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Hello, welcome to the video lecture series on digital image processing. For last few classes, we 
were discussing about restoration of blurred images. 
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So, what we have done in our last class is estimation of degradation models. We have seen that 
whatever restoration technique we use, knowledge the restoration techniques mainly used the 
knowledge of the degradation model which degrades the image. So, estimation of the 
degradation model degrading an image is very very important for the restoration operation. 
 
So, in our last class, we have seen 3 methods for estimation of the degradation model. The first 
method we discussed is the estimation of the degradation model by observation. The second 
technique that we have discussed is the estimation by experimentation and the third technique 
that we have discussed is the mathematical modeling of degradation. Then, we have also seen 
what should be the corresponding restoration technique and in our last class, we have talked 
about the inverse filtering technique and today we will talk about the other restoration technique 
which also makes use of the estimated degradation model or the estimated degradation function. 
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So, in today’s lecture, we will see the inverse filtering, the restoration of the motion blurred 
image using the inverse filtering technique. In our last class, we have seen inverse filtering 
technique where the image was degraded by turbulence, atmospheric turbulence model. We will 
also talk about the minimum mean square error or Wiener filtering approach for restoration of a 
degraded image. 
 
We will also talk about another technique called Constant Least Square Filter where the constant 
least square filter mainly uses the mean and standard deviation of the noise which contaminates 
the image, the degraded image and then we will also talk about the restoration techniques where 
the noise present in the image is a periodic noise. 
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So firstly, let us quickly go through what we have done in our last class. So, we are talking about 
the estimation of the degradation model because that is a very very basic requirement for the 
restoration operation. So, the first one that we have said is the estimation of the degradation 
model by observation. So in this case, what is given to us is the degraded model and by looking 
at the degraded model, we have to estimate that what is the degradation function. From the 
degraded image, we have to estimate what is the degradation function. 
 
So here, we have shown one such degraded image and we have said that once a degraded image 
is given, we have to look for a part of the image which contains some simpler structure and at the 
same time, the energy content, the signal energy content in that part in that sub image should be 
very high to reduce the effect of the noise. 
 
So, if you look at this particular degraded picture, you find that this rectangle, it shows an image 
region in this degraded image which contains a simple structure. And from this, it appears that 
there is a rectangular figure present in this part of the image and there are 2 distinct gray levels; 
one is of the object which is towards the black and other one is the background which is a 
grayish background. 
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So, by having a small sub image from this portion, what I do is I try to manually estimate that 
what should be the corresponding original image. So, as shown in this slide; the top part is the 
degraded image which is cut out from the image that we have just shown and the bottom part is 
the estimated original image. 
 
Now, what we do is from this if you take the Fourier transform of the top one, what I get is the G 
(u, v) as we said that it is the Fourier transformation of the degraded image and the lower one, 
we are assuming this to be original. So, if I take the Fourier transform of this, what I get is F (u, 
v) that is the Fourier transform of the original image and obviously here, the degradation model 
or the degradation function in the Fourier domain is given by H (u, v) which is equal to G (u, v) 
by F (u, v) and you remember that in this case, the division operation has to be done point by 
point. So, this how the degradation functions can be estimated by observation when only the 
degraded images are available. 
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The other approach for estimation of the degradation function we have said is the estimation by 
experimentation. So, our requirement is that whichever imaging device or imaging setup that has 
been used for getting a degraded image which has been used to record a degraded image in our 
laboratory for experimental experimentation purpose; we will have a similar such imaging setup 
and then we try to find out that what is the impulse response of that imaging setup. As we have 
already discussed that it is the impulse response which completely characterizes any system. 
 
So, if we know what is the impulse response of the system; we can identify, we can always 
calculate what is the response of the system to any type of input signal. So, by experimentation, 
what we have done is we have taken a similar imaging setup and then you simulate an impulse 
by using a very narrow strong beam of light. So, as has been shown in this particular diagram. 
 
