
Digital Systems Design

Prof. D. Roychoudhury

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 33

Design of Computer Instruction Set and the CPU

Today, we will start discussion on the Design of Computer Instruction Set and the CPU.

First we will see how we can design the computer instructions.

(Refer Slide Time: 00:59)

Now, before stating the design what do you mean by computer instruction, all for you

know that a software program is consists of a sequence of instructions. Now, an

instruction performs on stored data; that means a program is nothing but, a sequence of

operations to be performed on the data and instruction is one single operation on the

data. So, an instruction has two components, normally we called the op code field and

the address field.

Now, op code field defines the type of operation and it operates on the stored data,

address field contain one or more addresses of data, on which the operation is to be

performed and data may be stored in a microprocessor register or in the main memory.

So, instruction has two field an op code field and the address field, so when we want to

design a computer instruction or to represent a instruction, so actually we have to design

the op code field and the address field.

That means, which operation is to be performed and the operation to be performed on

some data, where the data is stored the address. So, these two fields are actually to be

designed.

(Refer Slide Time: 03:02)

Now, take one small example say I have one instructions the move A 0 to A 1, I am

considering or assuming A 0 is the source and source address and A 1 is the destination.

That means, I want the content of the address A 0 is to be moved to the or as the content

of the destination address A 1, so my op code field; that means, which operation is to be

performed that is my move, so this is my op code. And the source address and the

destination address that is the A 0 and A 1 these are my address fields.

So, the instruction moves the contents of the register A 0 to A 1 the number of

instructions supported by a microprocessor depends on the size of op code field. Now, all

of we know the computer can understand only a 0 or 1, so this op code field depends on

how many number of operations are allowed that depend that what is the size of this op

code field. So, the number of instructions or the number of operations to be performed or

a number of operations allowed depends on the size of op code.

So, this is very important when we will design the instruction set, so this is one of the

important things to be considered that what is the size of the op code field. Say I have a 8

bit op code, means a 1 8 bit number, so by 8 bit op code we can specify 2 to the power 8;

that means, 256 unique instructions.

(Refer Slide Time: 05:55)

As if every 8 bit represents one unique operations, what does it mean say I have a 3 bit

op code field. So, all possible 3 bits say 0 0 0 to 1 1 1, so these are my fields. Now, as if

these 0 0 means 1 instruction, say I am telling add say 0 0 1 means another… This is

instruction 2, say this is subtract, say 0 1 0 instruction 3 say this is some increment 0 1 1

instruction 4 this is say some decrement.

So, like 1 0 0 represent something 1 0 1, 1 1 0, 1 1 1, so for by 3 bit op code we can

specify 8 different instructions or 8 different operations that are supported by this

particular machine is a 3 bit by a 3 bit op code field, 8 different operations are supported.

So, this is the meaning of that op code field.

(Refer Slide Time: 07:45)

Now, op-code encoding, so a unique binary pattern as all ready I mentioned that

computer can understand only 0 or 1 and we use the binary systems. So, a unique binary

pattern is assigned to each op code by a process called op code encode, just now I have

given one example of a 3 bit op code. So, one n bit binary number can represent 2 to the

power n unique op codes, so what now if I want to design this op code part, so what is it

necessary I have some n bit number and I want 2 to the power n unique op codes. Now,

this is nothing but, if I need a hardware all ready we have seen that an n 2 the power n

decoder is required for an n bit op code.

(Refer Slide Time: 08:49)

Now, we take one example for a hypothetical instruction set, say I have instructions

MOVE some CLEAR register, reg means 1 register, ADD 2 registers; that means, add

the contents of 2 registers, register 1 and register 2 denoted as reg 1 and reg 2. Similarly,

SUBTRACT the content of 2 registers, AND the content of 2 registers OR the value of 2

registers, INCREMENT 1 registers; that means, increment the value or the content of the

registers by 1. And JUMP 1 address, means if this is a unconditional jump whatever be

the condition in or irrespective of the condition, always this is a jump of jump to this

address.

So, I have this 8 instructions; that means, I consider one machine which allow this 8

primitive instructions. Now, MOVE operations mean say one content of register 1, so

when I keep MOVE operations, the content of register 1 is moves to content of register

2. So, this is denoted as reg 1 to reg 2, now CLEAR register means it is reset, so this

register or the content of this register becomes 0 at reg 1, reg 2, now always this is

conventional that after adding the content of 2 registers reg 1 and reg 2 the sum or the

result of this addition goes to register 2.

