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Welcome to this lecture on digital image processing. In our last class, we have discussed about 
the discrete Fourier transform. 
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We have seen both the continuous domain as well as the discrete domain of the Fourier 
transformation. We have seen the properties of the Fourier transform; the properties, specifically 
the seperability, translation property, periodicity and conjugate property, the rotation property 
distributivity and scaling and convulation and the correlation property and then finally, we have 
seen a fast implementation of the discreet Fourier transform which we have said as the fast 
Fourier transform or FFT operation 
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In today’s lecture, we will talk about some other transformations in the digital domain. We will 
talk about the discrete cosine transform, we will talk about the discrete Walsh transform, we will 
talk about discrete Hadamard transform and we will also see some properties of these different 
transformation techniques. 
 
Now, for during the last 2 classes, when we have talked about the discrete Fourier 
transformation, you might have noticed one thing that this discrete Fourier transformation is 
nothing but a special case of a class of transformations or a class of separable transformations. 
 
Some of these discussions, we have done while we have talked about the unitary transformation. 
Now, before we start our discussion on the discrete cosine transformation or Walsh 
transformation or Hadamard transform, let us have some more insight on this class of 
transformations. Now, as we said that discrete Fourier transformation is actually a special case of 
a class of transformations.  
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Let us see what is that class of transformation. You will find that if we define a transformation of 
this form say T (u, v) is equal to double summation f (x, y) where f (x, y) is the 2 dimensional 
signal into g (x, y, u, v) where both x and y vary from 0 to capital N minus 1. 
 
So, we are assuming that our 2 dimensional signal f (x, y) is an N by N array, capital N by capital 
N array and the corresponding inverse transformation is given by f (x, y) is equal to double 
summation again, we have this transformation matrix transform coefficients T (u, v) into h (x, y, 
u, v) where this g (x, y, u, v) g (x, y, u, v) this is called the forward transformation kernel and h 
(x, y, u, v) is called the inverse transformation kernel or the basis functions. 
 
Now, these transformations, this class of transformation will be separable if we can write g (x, y, 
u, v) in the form g1 (x, u) into g2 (y, v). So, if g (x, y, u, v) can be written in the form g1 (x, u) 
into g2 (y, v), then this transformation will be a separable transformation. Moreover, if g1 and g2 
these are functionally same that means if I can write this as g1 (x, u) into g1 (y, v) that is I am 
assuming g1 and g2 to be functionally same. 
 
So, in that case, these class of transformations will be separable obviously because g (x, y, u, v) 
we have written as product of 2 functions - g1 (x, u) into g 2 (y, v). And since g1 (x, u) and g2 (y, 
v); so this function g1 and g2, they are functionally same, so this I can write as g1 (x, u) into g1 
(y, v) and in this case, the function will be called as symmetric.  
 
So here, what we have is this particular transformation or class of transformations is called 
separable as well as symmetric and the same is also true for the inverse transformation kernel 
that is h (x, y, u, v). 
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Now, find that for a 2 dimensional discrete Fourier transformation, we had g (x, y, u, v) which 
was of this form e to the power minus j 2 pi by capital N into ux plus vy and of course, we had 
this multiplicity term 1 upon capital N. So, this was in the forward transformation kernel in case 
of 2 dimensional discrete Fourier transform or 2D DFT. 
 
Obviously, this transformation is separable as well as symmetric because I can now write this g 
(x, y, u, v) as g1 (x, u) multiplied by g1 (y, v) which is nothing but 1 over square root of capital N 
e to the power minus j 2 pi by capital N ux into 1 over square root of N e to the power minus j 2 
pi by capital N vy. 
 
So, you find that the first product g1 (x, u) and the second term that is g1 (y, v), they are 
functionally same but only the arguments; x in 1 case, it is ux and in the other case, it is vy. So 
obviously, this 2 dimensional discrete Fourier transformation is separable as well as symmetric. 
So, as we said that this represents a specific case of the 2 dimensional discrete Fourier 
transformations represents a specific case of a class of transformations and we had also discussed 
it, discussed the same when we have talked about the unitary transformation. 
 
In today’s lecture, we will talk about some other transformations belonging to the same class. 
The first transformation belonging to this class that we will talk about is called the discrete 
Fourier transformation or DCT. Let us see what are the forward as well as inverse transform 
kernels of this discrete Fourier transform. 
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So now, let us talk about the discrete Fourier transform or DCT. In case of discrete Fourier 
transformation, the forward kernel forward transformation kernel g (x, y, u, v) is given by alpha 
times u into alpha times v into cosine 2x plus 1 u pi upon 2 N into cosine 2y plus 1 into u pi upon 
twice N which is same as the inverse transformation kernel which is given by x h (x, y, u, v). 
 
So, you find that in case of discrete cosine transformation, if you analyze this, you find that both 
the forward transformation kernel and also the inverse transformation kernel, they are identical 
and not only that, these transformations transformation kernels are separable as well as 
symmetric because in this I can have g1 (x, u) equal to alpha u cosine twice x plus 1 u pi divided 
by twice N and g1 (y, v) can be alpha times v into cosine 2y plus 1 v pi upon twice N. 
 
So, this transformation that is discrete cosine transformation is separable as well as symmetric 
and the inverse forward inverse transformation kernel and the forward transformation kernel, 
they are identical. Now, we have to see what the values of alpha u and alpha v. Here, alpha u is 
given by square root of 1 upon capital N where u is equal to 0 and it is equal to square root of 
twice by capital N for values of u equal to 1, 2 to capital N minus 1. 
 