So, on the left hand side, what is shown is one such simulated impulse in this particular diagram. 
So, the left hand side, this one shows such simulated impulse and on the right hand side, what we 
have is the response of this impulse as recorded by the imaging device. So now, if I take the 
Fourier transform of this, this is going to give me F (u, v) and if I take the Fourier transform of 
this, this is going to give me G (u, v) and you see, that because the input the original is an 
impulse, the Fourier transform of an impulse is a constant. 
 
So, if I simply take the Fourier transform of the response which is the impulse response or in this 
case it is the point spread function, then this divided by the corresponding constant will give me 
the degradation function which is H (u, v). So, this is how we estimate the degradation function 
or the degradation model of the imaging setup to experiment. 
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The third approach for obtaining the degradation model is by mathematical modeling. So, in our 
last class, we have considered 2 such mathematical models. The first mathematical model that 
we have considered which try to give the degradation function corresponding to atmospheric 
turbulence and the function is given, the degradation function in the frequency domain is given 
like this that H (u, v) is equal to e to the power minus k (u square plus v square) to the power 5 
by 6 and using this degradation model, we have shown that how a degraded image will look like. 
 
(Refer Slide Time: 9:31) 
 

 
 
So, in this particular case, we have shown 4 images. Here, the top image, the top left image; this 
is the original one and the other 3 are the degraded image which have been obtained by using the 
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degradation model that we have just said. Now, in that degradation model when I said that e to 
the power minus k (u square plus v square) to the power 5 by 6, it is the constant k which tells 
you that what is the degree of the degradation or what is the intensity of the disturbance. So, low 
value of k indicates the disturbance is very low. Similarly, higher value of k indicates that the 
disturbance is very high.  
 
So here, this image has been obtained with a very low value of k, this image has been obtained 
with a very high value of k and this image has been obtained with a medium value of k. So, you 
find that depending upon the value of k, how the degradation of the original image changes. 
 
(Refer Slide Time: 10:46) 
 

 
 
The second mathematical approach that or the second model that we have considered is a motion 
blurred or the blurring which is introduced due to motion. And we have said that because the 
camera shutter is kept open for a finite duration of time, the intensity which is obtained at any 
point on the imaging sensor is not really coming from a single point of the scene but the intensity 
at any point on the sensor is actually the integration of the intensities or light intensities which 
are falling to that particular point from different points of the moving object and this integration 
has to be taken over the duration during which the camera shutter remains on. 
 
So, using that concept, what we have got is motion mathematical model for motion blur which in 
our last class we have derived that it is given by H (u, v) equal to integration zero to T e to the 
power minus j two pi [u x0 (t) plus v y0 (t)] dt where this x0 is the movement, this x0 (t) indicates 
movement along x direction and y0 (t) indicates movement along the y direction. 
 
So, if I assume that x0 (t) is equal to a and y0 (t) equal to b, then this particular integral can be 
computed and we get a final degradation function or degradation model as given in the lower 
equation. 
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And after this, in our last class what we have done is we have used the inverse filtering and using 
this motion blurring model, this is the kind of blurring that we obtained, this is the original 
image; on the right hand side, we have shown the motion blurred image. Then we have seen that 
once you have the model for the blurring operation, then you can employ inverse filtering to 
restore a blurred image. 
 
(Refer Slide Time: 13:00) 
 

 
 
So, in your last class, we have used the inverse filtering to restore the images which are blurred 
by atmospheric turbulence and here again, on the left hand side of the top row, we have shown 
the original image. So, this is the original image, this is the degraded image and we have said in 

8 
 



the last class because by inverse filtering, the function the blurring function H (u, v) comes in the 
denominator. 
 
So, if the value of H (u, v) is very low, then G (u, v) upon H (u, v) that particular term becomes 
very high. So, if I consider all the frequency components or all values of (u, v) in H (u, v) for 
inverse filtering, the result may not be always good. And that is what has been demonstrated here 
that this image was reconstructed considering all values of u and v and you find that this fully 
reconstructed image does not contain the information that we want. 
 
