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K – L Transform  

 

Welcome to the video lecture on digital image processing. For last few classes, we were 
discussing about the image transformations.  
 
(Refer Slide Time: 1:15)  
 
 

 
So, we have talked about the unitary transformation, we have talked about the Fourier 
transformation and in the last class, we have talked about the discrete cosine transform, we have 
seen the discrete Walsh transform, discrete Hadamard transform. We have seen their properties 
and we have compared the performance of these transformation operations.  
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In today’s lecture, we will talk about another transform operation which is fundamentally 
different from the transformations that we have discussed in last few classes. So, the 
transformation that we will discuss about today is called K – L transformation. We will see what 
is the fundamental difference between K – L transform and other transformations, we will see the 
properties of K – L transform, we will see the applications of K – L transform for data alignment 
and data compression operations and we will also see the computation of K – L transform for an 
image.  
 
Now, as we said that K – L transform is fundamentally different from other transformations; so 
before we start discussion on K – L transform, let us see what is the difference. The basic 
difference in all the previous transformations that we have discussed that is whether it is the 
Fourier transformation or discrete cosine transformation or Walsh transformation or Hadamard 
transformation; in all these cases, the transformation kernel whether it is forward transformation 
kernel or inverse transformation kernel, they are fixed.  
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So, for example, in case of discrete Fourier transformation or DFT, we have seen that the 
transformation kernel is given by g (x, u) is equal to e to the power minus j 2 pi by N into ux. 
Similarly, for the discrete cosine transformation as well as for other transformations like Walsh 
transform or Hadamard transform. In all those cases, the transformation kernels are fixed. The 
values of the transformation kernel depend upon the locations x and the location u. The kernels 
are independent of the data over which the transformation has to be performed.  
 
But unlike these transformations, in case of K – L transformation, the transformation kernel is 
actually derived from the data. So, in case of K – L transform, it actually operates on the basis of 
statistical properties of vectored representation of the data.  
 
So, let us see how these transformations are actually opted. So, to go for K – L transformation, 
our requirement is the data has to be represented in the form of vectors. So, let us assume a 
population of vectors say x which are given like this. So, we consider a vector population x 
which is given by say x 1 x 2 x 3 say upto xn. So, these vectors x are actually vectors of 
dimension n.  
 
Now, given such a state of vectors or population of vectors x, we can find out the mean vector 
given my mu x which is nothing but the expectation value of this vector population x and 
similarly, we can also find out the covariance matrix C x which is given by the expectation value 
of x minus the mean vector mu x into x minus mu x transpose.  
 
So here, you will find that x, since x is of dimension n; this particular covariance matrix will be 
of dimension n by n. So, this is the dimensionality of the covariance matrix C x and obviously, 
the dimensionality of the mean vector mu x will be equal to n.  
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Now, in this covariance matrix C x, you will find that an element C ii that is an element in the 
i’th row and i’th column is nothing but the variance of the element xi of the vectors x. Similarly, 
an element C ij, this is nothing but the covariance of the elements x i and x j of the vectors x and 
you will find that this particular covariance matrix C x, it is real and symmetric. So, because this 
covariance matrix is real and symmetric, we can always find a set of n orthonormal Eigen 
vectors. So, because this covariance matrix C x is real and symmetric, we can find out a set of 
orthonormal Eigen vectors of this covariance matrix C x. 
 
Now, if we assume that suppose e i is an Eigen vector of this covariance matrix C x which 
corresponds to the Eigen value lambda 1 lambda i. So, corresponding to the Eigen value lambda 
i, we have the Eigen vector say e i and we assume this Eigen values are arranged in descending 
order of magnitude of the Eigen values. That is we assume that lambda j is greater than or equal 
to lambda j plus 1 for j varying from 1, 2 upto n minus 1.  
 
So, what we are taking? We are taking the Eigen values of the covariance matrix C x and we are 
taking the Eigen vectors corresponding to every Eigen value. So, corresponding to the Eigen 
value lambda i, we have this Eigen vector e i and we also assume that these Eigen values are 
arranged in descending order of magnitude that is lambda j is greater than or equal to lambda j 
plus 1 for j varying from 1 to n minus 1.  
 