Similarly, SUBTRACT, so the result of the subtraction of the content of register 1 and

register 2 move to the register 2; that means, the content of register 2 now becomes the

result of the subtraction. Similarly, AND, OR these are two operations and this is the reg

1 and reg 2 and reg 1 or reg 2 and the result goes to reg 2, INCREMENT reg normally

increment means, the content of the register is incremented by 1.

So, reg plus 1 means the content of register is incremented by 1, 1 is added with the

content and then the value is shifted to reg again. So, this is nothing but, our ADD again

only here instead of 1 register 1 fixed value 1 is always added, now JUMP address, so

this is PC means the Programmer Counter, this is the program counter. That means,

always the current it contains the current addresses, so address goes to program counter;

that means, this is a unconditional jump to address.

So, the address where I want to jump now, I give that value to the program counter and

we know that always the program counter contains the current address. So, it will be

jump to that particular address, so these are the meaning of these instructions. So, if we

give these instructions, then what operations to be performed that are being specified by

this right hand side expressions.

(Refer Slide Time: 13:04)

Now, if I want to design the instructions set; that means, I need some binary value to be

assigned for each instructions. So, means say these binary value means this is the

instructions. So, I have 8 instructions say, MOVE, CLEAR, ADD, SUB, AND, OR,

INCREMENT, and JUMP and as there are 8. So, as 2 to the power 3, 2 to the power 3 is

8, so I need a 3 bit binary numbers to represent 8 instructions.

Now, this is the 3 bit op code, say I telling these are my i 0, i 1 and i 2, say this is my i 0,

i 1, i 2. Now, MOVE means 0 0 0; that means when the op code field contains a 0 0 0;

that means, the computer understands that this is a nothing but, a MOVE instruction.

Similarly, if the op code field contains a 0 0 1 then it is nothing but, a CLEAR means

reset to 0, the register value is reset to 0, similarly 0 1 0 is ADD, 0 1 1 is SUB, 1 0 0 is

AND, 1 0 1 is OR, 1 1 0 is INCREMENT and 1 1 1 is JUMP.

So, if more number of instructions allowed by a processor, say here it is a only 8

instructions. So, we know that 2 to the power 3 is 8, so log of 8 base 2 that many number

of op code fields are needed.

(Refer Slide Time: 15:35)

So, if there are m number of instructions are allowed m number of instructions or the

operations to be performed the operations are allowed or supported by a processor. Then,

the op code size should be of log 2 base m, so this is the number of bits necessary for a

op code. So, these are the in this way we can decide what would be the size of the op

code field of the instruction set.

(Refer Slide Time: 17:09)

Now, we want to design this thing, so; that means, we need a hardware for this op code

field. So, just the example we have shown the hypothetical example, we have 8 bit

instructions and we have seen we need 3 bit op code for that, so we have a 3 to 8 decoder

is necessary, which has this 3 bit op code and there will be 8 lines for 8 instructions.

So, these are my 0, 1, 2, 3, 4, 5, 6, 7 that 2 to the power 3 values and 0 0 0 means, it was

a MOVE instructions, then 0 0 1 means this is a CLEAR, 0 1 0 mean 2 that is a ADD, 3

is a SUBTRACT 1 0 0 is 4 that was an AND 1 0 1 is OR, this is a 6 means 1 1 0 is a

INCREMENT and this was a unconditional JUMP 1 1 1. So, this is my design of op code

field of instruction set, so that we need only a n to 2 to the power n decoder for

supporting 2 to the power n number of operations or a n bit op code.

(Refer Slide Time: 20:20)

So, op code encoding say I have a 16 bit instructions and I have designed like that, that 5

bit op-code field and so 11 bit address field. So, as 5 bit op code, so the operation

supported are 2 to power 5 means 32 operations are specified and the operate on the data,

which are stored on this 11 bit address field. So, by 11 bit addresses I can specify 2 to the

power 11 means 2048 memory locations, I can specify 2048 locations. So, on these 2048

memory locations data can be stored and the operations to be performed on these data.

That means, the operations that are specified by these 5 bit op code, they access the data

from these memory locations. Now, if op code field is 4 bit, initially it was 5 bit, now it

is reduced to 4 bit, so my address field becomes 12s bit as the instruction set is a 16 bit.

So, this is a 4 plus 12 16 bit because, I have the instruction set has to parts, one is op

code, one is address, so for 4 bit operations 2 to the power 4 is 16, 16 operations with

access 2 to the power 12 means 4096 locations.