So, what we have to do is along with this inverse filtering, we have to employ some sort of low 
pass filtering operation so that the higher frequency components or the higher values of u and v 
will not be considered for the reconstruction purpose. So here on the bottom row, the left most 
image, this shows the reconstructed image where we have considered only the values of u and v 
which are within a radius of 10 from the center of the frequency plane and because this is a low 
pass filtering operation where the cut off frequency was very very low; so, the reconstructed 
image is again very very blurred because many of the low frequency components along with the 
high frequency components have also been cut out. 
 
The middle image shows to some extent a very good image where this distance within which (u, 
v) values were considered for the reconstruction were taken to be 40. So, here you find that this 
reconstructed image this contains most of the information which was contained in the original 
image. So, this is a fairly good restoration. 
 
Now, if I increase the distance function, the value of the distance; if I go to 80, that means many 
of the high frequency components also we are going to incorporate while restoration. And, you 
find that the right most image on the bottom row that is this one where the value of the distance 
was equal to 80, this is also a reconstructed image but it appears that the image is behind a 
curtain of noise. 
 
So, this clearly indicates that if I go on increasing or if I take more and more u and v values, the 
frequency components for restoration using inverse filtering; then the restored image quality is 
going to be degraded. It is likely to be dominated by the noise components present in the image. 
 
Now, though this inverse filtering operation works fine for this turbulence kind of blurring, the 
blurring introduced by the atmospheric turbulence but this direct inverse filtering does not give 
good result in case of motion blurring. 
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So, you find that here we have shown the result of direct inverse filtering in case of motion blur. 
So, on the top most one, this is the original image. On the left, we have shown the degraded 
image and the right most one, on the bottom is the image restored image obtained using the 
inverse direct inverse filtering and the blurring which was considered in this particular case is the 
motion blur. Now, let us see why this direct inverse filtering does not give satisfactory result in 
case of motion blur. 
 
(Refer Slide Time: 17:15) 
 

 
 
The reason is if you look at the degradation function, the motion degradation function, say for 
example in this particular case; you will find that the degradation function H (u, v) is given by 
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this expression in the frequency domain. Now, this term will be equal to 0 whenever this 
component (ua plus vb), this is going to be integer. 
 
So, for any integer value of (ua plus vb), the H (u, v), the corresponding component H (u, v) will 
be equal to 0 and for nearly integer values of this (ua plus vb), term H (u, v) is going to be very 
very low. So, for direct inverse filtering when we go for dividing G (u, v) by H (u, v), you have 
the Fourier transformation of the reconstructed image wherever H (u, v) is very low near about 0, 
the corresponding F (u, v) term will be abnormally high and when you take the inverse Fourier 
transform of this that very very high value is reflected in the reconstructed image and that is what 
gives to a reconstructed image as shown in this form. 
 
So, what is the way out? Can’t we use the inverse filtering for restoration of motion blurred 
image? 
 
(Refer Slide Time: 18:42) 
 

 
 
So, we have attempted round about approach. What we have done is again we have taken an 
impulse, try to find out what will be the point spread function of if I employ this kind of motion 
blur. So by using the same motion blur function or the motion blur model, you blur this impulse 
and what I get is an impulse response like this which is the point spread function in this 
particular case. 
 
Now, once I have this point spread function; then as before, what I do is I take the Fourier 
transform of this and this Fourier transformation now gives me G (u, v) and because my input 
was an impulse, where so for this impulse F (u, v) is equal to constant which is say something 
like A, now from these two, I can compute recompute H (u, v) which is given by G (u, v) divided 
by this constant term A. Obviously, the value of the constant is same as what is the intensity of 
this impulse.  
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So, if it is an unit impulse, if I take an unit impulse, then the value of constant A will be equal to 
1 and in that case, the Fourier transform of the point spread function directly gives me the 
degradation function H (u, v). 
 
(Refer Slide Time: 20:17) 
 

 
 
Now, if I perform the inverse filtering using this recomputed degradation function; then we find 
that the reconstruction result is very very good. So, this was the blurred image, this is the 
reconstructed image during by using the inverse filtering, direct inverse filtering but here the 
degradation model was recomputed from the point spread from the Fourier transformation of the 
point spread function. 
 