Now, from this set of Eigen vectors, we form a matrix, say A. So, we form matrix A from this set 
of Eigen vectors and this matrix A is formed in such a way that the first row of matrix A is the 
Eigen vector corresponding to the largest Eigen value and similarly the last row of this matrix A 
corresponds to the Eigen vector is the Eigen vector which corresponds to the smallest Eigen 
value of the covariance matrix C x. 
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Now, if we use such a matrix A to obtain the transform operations, then what we get is we get a 
transformation of the form say y equal to A into x minus mu x. So, using this matrix A which has 
been so formed, we form our transformation like y equal to A into x minus mu x where you find 
that x is a vector and mu x is the mean vector.  
 
Now, this particular transformation, the transform output y that you get, that follows certain 
important relationship. The first relationship, the important property is that the mean of these 
vectors y or mu y is equal to 0. So, these are the properties of the vector y that is obtained. So, 
the first property is the mean of y mean of vectors, y mu y equal to 0.  
 
Similarly, the covariance matrix of y given by Cy, this is also obtained from C x, the covariance 
matrix of x and the transformation matrix that we have generated A. And the relationship 
between the covariance matrixes of y is like this that Cy is given by AC x A transpose. Not only 
that, this covariance matrix Cy is a diagonal matrix whose elements along the main diagonal are 
the Eigen values of C x. 
 
So, this C y will be of the form lambda 1 0, 0, so it continues like this; 0, then 0, lambda 2, 0, it 
continues like this then finally we have 0, 0, 0 and upto this we have lambda 1. So, this is the 
covariance matrix of y that is Cy. 
 
And obviously, in this particular case, you will find that the Eigen values of Cy is same as the 
Eigen values of C x which is nothing but lambda 1, lambda 2 upto lambda n and it is also a fact 
that the Eigen vectors of Cy will also be same as the Eigen n Eigen vector of C x and since in this 
case we find that the diagonal elements are always 0, that means the elements of y vectors they 
are uncorrelated.  
 
So, the property of the vectors y that we have got is the mean of the vectors equal to 0. We can 
obtain the covariance matrix C y from the covariance matrix C x and the transformation matrices 
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A. The Eigen values of C y are same as the Eigen values of C x and also as the off diagonal 
elements of C y are equal to 0; that indicates that the elements of the vectors y, different elements 
of the vector y are uncorrelated. Now, let us see what is the implication of this. To see the 
implication of these observations, let us come to the following figure.  
 
(Refer Slide Time: 13:40) 
 

 
 
So, in this figure we have a binary image, a 2 dimensional binary image. Here we assume that all 
the pixel locations which are white, there an object is present, an object element is present and 
wherever the pixel value is 0, there is no object element present.  
 
So, in this particular case, the object region consists of the pixels say (3, 4) (4, 3) (4, 4) then (4, 
5) then (5, 4) then (5, 5) then (5, 6) and (6, 5). So, these are the pixel location which contains the 
objects and other pixel location does not contain the object.  
 
Now, what we plan to do is we will find out the K – L transform of those pixel locations where 
an object is present. So, from this, we have the population of Eigen vectors which is given by 
this.  
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Just, we consider the locations of the pixels where an object is present that is the pixel is equal to 
white and those locations are considered as vectors and so the population of vectors x is given by 
we have (3, 4) because in location (3, 4) we have an object present. We have (4, 3), there also an 
object is present; we have (4, 4), here also an object is present; we have (4, 5), we have (5, 4), 
then (5, 5), then (5, 6) and then (6, 5).  
 
So, we have 1, 2, 3, 4, 5, 6, 7, 8 vectors, 8 2 - dimensional vectors in this particular population. 
Now, from these vectors, it is quite easy to compute the mean vector mu x and you can easily 
compute that mean vector mu x in this particular case will be nothing but 4.5, 4.5. So, this is the 
mean vector that we have got.  
 
So once we have the mean vector, now we can go for computing the covariance matrix and you 
will find that the covariance matrix C x was defined as the expectation value of x minus mu x 
into x minus mu x transpose. So, finding out x minus mu x into x minus mu x transpose for all the 
vectors x and taking the average of them gives us the expectation value of x minus mu x into x 
minus mu x transpose which is nothing but the covariance matrix C x. 
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So here, for the first vector x1, we can find out x1 minus mu x as; you find that x1 is nothing but 
that the vector (3, 4), so x1 minus mu x will be equal to minus 1.5 and minus 0.5. So, you can 
find out x1 minus mu x into x 1 minus mu x transpose, if we compute this this will be a value 
equal to 0.25, 0.75, 0.75 and 2.25. 
 