That means, the data stored on these 4096 locations are being operated by these 16

operations, the number of operations reduced to 50 percent. So, when it was 5 bit there

are 32 operations can be supported, now the op code field is reduce to 4 bit, so there are

16 operations. So, the number of operations reduced from 32 to 16 means 50 percent

reduction, now number of memory locations because, as the op code field decreases;

obviously, the address field increases.

So, the number of memory locations increased to 100 percent because, earlier number of

locations were only 2048 2 to power 11, now it becomes 4096 means 2 to the power 12.

So, now it is increased to 100 percent double, now this concept is used in designing

instructions with expanding op code technique, this is called the expanding op code

technique.

(Refer Slide Time: 24:52)

Now, we consider an instruction format with 8 bit instruction length and a 2 bit op code

field. So, address field is 6 bits. That means, the full length is instruction set the full

length is 8 bit, this is op code, this is address, so this is the thing, so op code 2 bits can be

0 0, 0 1, 1 0, 1 1. Now, the 6 bits your are dividing into 2 address field bits 3 bits 3 bits

each, say we are representing this thing by x 0 x 1 x 2, Y 0 Y 1 Y 2. So, this is one

address, address 1 Y 0 Y 1 Y 2 this is address 2.

So, this is 4, 2 address instructions, we call this is a 4, 2 address instructions, now how

many different representations can be there with these 8 bit instruction length. So, this is

remember this is one simple thing is a 4, 2 address instructions.

(Refer Slide Time: 27:03)

Now, what we do that whether it can be represented by a 3, 2 address instructions, so

instead of 4, see we are considering 3 addresses. Say I am taking 0 0, as if the last one I

am deleting, say I have only this 3, 2 address, instructions, now say I am representing

this thing in a different way, as if say these up to op code bits and the first 3 address bits

it is a 2 address. So, the first address we are taking and as if this becomes a 5 bit op code.

Then, only these 3 bits of address 2 that actually represents the address field of the

instruction set. So, these 3, 2 address instructions I have modified that as if my op code

field extends it is length up to the 3 bits of the address 1 and it becomes a 5 bit op code.

(Refer Slide Time: 29:38)

So, what it becomes now that actually my instruction format is like that, my instruction

format will be say 1, 2, 3, 4, 5 up to these 5 this is my op code and say this 3 fields

actually the address. So, this is the actually the address 2 of the previous one, so the

address 2 of the previous one was the Y 0 Y 1 Y 2 fields. So, it has 0 0 0, 0 0 1 these are

the 8 different values it can take, so for these 8 different values this 5 bit will can be of

this of type.

(Refer Slide Time: 31:41)

Say I am giving that was the first 2 bit op-code and these were the actually the address

one, the next 3 bit these becomes see as if this is always one 1 1, 1 1. And for these the

next that this 3 bit of address one they are changing, so 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 11

0, 1 1 1. So, this are my 5 bits op-code, these are my 3 bit address, 5 bit op-code. So, this

is one instruction format, so 8, 1 address instructions we can tell this is 8, 1 address

instructions because, there are 8 bit and this is a only one address 1 address 2 become

only the 1 address. So, this is a 8 number of instructions and this is a 1 address

instructions. So, earlier we have shown that this is a 3, 2 address instructions and here

that can be modified or that can be represented as a different way that 8, 1 address

instructions.

(Refer Slide Time: 34:07)

Now, we give one the most important instruction set or the microprocessor developed on

these concept of the reduced instruction set, how they can be designed or what is the

concept of that we do RISC a processor we discuss that thing. So, reduced instruction set

computer, now RISC stands for Reduce Instruction Set Computer, this we can define as

if this RISC is a generation of faster and inexpensive machine.

So, the main concept is or that is the basic principle for the evolution of RISC is that

RISC is for to cost less yet run faster. Now, at the cost of what by using a small set of

simple instructions for their operations, so mainly we are discussing the design of the

instruction set. And just now we have seen, that mainly that op code or the size op code

that gives the number of operations or number operations to be performed.

So, by using a small set of simple instructions for their operations, that is the basic

principle of this machine, which makes it faster as well as the less costly. Now, RISC

allows a balance between hardware and software we will see, so mainly RISC is based

on 6 principles, what are the principles, that reliance and optimizing compilers, few

instructions and addressing modes RISC as its name implies it is few instructions. We

will see later that what do we mean by addressing modes, that are also very less.

Fixed instruction format, it is not of a variable format like the, complex or the earlier old

machines, complex instructions at machines or the old machines it has a fixed instruction

format. Now, instructions executed in one machine cycle, only call or return instructions

access, can access memory and this is totally hardwired control, as it is a hardwired

control. So, this is the point that why it is faster because, as it is a hardwired control, this

becomes much faster, so these are the six basic principles on which the this machine is

developed.