So, though using the direct inverse transform of the mathematical model of the motion blur does 
not give me good result but recomputation of that degradation function gives a satisfactory 
result. But again, with this inverse filtering approach the major problem is as we said that we 
have to consider the (u, v) values for reconstruction which is within a limited domain. 
 
Now, how do you how do say that up to what extent of (u, v) value we should go? That is again 
image dependent. So, it is not very easy to decide that to what extent of frequency components 
we should consider for the reconstruction of the original image if i go for direct inverse filtering. 
So, there is another approach which is the minimum mean square error approach or it is also 
called the Wiener filtering approach. In case of Wiener filtering approach, the Wiener filtering 
tries to reconstruct the degraded image by minimizing an error function. So, it is something like 
this. 
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So, if my original image is f and my reconstructed image is f hat, then the Wiener filtering tries 
to minimize the error function which is given by expectation value of f minus f hat square. So, 
the error value e which is given by the expectation value of f minus f hat square where f is the 
original degraded image and f hat is the restored image from the degraded image; so f minus f 
hat square, this gives you the square error and this wiener filtering tries to minimize the 
expectation value of this error. 
 
Now here, our assumption is that the image intensity and the noise intensity are uncorrelated and 
using that particular assumption, this Wiener filtering works. 
 
(Refer Slide Time: 23:31) 
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So here, we will not go into the mathematical details of the derivation but it can be shown that a 
frequency domain solution of this, I mean whenever this error function is minimum; the 
corresponding F (u, v) in frequency domain is given by F hat (u, v). This will be equal to [H star 
(u, v) into Sf (u, v) divided by Sf (u, v) into H (u, v) square plus S eta (u, v)] this into G (u, v) 
where this H star indicates it is the complex conjugate of H (u, v) and G (u, v) as before, it is the 
Fourier transform of the degraded image and F hat (u, v) is the Fourier transform of the 
reconstructed image and in this particular case, this term Sf (u, v), this is the power spectrum 
power spectrum of original image undegraded image and S eta (u, v) is the noise power spectrum. 
 
(Refer Slide Time: 25:28) 
 

 
 
Now, if I simplify this particular expression, I get an expression of this form that F hat (u, v) is 
equal to [1 upon H (u, v) into H (u, v) square upon H (u, v) square plus S eta (u, v) upon Sf (u, v)] 
into G (u, v). So, this is the expression of the Fourier transform of the reconstructed image when 
I use Wiener filtering. 
 
Now, in this case, you might notice that if the image does not contain any noise; then obviously, 
S eta (u, v) which is the power spectrum of the noise will be equal to 0 and in that case, this 
wiener filter becomes identical with the inverse filter. But if the noise contains additive if the 
degraded image also contains additive noise in addition to the blurring; in that case, the wiener 
filter and the inverse filter is different. 
 
Now here, you find that this Wiener filter considers the ratio of the power spectrum of the noise 
power of the noise power and the power of the power spectrum of the original undegraded 
image. Now, even if I assume that the additive noise which is contained in the degraded image is 
a white noise for which the noise power spectrum will be constant; but it is not possible to find 
out what is the power spectrum of the original undegraded image. So, for that purpose, what is 
done is normally this ratio that is S eta (u, v) upon Sf (u, v) that is the ratio of the power spectrum 
of the noise to the power spectrum of the original undegraded image is taken to be a constant k. 
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So, if I do this, in that case, the expression for F hat (u, v) comes out to be 1 upon H (u, v) into H 
(u, v) square upon H (u, v) square plus k into G (u, v) where this k, the term k is a constant which 
has to be adjusted manually for the optimum reconstruction or for the reconstructed image which 
appears to be visually best. So, using this expression, let us see what kind of image that or what 
kind of reconstructed image that we get. 
 