So similarly, we find out x minus mu x into x minus mu x transpose for all other vectors in the 
population x and finally, average of all of them gives us the covariance matrix C x and if you 
compute like this, you can easily obtain that covariance matrix C x will come out to be 0.75, 
0.375, 0.375 and 0.75. 
 
(Refer Slide Time: 18:15)  
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So, this is the covariance matrix of the population of vectors x. Now, once we have this 
covariance matrix; to find out the K – L transformation, we have to find out what are the Eigen 
values of this covariance matrix and to determine the Eigen values of the covariance matrix, you 
all might be knowing that the operation is like this that given the covariance matrix, we simply 
perform 0.75 minus lambda 0.375, then 0.375, 0.75 minus lambda and set this determinant is 
equal to 0 and then you solve for the values of lambda. 
 
(Refer Slide Time: 19:08)  
 

 
 
So, if you do this, you will find that this simply gives an equation of the form 0.75 minus lambda 
square is equal to 0.375 square. Now, if you solve this, the solution is very simple. The lambda 
comes out to be 0.75 plus minus 0.375 whereby you will get lambda 1 is equal to 1.125 and 
lambda 2 comes out as 0.375.  
 
So, these are the 2 Eigen values of the covariance matrix C x in this particular case and once we 
have this Eigen values, we have to find out what are the Eigen vectors corresponding to these 
Eigen values.  
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And to find out the Eigen vectors, you know that the relation is for the given matrix for a given 
matrix say A or in our particular case, it is C x, so let us take C x. So, C x into say vector Z has to 
be equal to lambda times Z if Z is the Eigen vector corresponding to the Eigen value lambda and 
if we solve this, we will find that we get 2 different Eigen vectors corresponding to 2 different 
Lambda’s. So, corresponding to Lambda 1 is equal to 1.125, we have the corresponding Eigen 
vector e1 which is given as 1 upon root 2 into (1, 1). So, this will be the corresponding Eigen 
vector.  
 
Similarly, corresponding to the Eigen value lambda 2 equal to 0.375, this corresponds to the 
Eigen vector e2 which is equal to 1 upon root 2 into 1 minus 1. So, you will find that once we get 
these Eigen vectors, we can formulate the corresponding transformation matrix. As we said, we 
will get the transformation matrix A from the Eigen vectors of the covariance matrix C x but the 
rows of the transformation matrix A are the Eigen vectors of C x such that the first row will 
correspond to the Eigen vector will be the Eigen vector corresponding to the maximum Eigen 
value and the last row will be the Eigen vector corresponding to the minimum Eigen value.  
 
So, in this case, the transformation matrix A will be simply given by 1 upon root 2 to (1, 1, 1, 
minus 1). Now, what is the implication of this?  
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So, you will find that using this particular transformation, transformation matrix; if I apply the K 
– L transformation, then the transformed output, the transformed vector will by Y equal to A into 
x minus mu x. 
 
So, you will find that application of this particular transformation this particular transformation 
amounts to establishing a new coordinate system whose origin is at the centeroid of the object 
pixels. So, this particular transformation K – L transformation, basically establishes a new 
coordinated system whose origin will be at the center of the object and the axis of this new 
coordinate system will be parallel to the directions of the Eigen vectors. So, by this what we 
mean is like this one.  
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So, this was our original figure where all the white pixels are the object pixels. Now, by 
application of this transformation, this K – L transformation with transformation matrix A, we 
get 2 Eigen vectors. The Eigen vectors are these - e 1 and e 2. So, you find that this e 1 and e 2, it 
forms a new coordinate system and the origin of this coordinate system is located at the center of 
the object and the axis are parallel to the directions of the vectors e 1 and e 2 and this figure also 
shows that this is basically a rotation transformation and this rotation transformation aligns the 
data with Eigen vectors and because of this alignment, different elements of the vector Y, they 
become uncorrelated.  
 