(Refer Slide Time: 37:44)

Now, before we go in details the RISC instructions sets, we define the MIPS and

MFLOPS, MIPS is Millions of Instructions Per Second, as we are discussing the

computer design of computer instruction sets. So, how many instructions can be

executed per second or per unit time that is one very important thing because, mainly the

speed of the processor it depends on that.

So, what we are telling that this machine is very is faster, so it depends this is some units

that how many instructions can be executed per second. So, easy to understand and to

market and instruction set dependent and this cannot be used across machines and this is

only the program dependent. Another important thing nowadays is the MFLOPS, means

the how many floating point operations, it can supports it is possible to execute the

number floating point operations per second that we are defining as MFLOPS.

So, this is less compiler dependent that a MIPS because, it is a some floating point

operations unit. So, whenever floating point operations will be there it only it will be

executed by that particular unit not the compiler, not all floating point operations are

implemented in hardware on all machines. But, if it is implemented in hardware then;

obviously, that becomes or that makes the computer faster not all floating point

operations have same latencies. Obviously, different operations have different

complexities, so it will take different time. So, normalized MFLOPS uses an equivalence

table to even out the various latencies of floating point operations.

(Refer Slide Time: 40:15)

Now, always the trend was the complex instruction set computer, now, because of their

complexity more hardware would have to be used for CISC the Complex Instruction Set

Computer. However, because of the more instructions, the more hardware logic is

needed to implement and support them, it has more instructions, so hardware will be

more. Say for an example, an RISC machine and ADD instruction takes the data from

register only, as I mentioned that the data can be stored either in registers or the main

memory.

Now, register means it has some fixed say binary values, it is some binary numbers that

is stored in a register. Now, the RISC machine can take only the data say I am using the

addition, so it has two operands op 1 and op 2 and this means 2 value 2 data it is taking

from the register. Whereas, the CISC supports because, it is a complex instruction set say

the data can be of in different form, so when the data is accessed first it has to be decided

that in which form the data is...

So, it has to take some decision and some if it is by hardware, then some complex

hardware is needed just to decode the form of the data. So, complexity will increase,

hardware will increase, the speed will less because it is and it becomes expensive, so that

is the main difference from the complex instructions set computer and why that reduced

instruction set computers have evolved. Earlier, this where the some of the examples of

CISC machines, the VAX, Intel X86 and nowadays all the machines are of RISC.

There are MIPS machine, DEC Alpha, the SUN Sparc, the IBM machines these are

normally the all RISC machines that are nowadays the machines available that are all

RISC. Initially, now they are only the power PC’s or the desktop work stations are where

the RISC machines, but nowadays that all computers are that of RISC type.

(Refer Slide Time: 43:41)

So, if we summarize the comparison between the CISC and RISC, so it has some the

main differences lies, the CISC has variable length instructions. Whereas, this is fixed

instructions we call the single word instructions or we can tell this is a it has a fixed

instruction format. Similarly, the variable format and the fixed field fixed field decoding

the format is fixed, now the CISC is memory operands, means the operands are data just

now I told that stored in the memory.

So, the operations to be performed on the data, the data are accessed from the memory

and these are load store architecture. So, this is the main thing or this is the RISC is a

load store architecture, so here the all the data are stored on the register, so the operations

to be performed on the data are accessed from the register. It has some complex

operations and these are some simple operations, so this is the main differences lies

between the design of CISC and the RISC.

(Refer Slide Time: 45:35)

Now, we consider the instruction set design because, we are mainly discussing on the

instruction set. So, what are the small the design constants, so small and slow memories

compact programs and fast and there are fast because, if it is a small memory then the

accessing will be the maximum access is restricted by the size of the memory, as it is a

very small. So, only less number of accesses are needed, so it will be fast.

Small number of registers because, as all ready we mentioned the RISC operands that is

the one concept the data are stored on the registers. Now, attempts to bridge the semantic

gap the model high level language features in instructions, no need for portability the

same vendor application OS and hardware. And the backward compatibility every new

ISA the Instruction Set Architecture must carry good and bad of all past ones.

(Refer Slide Time: 47:02)

So, powerful and complex instructions that are rarely used, IC technology and

microprocessors in 1970's they are of lower cost, low power consumption, higher clock

rates, cheaper and larger memories. So, mainly to utilize this advancement of

technologies the RISC’s are evolved.