(Refer Slide Time: 29:03) 
 

 
 
So here, we have shown the image restoration of the degraded image using Wiener filter. Again 
on the left hand side of the top row, it is the original image. Right hand side of the top row gives 
you the degraded image. Left hand, left most image on the bottom row that shows you the full 
reconstructed image or the reconstructed image using the inverse filtering where all the 
frequency components were considered. 
 
The middle one shows the reconstructed image using inverse filtering where only the frequency 
components within a distance of 40 from the center of the frequency plane has been considered 
for reconstruction and the right most one is the one which is obtained using wiener filtering and 
for obtaining this particular reconstructed image, the value of k was manually adjusted for best 
appearance. 
 
Now, if you compare these 2, that is the inverse filtered image with the distance equal to 40 with 
the Wiener filtered image; you will find that the reconstructed images are more or less same but 
if you look very closely, it may be found that the Wiener filtered image is slightly better than the 
inverse filtered image. However visually, they appear to be they appear to be almost same. 
 
The advantage in case of Wiener filter is that I do not have to decide that what extent of 
frequency components I have to consider for reconstruction or for restoration of the undegraded 
image. But still, the wiener filter has got a disadvantage. That is the manual adjustment of the 
value of k and as we have said that the value of k has been used for simplification of the 
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expression where this constant k is nothing but a ratio of the power spectrum of the noise to the 
power spectrum of the undegraded original image and in all the cases, taking this ratio to be a 
constant may not be justified approach. 
 
(Refer Slide Time: 31:38) 
 

 
 
So, we have another operation, another kind of filtering operation which is called constant least 
square filtering. So now, we will consider a filtering operation which is called constant least 
square filter. Now, unlike in case of Wiener filtering where the performance of the Wiener 
filtering depends upon the correct estimation of the value of k that is the performance of Wiener 
filtering depends upon how correctly you can estimate what is the power spectrum of the original 
undegraded image. 
 
In case of this constant least square filter, it does not make any assumption about the original 
undegraded image. It makes use of only the noise probability distribution function, probability 
density function noise pdf and mainly it uses the mean of the noise which we will write as say m 
eta and the variance of the noise which we will write as sigma eta square. So, we will come, we 
will see that how the reconstruction using this constant least square filter approach makes use of 
this noise parameter like mean of the noise and the variance of the noise. 
 
In case of this constant least square filter, to obtain this constant least square filter, we will start 
with the expression that we got in our first class that is g equal to Hf plus n. So, you remember 
that this is an expression which we had derived in the first class which tells us that what is the 
degradation model for degrading the image where H is the matrix which is derived from the     
impulse response H x and n is the noise vector. 
 
Now here, you will notice that the value of H is very very sensitive to noise. So, to take care of 
that what we do is we define an optimality criteria and using that optimality criteria, the 
reconstruction has to be done and because this degradation function H or the degradation matrix 
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H is noise dependent, it is very very sensitive to noise; so for reconstruction, the optimality 
criteria that we will use is the image smoothness. 
 
So, you know from our earlier discussion that the second derivative operation or the Laplacian 
operator, it tries to enhance the irregularities or discontinuities in the image. So, if we can 
minimize the Laplacian of the reconstructed image that will ensure that the image the 
reconstructed image will be smooth. So, our optimality criteria in this particular case is given by 
C is equal to double summation del square f (x, y) square where y varies from 0 to capital N 
minus 1 and x varies from 0 to capital M minus 1. 
 
So, our assumption is the image that we are trying to reconstruct or the blurred image that we 
have obtained that image is of size capital M by capital M capital N. So, our optimality criteria 
are given by this where del square f (x, y) is nothing but the Laplacian operation. So, this 
optimality criteria is Laplacian operator based and our approach will be that we will try to 
minimize this criteria subject to the constraint that g minus H f hat square should be equal to n 
square where this f hat, this is the reconstructed image. 
 