So, it is only because of this alignment, the data becomes uncorrelated and also because the 
Eigen values of lambda i appear along the main diagonal of Cy that we have seen earlier, this 
lambda i basically tells the variance of the component Yi along the Eigen vector e i and later on 
we will see the application of this kind of transformation to align the objects along the Eigen 
vectors and this is very very important for object recognition purpose. 
 
Now, let us see the other aspects of the K – L transformation. So, this is one of the applications 
where we have said that this K – L transformation basically aligns the data along the Eigen 
vectors. Another important property of K – L transformation deals with the reconstruction of the 
vector x from the vector Y.  
 
So, by K – L transformation what we have got is we have got a state of vectors y from another 
state of vectors x using the transformation matrix A where A was derived using the Eigen vectors 
of the covariance matrix of x that is C x. 
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So, our K – L transformation expression was Y equal to A into x minus mu x. Now, here you 
find that because this matrix A, the rows of this matrix A are the Eigen vectors of the covariance 
matrix C x. So, A consists of rows which are orthogonal vectors and because rows of A are 
orthogonal vectors, so this simply says that inverse of A is nothing but A transpose.  
So now, inverse of A is very simple. If you simply take the transpose of the transform matrix A, 
you get the inverse of it. So, from the forward transform, forward K – L transform, we can very 
easily find out the inverse K – L transform to reconstruct x from the transformed image or the 
transformed data Y and in this case, the reconstruction expression is very simple. It is given by x 
equal to A transpose Y plus mu x. This is a direct formation from the expression of forward 
transformation.  
 
Now, the important property of this particular expression is like this that suppose, here you find 
that this matrix A has been formed by using all the Eigen vectors of the covariance matrix C x. 
Now, suppose I choose that I will make a transformation matrix where I will not consider, I will 
not take all the Eigen vectors of the covariance matrix C x. Rather, I will consider say k number 
of Eigen vectors and using that k number of Eigen vectors, I will make a transformation matrix 
say Ak. 
 
So, this Ak is formed using k number of Eigen vectors k number of Eigen vectors of matrix C x. I 
am not considering all the Eigen vectors of the matrix C x and obviously because I am taking k 
number of Eigen vectors, I will take those Eigen vectors corresponding to k-largest Eigen values.  
So obviously, this matrix Ak, now it will have k number of rows and every row will have n 
number of elements. So, the matrix A will be of dimension k by n and the inverse transformation 
will be will also be done in the similar manner.  
 
So, using this transformation matrix Ak, now I apply the transformation. So, I get Y equal to Ak 
into X minus mu x. Now, because Ak is of dimension k by n and X is of dimension n by 1, so 
naturally this transformation will generate vectors Y which are of dimension k. Now, in earlier 
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case, in our original formulation here; the transformation matrix Y was the transformed vector Y 
was of dimension n. But when I have made a reduced transformation matrix A considering only 
k number of Eigen vectors; here I find that using the same transformation, now the transformed 
vectors y that I get, they are no longer of dimension n but this y are vectors of dimension k.  
 
Now, using these vectors of reduced dimension if I try to reconstruct X, obviously the 
reconstruction will not be perfect. But what I will get is an approximate value of X. So, let me 
write that expression like this.  
 
(Refer Slide Time: 31:06)  
 

 
 
Here, what I will get is I will get an approximate X sorry I will get an approximate x, let me 
write it as x hat which will be given by Ak transpose Y plus mu x. Now, here you find that the 
Ak vector was of dimension k by n, vector y was of dimension k. Now, when I take Ak 
transpose, Ak transpose becomes of dimension n by k. Now, if I multiply this matrix Ak 
transpose which is of dimension n by k by this vector y which is of dimension k; obviously, I get 
a vector which is of dimension n by 1.  
 
So, by this you will find that this inverse transformation, it gives me the approximate 
reconstructed x but the dimension of x hat which is the approximation of x is same as x which is 
nothing but of dimension n. So, by this inverse transformation, I get back a vector x hat which is 
of same dimension as x but it is not the exact value of x, this is an approximate value of x and it 
can be shown that the mean square error of this reconstruction that is the mean square error 
between x and x hat is given by an expression that e ms is given by sum of lambda j where j 
varies from 1 to n minus sum of lambda i where i varies from 1 to k which is nothing but sum of 
lambda j where j varies from k plus 1 to n.  
 
