it is alpha 

2 phi 2 and so on. 

 

Now how many terms I keep in this series is again............... we have to decide based on how 

close the approximation is going to be. Now this set of functions phi k’s we realized using a 

scaled and shifted version of some basic function. Since I mentioned scaled and shifted these 

functions will have two basic parameters which are associated with it: one is to what extent it is 

scaled and the other is to what extent it is shifted. So there will be two variables that will be 

associated with it and we call those variables as phi the set I am writing phi and as suffix I am 

writing two quantities r, r with the argument (x); x continues to be the argument but these two 
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parameters r and s what are they; r is called as the scaling parameter, r is called as the scaling 

parameter and s is called as the shift parameter and both these r and s this r as well as this s they 

belong to the integer space Z. 

 

(Refer Slide Time: 42:40) 

 

 
  

Thus, we have to consider a set of functions given by phi r, s and how are these functions 

interrelated to each other, we define their inter relationship like this that phi r(s) actually is 

defined as phi r(s) of x is given by 2 to the power r by 2 phi of 2 to the power r(x) minus s. This 

is the basic definition of these functions that we are considering: phi r, s is equal to 2 the power r 

by 2 is this. Do not worry about the mathematical expression; we are not going into anything 

abstract. 
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(Refer Slide Time: 43:33)  

 

 
 

Just see that let us try interpreting it in a very nice way. Let us say we put r is equal to 0 and we 

put s is equal to 0 then what results; then what results is phi 0, 0 x becomes equal to 2 to the 

power 0 and 2 to the power 0 means 1 and phi 2 to the power 0 so here x, s is also 0, so phi 0, 0 x 

is nothing but phi x. So what we are considering as a basic function is this phi of x, let us say this 

is our starting point.  

 

Now if we want to obtain......... let us say instead of phi 0, 0 x if I want to obtain phi 1, 0 x how 

do I realize that? To have phi 1, 0 x I have to put r is equal to 1 and s is equal to 0. So phi 1, 0 x I 

have to write as 2 and here r is equal to 1 so it is root 2 into phi of 2 x that is all. Means whatever 

we consider as phi of x, instead of phi of x we are now obtaining phi of 2 x. So say that if our phi 

0, 0 x is a function like this let us define a function. 
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(Refer Slide Time: 45:28) 

 

 
 

In fact it is a Haar function that we are defining; say phi (x) we define as 1 for x lying between 0 

and 1 for x lying between 0 and 1 and it is equal to 0 otherwise which means to say that the plot 

of the function would be like this that say this axis if I draw x and this axis I draw phi of x in that 

case the function would look like this say this is x is equal to 0 and let’s say that this is x is equal 

to 1 (Refer Slide Time: 46:18) this is x is equal to 2. So all these smaller grids are 0.25 distance 

apart and if this equal to 1, say this is equal to 1 then this will be the nature of the phi x function. 

  

Now this this phi x I can also call as phi 0, 0 (x). Now how am I going to draw phi 1, 0 (x) first 

thing is that its amplitude has become root 2 times and second thing is that instead of phi x this is 

phi 2 x so phi 2 x means that it is scaled by a factor of 2 which means to say that it is compressed 

by a factor of 2 which means to say that I have to draw in the same scale; let me use a different 

color; so first of all that its extent will be only up to 0.5 and the second factor is that its amplitude 

will be root 2 or 1.414 so this red is something that represents phi 1, 0 (x). 
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(Refer Slide Time: 47:41) 

 

 
  

Now, supposing I want to know that what should be my phi 1, 3 (x) in that case you take this phi 

1, 0 (x) because amplitude decided by this 2 to the power r by 2 this is the amplitude (Refer Slide 

Time: 48:09). So 2 to the power r by 2 so r continues to remain as 1 so amplitude will be fixed at 

root 2 but whenever i want phi 1, 3 (x) that means to say that my shift parameter has become 3. 

So shift parameter now by what extent does it shift? By 3, three units from here which means to 

say that this is the first one, this is unit one, this is unit two and unit two according to this scale 

(Refer Slide Time: 48:44) and this one is unit three. 

 

Therefore, I must draw my function like this that this is 1.5 and then here I will be drawing and 

this will be up to the extent of 2; this will be from 1.5 to 2 because its width is also not changing, 

its width continues to be 0.5 because of this phi 2 x. In fact what will be the function of phi 1, 3 

(x); if you write it phi 1, 3 (x) in terms of the Maths it will be written as root 2 phi (2 x minus 3) 

so its width is going to be 0.5 as before so this green one will be our phi 1, 3 (x). 
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(Refer Slide Time: 49:55) 

 

 
 

What you are seeing is that we are having scaled and shifted versions of this basic function 

which is phi 0, 0. So defining a basic function phi 0, 0 we can obtain its scaled and shifted 

versions of the functions.  

  

Now what it means to say.............. now let us look at another aspect of it that phi 0, 0 was this 

but phi 1, 0 we obtained this. Now if I ask a question that can I use this phi 0, 0 function in order 

to analyze phi 1, 0? Should the answer be yes or no? 

 

Just repeat the question again; can I use this function (Refer Slide Time: 50:55) to approximate 

this function? Not possible; why? Is because its width is 1 whereas its width is 0.5 so I cannot 

use this function to analyze this one; this red one. But if ask in the other way that can I use this 

function (Refer Slide Time: 51:24) to approximate this one? Possible; what am I going to do; 

very simple; I scale this by 1 by root 2 and then what I do I create a shifted version of the scaled 

function by one unit and I adopt these two, so I can approximate phi 0, 0 as................ just tell me 

that whether am I writing correctly or not phi 0, 0 (x) I can obtain as 1 by root 2 phi 1, 0 (x) plus 

1 by root 2 phi 1, 1 (x) because phi 1, 1 (x) is going to be this one so add this with this so you are 

going to get this function. 
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(Refer Slide Time: 52:39) 

 

 
  

Hence, phi 0, 0 you are now realizing as a series summation of the higher functions: phi 1, 0; phi 

1, 1 this thing. Now this has become very simple because only these two terms will be sufficient 

to compose the signal phi 0, 0. At other places; I mean, instead of asking you to approximate this 

function if I had asked you to let us say approximate a function like this in that case you would 

have used the other higher versions of scaled and shifted versions and added them together. That 

means to say that more number of terms would have been possible. 

  

In fact what you can do is that the phi of x can then be in general approximated as the summation 

of h phi of n h phi of n means some coefficient into root 2 phi 2 x minus n and this should be 

summed up over n. 

 

 

 

 

 

 

 

23 
 



(Refer Slide Time: 54:05) 

 

 
  

Thus, as a series summation of the higher order wavelet higher order function.................... so 

sorry because i have not introduced the wavelet yet and this phi functions are called as the 

scaling functions. Please remember this, in the next class I need to explain this because just 

writing this may not carry much of a sense to you at this stage but we will be developing the 

theory in the next class and this function phi x what we designed like this, these are referred to as 

the scaling functions. 
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(Refer Slide Time: 54:54) 

 

 
  

So next class we will elaborate on this idea further and then show that how the images can be 

compressed using the images can be transformed using the wavelet that we will show in the next 

class, thank you.  
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