So, we will try to minimize these optimality criteria subject to the constraint that g minus Hf hat 
square is equal to n square and that is why it is called constant least square filtering. Again, 
without going into the details of mathematical derivation, we will simply give the frequency 
domain solution of this particular constant least square estimation where the frequency domain 
solution now is given by F hat (u, v) is equal to H star (u, v) upon H (u, v) square plus a constant 
gamma times P (u, v) square, this times G (u, v). 
 
(Refer Slide Time: 36:57) 
 

 
 
Again as before, this H star indicates that it is the complex conjugate of H. Here again, we have a 
constant term given as gamma where the gamma is to be a adjusted so that the specified constant 
that is g minus Hf hat square is equal to n square this constant is met. 
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So here, this gamma is a scalar quantity, scalar constant whose value is to be adjusted to for so 
that this particular constant is maintained and this quantity P (u, v), the term P (u, v), it is the 
Fourier spectrum or the Fourier transform of the mask given by (1 0, minus 1, 0) (minus 1, 4, 
minus 1) (0, minus 1, 0). So, this is my P (x, y) and this P (u, v) is nothing but the Fourier 
spectrum of or the Fourier transformation of this P (x, y) and you can easily identify that this is 
nothing but the Laplacian operator mask or the Laplacian mask that we have already discussed in 
our earlier discussion.  
 
Now here, for implementation of this, for computation of this, you have to keep in mind that our 
image is of size capital M by capital N. So, before we compute the Fourier transformation of P 
(x, y) which is given in the form of a 3 by 3 mask, we have to paired appropriate number of zeros 
so that this P (x, y) also becomes a function of dimension capital M by capital N or an array of 
dimension capital M by capital N and after only converting these 2 an array of dimension capital 
M by capital N; we can compute P (u, v) and that P (u, v) has to be used in this particular 
expression. 
 
So, as we said that this gamma has to be adjusted manually for obtaining the optimum result   
and the purpose is that this adjusted value of gamma, the gamma is adjusted so that the specified 
constant is maintained. However, it is also possible to automatically estimate the value of gamma 
by an iterative approach. 
 
(Refer Slide Time: 40:27) 
 

 
 
So, for that iterative approach, what we do is we use define a residual vector say r where this 
residual vector is nothing but r equal to g minus H f hat. So, you remember that this g is obtained 
from the degraded image. The matrix, degradation matrix H is obtained from the degradation 
function H x and f hat is actually the estimated restored image. 
 
Now here, since f hat we have seen earlier that f hat sorry we have seen earlier that f hat (u, v) 
and so this f hat in the special domain, they are functions of gamma. So obviously, r which is the 
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function of f hat; so, this r will also be a function of gamma. Now, if I define a function say phi 
of gamma which is nothing but r transpose r or which is nothing but the Euclidean norm of r, it 
can be shown that this function is a monotonically increasing function of gamma.  
 
That means whenever gamma increases, this Euclidean norm of r also increases; if gamma 
decreases, the Euclidean norm of r also decreases. And by making use of this property, it is 
possible to find out what is the optimum value of gamma within some specified accuracy. So, 
our approach in this case, our aim is that we want to estimate the value of gamma such that the 
Euclidean norm of r that is r square will be equal to n square plus minus some constant A where 
this A is nothing but what is the specified accuracy factor or this gives you the tolerance of 
reconstruction. 
 
Now obviously, here you find that if r square is equal to n square, then the specified constant is 
exactly met. However it is very very difficult, so you specify some tolerance by giving the 
accuracy factor A and we want that the value of gamma should be such that r will be the 
Euclidean norm of r will be within this range. Now, given this background; an iterative approach, 
an iterative algorithm for estimation of the value of gamma can be put like this. 
 
(Refer Slide Time: 43:53) 
 

 
 
So, you select an initial value of gamma, then compute y phi gamma which is nothing but 
Euclidean norm of r. Then you terminate the algorithm if r square is equal to n square, here it has 
been written as eta square plus minus a. If this is not the case, then you proceed to step number 4 
where you increase the value of gamma and if r square is less than eta increase the value of 
gamma if r square is less than eta square minus a or you decrease the value of gamma if r square 
is greater than eta square plus a. 
 