So, you will find that this mean square error, this term that we have got; you remember that 
while forming our transformation matrix Ak, we have considered k number of Eigen vectors of 
matrix C x and these k number of Eigen vectors corresponding to corresponds to largest Eigen 
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values of matrix C x and in this particular expression, the mean square error is given by the sum 
of those Eigen values whose corresponding Eigen vectors was not considered for formation of 
our transformation matrix A and because the corresponding Eigen values are the smallest Eigen 
values, so this particular transformation and the corresponding inverse transformation ensures 
that the mean square error of the reconstructed signal or the mean square error between x and x 
hat will be minimum.  
 
That is because of this summation consists of summation of only those Eigen values which are 
having the minimum value. So, that is why this K – L transform is often called an optimum 
transform because it minimizes the error of reconstruction between x and x hat. Now, these is a 
very very important property of K – L transformation which is useful for data compression and 
in this particular case, let us see that how this particular property of K – L transformation will 
help to reduce or to compress the image data.  
 
So obviously, the first operation that you have to do is if I want to apply this K – L 
transformation over an image, I have to see how to apply this K – L transform over an image?  
 
(Refer Slide Time: 35:50)  
 

 
 
So, we have a digital image is a 2 dimensional array of quantized intensity values. So, a digital 
image as it is represented by a 2 dimensional array of quantized intensity values; so let us put a 
digital image in this form. Now here, let us assume that this image consists of n number of rows 
and n number of columns. So, there will be n number of columns and n number of rows and as 
we have said that in order to be able to apply K – L transformation, the data has to be represented 
by a collection of the vectors. So, this 2 dimensional image or 2 dimensional array which 
consists of n number of rows and n number of columns can be converted into a set of vectors in 
more than 1 ways.  
 
So, let us assume in this particular case that we represent every column of this 2 dimensional 
array as a vector. So, if we do that then every column of this; so this will be represented by a 
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vector say x0, this column will be represented by a vector say x1, this column will be represented 
by a vector say x2 and this way we will have say n number of vectors as there are n number of 
columns.  
 
So, once we have this n number of vectors; for this n number of vectors, we can find out the 
mean vector which is mu x and this is given by 1 upon capital n then summation xi where i varies 
from 0 to capital n minus 1. And similarly, we can also find out the covariance matrix of these n 
vectors and the expression for the covariance matrix as we had already seen that this is 1 upon 
capital N summation xi minus minus mu x into xi minus mu x transpose where this i will vary 
from 0 to capital N minus 1.  
 
And, here you will find that our mean vector mu x, this is of dimension capital N whereas the 
covariance matrix C x, this is of dimension capital N by capital N. So, once we have obtained the 
mean vector mu x and the covariance matrix C x, we can find out the Eigen vectors and Eigen 
values of this covariance matrix C x and as we have already seen  
 
(Refer Slide Time: 39:33)  
 

 
 
that because this particular covariance matrix C x is of dimension capital N by capital N, there 
will be N number of Eigen values lambda i where this i varies from 0 to capital N minus 1 and 
corresponding to every Eigen value lambda i, there will be an Eigen vector e i. So, this e i, Eigen 
vector e ii here again will be vary from 0 to capital N minus 1.  
 
Now, given this n number of Eigen vectors, for n number of Eigen values; we can make the 
transformation matrix, we can form the transformation matrix A and here this transformation 
matrix A will be formed as say e0 transpose, I will write this as transpose because e0 being Eigen 
vector and normally a vector is represented as a column vector.  
 
So, we will write the matrix A which consists of a number of where rows of this matrix A will be 
the Eigen vectors of the covariance matrix A covariance matrix C x. So, this A will be e0 
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transpose, e1 transpose and there are n number of Eigen vectors, so I will have eN minus 1 
transpose where this e0 corresponds to the Eigen value lambda 0 and obviously in this case, as 
we have already said that our assumption is lambda 0 is greater than or equal to lambda 1 which 
is greater than or equal to lambda 2 and continued like this, it is greater than or equal to lambda 
N minus 1. So, this is how we form the transformation matrix A. 
 
Now, from this transformation matrix, we can make a truncated transformation matrix where 
instead of using all the Eigen vectors of the covariance matrix C x, we consider only the first k 
number of Eigen vectors which corresponds to k number of Eigen values, k number of the largest 
Eigen values.  
 