(Refer Slide Time: 47:31)

Now, another very important concept is there in the relation of the RISC, so one

processor have some n number of instructions or the operations allowed. Now, the

research have been done that what are the frequencies of usage of different type of

instructions. See, here one example is given, see some instruction these are the

instructions, see this is a load and the average percent of the total execution it has been

computed that 22 percent of the total execution is a load instructions.

Now, a conditional branch means if a condition is satisfied it goes to some address, this

type of instructions are executed 20 percent of the total execution. Similarly, a compare

has 16 percent execution, store is 12 percent, add is 8 percent, and is 6 percent, a subtract

is 5 percent, see add is more addition is more than subtraction, move register to register it

is only 4 percent. A call routine is only 1 percent and return is 1 percent, total say 96

percent there are many miscellaneous other instructions that the rest 4 percent are of that

type.

Now, on these observations or these research we will see that actually the load is 22

percent; that means the maximum execution or the maximum percentage of execution is

a load instructions. See store is of 12 percent it is of actually… so now people can be

made all operations whether can be made or the design can be made of load store type,

using load store. Only the whether the instructions can be developed, all other

instructions can be developed based on these two.

So, this is a very important thing this is a some top 10, 80, 86 instruction are observed

and the percent of execution has been computed and it has been seen that the load and

store has a has more number has greater percentages used. So, this is another important

point that why the it is based on the or why it is a load store architecture.

(Refer Slide Time: 51:27)

So, if we summarize that instructions set design, so the very large scale integration; that

means, for the advancement of the VLSI that chip can be of small size. And then micro

store occupies 70 percent of chip area, so replace micro store with registers the load

store. So, more resistors can be implemented, increase difference between CPU and

memory speed, complex instructions were not used by new compilers and software

changes are reduced reliance on assembly programming, new instruction set architecture

can be introduced, standardize vendor independent of operating system and the

academics and research they need for portability.

So, early RISC projects the IBM 801 the Berkeley RISC 1 and RISC 2 and the Stanford

MIPS they are developed or some research is based on that preliminary machines based

on the RISC instruction sets.

(Refer Slide Time: 52:46)

Now, one we are taking one example that is a the MIPS machine, the MIPS instruction

formats or what we can do that there is actually ((Refer Time: 53:13)) this if we take one

example of any one of this RISC machine, say that Stanford MIPS or our Berkeley RISC

machine, Berkeley RISC machine. We will discuss actually how the RISC machines are

or the designed or the how the instruction set of this RISC machine is design, what is the

formatting of the instruction set, etcetera.

(Refer Slide Time: 54:08)

Now, we will see the quiz of this class, so we have discussed the mainly the instruction

set and the instruction format and the op code encoding particular the expanding op code

technique. So, based on that our quiz question is, so the instruction length and the size of

an address fields are 9 bits and 3 bits respectively, is it possible to have 6 two address

instructions, 15 one address instructions and 8 zero address instructions.

So, one instructions length and the address bits are given, then whether we can construct

the instructions such that it can specify these many this type of instruction sets. See this

is the quiz questions of the lecture 33.

Digital Systems Design

Prof. D. Roychoudhury

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 34

Design of Computer Instruction Set and the CPU (Contd.)

This class we will continue the discussion on the Design of Computer Instruction Set.

(Refer Slide Time: 55:44)

So, we have seen the how what is the format of a computer instruction, what are the two

parts or two fields of a instruction and how the op code about the instruction op code is

encoded. And then we introduced the reduced set instruction computer and what are the

different RISC machine, so far developed. Now, already I mentioned that now a day's

almost all the high performance computers are the RISC machines.

So, just to see what are the basic architecture of RISC, some early machines developed

based on RISC we will see that thing. So, some early RISC projects are IBM machine

and the Berkeley RISC 1 and RISC 2 machines and Stanford MIPS, so this class we see

the as an example the MPIS architecture.

(Refer Slide Time: 57:12)

So, the MIPS instruction formats that all MIPS instructions are 32 bit long, see this is a

instructions are 32 bits. The 3 instructions formats are R-type, I-type and J-type. So, it

supports 3 different instruction formats and the different fields are op means operation of

the instructions. That means, which operation are supported or which operations are

currently being executed by the instruction, r s, r t, r d the 3 source and destination

register specifiers.

Then, shift amount shamt is a shift amount, that is a different field kept in MIPS, another

is funct, it selects the variant of operation in the op field. Then, address and immediate;

that means, address offset or immediate value; that means, the data or this is some kind

of mode of operations, that whether it is immediate value the is being operated on or the

address is given or address offset and from some addresses the data are to be accessed

before it operates.

Thank you.