Now, using whatever new value of gamma that you get, you re-compute the image and for that 
the image reconstruction function as we have said in frequency domain is given by this particular 
expression and with this reconstructed value of F, you go back to step number 2 and you do this 
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iteration until and unless this termination condition that is r square is equal to n square plus 
minus a, this condition is met. 
 
(Refer Slide Time: 45:24) 
 

 
 
Now, using this kind of approach what we have obtained is we have got some reconstructed 
image. So here, you find that it is the same original image; this is the degraded version of that 
image. On the bottom row, the left hand side gives you the reconstructed image using the Wiener 
filtering and again on the bottom row on the right hand side, this gives you the reconstructed 
image which is obtained using the constant least square filter. 
 
(Refer Slide Time: 45:53) 
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The same for the motion degraded image. Here, we have also considered some additive noise; so 
again on the top row on the left, this is the image which is obtained by direct inverse filtering and 
you find the prominence of noise in this particular case. The right one is the one which has been 
obtained by Wiener filtering. Here also you find that the amount of noise has been reduced but 
still the image is noisy and the bottom one is the one that has been obtained by using the constant 
least square filtering. 
 
Now, if you look at these 3 images; you will find that the amount of noise is greatly reduced in 
the bottom one. That is this particular image which has been obtained by this restored image 
which has been obtained by constant least square filtering approach and as we said that the 
constant least square filtering approach makes use of the estimation of mean of the noise and the 
standard deviation of the noise; so it is quite expected that the noise performance of the least 
square constant least square error filter will be quite satisfactory and that is what is observed here 
that this image which is obtained using this constant least square filter, the image has been the 
noise has been removed to a great extent whereas, the other reconstructed image cannot remove 
the noise component to that extent. 
 
However, if you look at these reconstructed images, the reconstruction quality of this image is 
not that good. So, that clearly says that using the optimality criteria the reconstructed image that 
you get, the optimum reconstructed image may not always be visually the best. So, to obtain a 
visually best image, the best approach is you manually adjust that particular constant gamma. 
 
(Refer Slide Time: 48:10) 
 
 

 
 
Now, as I said that this constant least square filtering approach makes use of the noise 
parameters that is mean of the noise and the variance of the noise; now how can we estimate the 
mean and variance of the noise from the degraded image itself? It is possible that if you look at a 
more or less uniform intensity region in the image; if you take a sub image of the degraded 
image where the intensity is more or less uniform and if you take the histogram of that, the 
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nature of the histogram is same as the probability density function - pdf of the noise which is 
contaminated with that image. 
 
(Refer Slide Time: 49:02) 
 

 
 
So, we can obtain the noise estimate or we can compute the noise term that is eta square in our 
expression which is used for this constant least square filtering in this way. We have the noise 
variance which is given by say sigma n square, sigma eta square which is nothing but 1 upon 
capital M into capital N into double summation eta (x, y) minus m eta which is the mean of the 
noise square where y varies from 0 to capital N minus 1 and x varies from 0 to capital M minus 
1. 
 
And, the noise mean that is m eta is given by the expression 1 upon capital M into capital N; then 
double summation eta (x, y) where again Y varies from 0 to capital N minus 1 and x varies from 
0 to capital M minus 1. 
 
Now, from this you find that this particular term, this particular term; this is nothing but what is 
our eta square. So, by making use of this and making use of the mean of the noise, we get that eta 
square this noise term is nothing but capital M into N where M into N is M and N the dimension 
of the image into sigma N square sigma eta square minus m eta and as in our constant that we 
have specified, it is the eta square which is used in the constant term and which is only 
dependent upon sigma eta and m eta; so, this clearly says that this optimum reconstruction is 
possible if I have the information of the noise standard deviation of the noise variance and the 
noise mean.  
 