(Refer Slide Time: 42:17)  
 

 
 
So, we form the transformation matrix, the modified transformation matrix Ak using the first k 
number of Eigen vectors. So, in our case, Ak will be e0 transpose, e1 transpose and likewise it 
will go upto e K minus 1 transpose and using this Ak, we take the transformation of the different 
column vectors of the image which we have represented by vector xi. So, for every xi, we get a 
transform vector say Yi. 
 
So here, the transformation equation is Yi is equal to Ak - this is the modified transformation 
matrix into Xi minus mu x where this i varies from 0 to capital N minus 1. So, here you find that 
because Ak is of dimension the dimension of Ak is k by N and dimension of Xi and mu x both of 
them are of dimension N by 1; so Xi minus mu x, this is a vector of dimension capital N by 1. 
So, this particular vector, this is of dimension capital N by 1.  
 
So, you will find that when I multiply, when I perform this transformation - Ak into Xi minus mu 
x, this actually leads to a transformed vector Yi where Yi will be of dimension k by 1. So, this is 
the dimensionality of Yi. That means using this transformation, with the transformation matrix 
Ak, we are getting the transformed vector Yi of dimension k.  
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So, if this is done, if this transformation is carried out for all the column vectors of matrix of the 
2 dimensional image; in that case, I get n number of transformed vectors Yi where each of this 
transformed vector is a vector of dimension k. That means the transformed image that I will get, 
the transformed image will consist of N number of column vectors where every column is of 
dimension k. That means the transformed image now will be of dimension K by N having K 
number of rows and N number of columns.  
 
You remember that our original image was of dimension of capital N by capital N. Now, using 
this transformed image if I do the inverse transformation to get back the original image; as we 
said earlier that we do not get the perfectly reconstructed image, rather what we will get is an 
approximate image.  
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So, this approximate image will be given by xi hat is equal to Ak transpose Yi plus mu x where 
this xi hat here you find that it will be of dimension capital N. So, collection of all these xi hats 
gives you the reconstructed image from the transformed image. As we have said that the mean 
square error between the reconstructed image and the original image in this particular case will 
be minimum because that is how we have formed the transformation matrix and there we have 
said that the mean square error of the reconstructed vector from the original vector was 
summation of the Eigen values which are left out; corresponding to which the Eigen vectors 
were not considered for formation of the transformation matrix.  
 
So here, you find that because now in this case for getting the reconstructed image, what are the 
quantities that we have to save? Obviously, the first quantity that we have to save, the first 
information that we have to save is the transformation matrix Ak. So, this Ak needs to be saved  
and the other information that you have to save is the transformed matrix or the set of 
transformed vectors Yi for i equal to so the set of transformed vectors Yi for i equal to 0 to 
capital N minus 1.  
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So, if we save these 2 quantities Ak and the set of transformed vectors Yi, then from these 2 
quantities we can reconstruct an approximate original image given by the vectors xi hat. So, you 
will find that in this case, the amount of compression that can be obtained depends upon what is 
the value of K that is how many Eigen vectors we really consider; we really take into account for 
formation of our transformation matrix A.  
 
So, the value of k can be 1 where we considered only 1 Eigen vector to form our transformation 
matrix A. It can be 2 where we consider only 2 Eigen vectors to form the transformation matrix 
A and depending upon the number of the Eigen vectors, the amount of compression that we can 
achieve will be varying.  
 
Now, let us see that what are the kind of results that we get with different values of k.  
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So here, you find that we have shown some of the images. Here, the top image, this is the 
original image. Now, when this original image is actually transformed and reconstructed using 
the transformation matrix with only 1 Eigen vector; so this the Eigen vector which corresponds 
to the corresponds to the largest Eigen value of the covariance matrix. Then the reconstructed 
image that we get is given by this result. So, here we find that the reconstructed image is not at 
all good but still from the reconstructed image, we can make out that what this image is about. 
 