Now, the estimation of noise variance and noise mean is very very important. If I have only the 
degraded image what I will do is I will look at some uniform gray level region within the 
degraded image, find out the find out the histogram of that particular region and the nature of the 
histogram is same as the probability density function of the noise.   
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So, as has been shown here in this particular diagram, here you find that this bar that has been 
shown, this is taken from one such noisy image and this is the histogram of this particular region 
and this histogram tells you that what is the pdf of the noise which is contaminated with this 
image. 
 
So, once I have this probability density function; from this, I can compute what is the standard or 
the variance sigma eta square and I can also compute what is the mean that is m eta and in most 
of the cases for the noise term, the noise is assumed to be 0 mean. So, this m eta is equal to 0. So, 
what is important for us is only this sigma eta square and using this sigma eta square, we can go 
for optimum reconstruction of the degraded image. 
 
Now, in some situation, in many cases, it is also possible that the image is contaminated with 
periodic noise. So, how do we remove the periodic noise present in the image? You will find that 
if you take the Fourier transformation of the periodic noise and display the Fourier 
transformation; in that case, because the noise is periodic, the corresponding dots the 
corresponding at the corresponding (u, v) location in the Fourier transformation plane, you will 
get very very bright dots and that dot indicates that what is the frequency of the periodic noise 
present in the image. 
 
Then, we can go for a very simple approach that once I know the frequency components, I can 
go for band pass filtering just to remove that part of the coefficients from the Fourier transform 
and whatever is the reminder Fourier coefficients we have, if we go for the inverse Fourier 
transformation of that, we will get the reconstructed image. 
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So, as has been shown here, see, here you find that we are taking the same image which we have 
taken a number of times earlier and if you look at the right most image and if you look closely to 
this right most image, you will find that this is contaminated with periodic noise and if I take the 
Fourier transform of this, here you find that in the Fourier transform, there are few bright dots; 
one bright dot here, one bright dot here, one bright dot here, one bright dot here, one bright dot 
here, one bright dot here, one is at this location and one is at this location.  
 
So, all this bright dots tell us that what is the frequency of the periodic noise which contaminates 
the image. So, once I have this information, I can go for an appropriate band pass filtering to 
filter out that region from the Fourier transform or that part of the Fourier coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 
 



(Refer Slide Time: 55:37) 
 

 
 
So, that is what has been shown next. So, this is what is a band reject filter. So, this is the 
perspective plot of an ideal band reject filter and here the band reject filters are shown super 
imposed on the frequency plane. So, on the left, what I have is an ideal band reject filter and on 
the right, what I have is the corresponding butter worth band reject filter. 
 
So, by using this band reject filter, we are removing a band of frequencies from the Fourier 
coefficients corresponding to the frequency of the noise. So, after removal of these frequency 
components, if I go for inverse Fourier transform, then I am going to get back my reconstructed 
image and that is what we get in this particular case. 
 
(Refer Slide Time: 56:35) 
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So here, you find that on the left top, this is again the original image. On the right top, it is the 
noisy image contaminated with periodic noise. If I go for ideal band reject filter and then 
reconstruct, then this is the image I get which is on the bottom left and if I go for the butter worth 
band filter, then the image reconstructed image that I get is in the bottom right. 
 
So, we have talked about the reconstruction or the restoration of images using variation 
operations and the last one that we have discussed is if we have an image contaminated with 
periodic noise; then we can make use of band reject filter, do frequency domain operation, 
employ a band reject filter to remove those frequency components and then go for inverse 
filtering to reconstruct the image.  
 
And, here you find that the qualities of the reconstructed images are quite good where we have 
used this band reject filter in the frequency domain. So, with this, we complete our discussion on 
image restoration. Now, let us have some questions on today’s lecture. 
 
(Refer Slide Time: 57:50) 
 

 
 
So, the first question is what is the advantage of Wiener filter over inverse filter? The second 
question - what is the drawback of Wiener filter? Third one, under what condition Wiener filter 
and inverse filters become identical? Fourth one, what is the difference between Wiener filters 
and constrained least square error filter? And the last question, how you can estimate the noise 
parameters from a given noisy image or from a given blurred image? 
 
Thank you.  
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