Now, if we increase the number of Eigen vectors in the transformation matrix; when I use 5 
Eigen vectors as the transformation matrix, then the reconstructed image is given by this one. 
You will find that the amount of information which is contained in this particular image is quite 
improved though this is not identical with the original image. If we increase the number of Eigen 
vectors further, that is we use 25 Eigen vectors to form the transformation matrix; then this is the 
reconstructed imaged that we get.  
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Now, if you closely observe between these 2 images, compare these 2 images; you will find that 
there are some artifacts. See for example, in this particular region, there is an artifact, something 
like a vertical line which was not present in the original image and that is improved to a larger 
extent in this particular image. So, again the image quality has been improved if I increase the 
number of Eigen vectors from 5 to 35. 
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Similarly, if I increase the number of Eigen vectors further, if I go for 50 Eigen vectors; the 
image is further improved, 100 Eigen vectors I get further improvement, if I use 128 number of 
Eigen vectors, I get still a better reconstructed image. So, this way you will find that if I consider 
all the Eigen vectors of the covariance matrix to form the transformation matrix; in that case, the 
reconstruction will be a perfect reconstruction.  
 
So here, we have discussed about the K – L transformation where we have said the K – L 
transformation is fundamentally defined from the other transformations that we have discussed 
earlier that is the discrete Fourier transformation, discrete cosine transformation and so on and 
there we have said that in those case of transformations, the transformation matrix or the 
transformation kernel is fixed whereas in case of K – L transformation, you will find that the 
transformation kernel that is the transformation matrix A which is derived from the covariance 
matrix and this covariance matrix actually represents what is the statistical property of the vector 
representation of the data.  
 
So here, the kernel of transformation or the transformation matrix is dependent upon the data, it 
is not fixed. So, that is the fundamental difference between the other transformations with the K 
– L transformation. But the advantage of the K – L transformation that is quite obvious from the 
reconstructed images is that the energy compaction property which we have said earlier; here in 
this particular case, in case of K – L transformation, the energy compaction property is much 
higher than that of any other transformation.  
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Here, you find that in the earlier result that we have shown where using only 1 Eigen vector as 
the transformation matrix, this particular result, here, using only 1 Eigen vector still I can 
reconstruct the image and I can say what is the content of that image though the reconstruction 
quality is very poor. So, it shows that the energy compaction in a Eigen vector, in the number of 
components is much higher in case of K – L transform than in case of other transformation. 
 
But as it is quite obvious that the computational complexity for K – L transformation is quite 
high compared to the other transformations and in fact that is the reason that despite its strong 
property of energy compaction, K – L transformation has not been much popular for data 
compression operations. With this, we come to the end of our discussion on transformations. 
Now, let us see the answers to our previous days lecture.  
 
(Refer Slide Time: 54:16)  
 

 
 
So here, it is quite obvious that property of the DCT which makes it popular for image 
compression applications is the energy compaction operation, energy compaction property. The 
transformation kernels for Walsh transformation, Hadamard transformation has already been 
discussed during our lecture.  
 
Significance of modified Hadamard transform: so here, we have said that by modified Hadamard 
transform I mean the ordered Hadamard transform. The significance of ordered Hadamard 
transform is that here we can correlate the sequence of the signal with the variable u which is 
done in case of DFT or in case of DCT where the increasing value of u means increasing value 
of frequency components and here equivalent to the frequency component in case of Hadamard 
transform, we have defined what is called sequence and the increasing value of u should indicate 
increasing value of sequence and that is basically the significance of this Hadamard transform 
and we have seen during our last lecture that because of this, here also we can get some energy 
compaction property that is most of the energy is confined within few Hadamard coefficients.  
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The fifth problem, it was a problem where you have to find out the Walsh transformation 
coefficients of the following samples. This also quite simple from the discussion that we had; if i 
simply replace these values in the Walsh transform expressions that we discussed, then we will 
get the Walsh transform coefficients.  
 
(Refer Slide Time: 55:56)  
 

 
 
Now, coming to today’s lecture, questions on today’s lecture: the first question is what is the 
fundamental difference between K – L transform and discrete cosine transform. The second 
question, in what sense K – L transform is optimal? 
 
Third question is how do you generate the transformation kernel for K – L transform? Fourth 
question, what is the role of K – L transform in object recognition? Fifth one, why is it important 
to arrange the Eigen vectors in a particular order to form the transform matrix and the last 
question why K – L transform is not popular for data compression operation? 
 
Thank you. 
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