So, these are the values of alpha u for different values of u and similar is the values of alpha v for 
different values of v. Now, using these forward and inverse transformation kernels, let us see 
how the basis functions or the basis images look like in case of discrete cosine transform. 
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So, this figure shows the 2 dimensional basis images or basis functions in case of discrete cosine 
transformation where we have shown the basis images for an 8 by 8 discrete cosine 
transformation or 8 by 8 2 dimensional discrete cosine transformations. 
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Now, using these kernels, now we can write the expressions for the 2 dimensional discrete cosine 
transformation in the form of c (u, v) is equal to alpha (u) alpha (v) double summation f (x, y) 
into cosine of 2x plus 1 into pi u upon twice N into cosine of twice y plus 1 pi v upon twice N 
where both x and y vary from 0 to capital N minus 1. 
 
Similarly, the inverse discrete cosine transformation can be written as f (x, y) is equal to double 
summation alpha (u) times alpha (v) times c (u, v). So, c (u, v) is the coefficient matrix into 
cosine of (twice x plus 1) u pi upon twice capital N into cosine of (twice y plus 1) into v pi upon 
twice capital N and now u and v vary from 0 to capital N minus 1. So, this is the forward 2 
dimensional discrete cosine transformation and this is the inverse 2 dimensional discrete cosine 
transformation.  
 
Now, you find that there is one difference in case of forward discrete cosine transformation. The 
terms alpha (u) and alpha (v) were kept outside the summation, double summation whereas 
incase of inverse discrete cosine transformation, the terms alpha (u) and alpha (v) are kept inside 
the double summation. 
 
The reason being, in case of forward transformation because the summation is taken over x and y 
varying from 0 to capital N minus 1, so alpha (u) and alpha (v), these terms are independent of 
this summation operation whereas, in case of inverse discrete cosine transformation, the double 
summation is taken over u and v varying from 0 to capital N minus 1. So, this terms alpha (u) 
and alpha (v) are kept ah are kept inside the double summation operation. 
 
So, using this discrete cosine transformation 2 dimensional discrete cosine transformation, let us 
see that for a given image, what kind of output we get. 
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So this shows, this figure shows the discrete Fourier discrete cosine transformation coefficients 
for the same image which is very popular in image processing community, the image of length. 
The results are shown in 2 forms. The first figure, this is the coefficients which is shown in the 
form of intensity plots in the form of a 2 dimensional array whereas, the third figure shows the 
same coefficients which are plotted in the form of a 3 dimensional in the form of a surface in 3 
dimension. 
 
Now, if you closely look at this output coefficients, you find that in case of discrete cosine 
transformation, the energy of the coefficients are concentrated mostly in a particular region 
where the coefficients are near the origin that is (0, 0) which is more visible in the case of a 3 
dimensional pot. So, you find that here in this particular case, the energy is concentrated in a 
small region in the coefficients space near about the (0, 0) coefficients. So, this is a very very 
important property of the discrete cosine transformation which is called energy compaction 
property.  
 
Now, among the other properties of discrete cosine transformation which is obviously similar to 
the discrete Fourier transformation; as we have said that the discrete cosine transformation is 
separable as well as symmetric, it is also possible to have a faster implementation of discrete 
cosine transformation or FDCT in the same manner as we have implemented FFT incase of 
discrete Fourier transformation. 
 
The other important property of the discrete cosine transformation is the periodicity property. 
Now, in case of discrete cosine transformation, you will find that the periodicity is not same as 
incase of discrete Fourier transformation. In case of Fourier transformation, we have said that the 
discrete Fourier transform is periodic with period capital N where N is the number of samples. In 
case of discrete cosine transformation, the magnitude of the coefficients are periodic with a 
period twice N where N is the number of samples. 
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So, the periodicity in case of discrete cosine transformation is twice or the period in case of 
discrete cosine transformation is twice of the period in case of discrete Fourier transformation 
and we will see later that this particular property helps to obtain data compression, the smother 
data compression using the discrete cosine transformation and not using the discrete Fourier 
transformation. 
 
The other property which obviously helps the data compression using discrete cosine 
transformation is the energy compaction property because most of the signal energy or image 
energy is concentrated in a very few number of coefficients near the origin or near the (0, 0) 
value in the frequency domain in the uv plane. 
 
So, by coding few numbers of coefficients, we can represent or we can represent most of the 
energy, most of the signal energy or most of the image energy. So, that also helps in the data 
compression using discrete cosine transformation, a property which is not normally found in case 
of discrete Fourier transformation. 
 
So, after discussing about all these different properties of the discrete cosine transformation, let 
us go to the other transformation which we have said as Walsh transformation. 
 
(Refer Slide Time: 21:05) 
 

 
 
So now, let us discuss about the Walsh transform. In case of 1 D, the discrete Walsh transform 
kernels are given by g (x, u) is equal to 1 upon capital N into product minus 1 to the power bi (x) 
into b n minus 1 minus I (x) where the product is taken over i equal to 0 to n minus 1. So, you find in 
this particular case, the capital N gives you the number of samples and the lower case n is the 
number of bits needed to represent x as well as u sorry this is u not x. 
 
So, capital N is the number of samples and the lower case n is the number of bits needed to 
represent both x and u and in this case, the forward transformation kernel is given by g (x, u) 
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equal to 1 upon capital N into product i equal to 0 to lower case n minus 1, minus 1 to the power 
bi (x) into b n minus 1 minus i (u). 
 
Now, in this particular case, the convention is; see, if I represent bk (Z), bk  (Z) represents the 
k’th bit in the digital representation of z, digital or binary representation of z. So, that is the 
interpretation of bi (x). 
 
(Refer Slide Time: 24:00) 
 

 
 
So, using this, the forward discrete Walsh transformation will be given by w (u), in case of 1 
dimension will be given by 1 upon capital N summation f (x) into product i equal to 0 to lower 
case n minus 1, minus 1 to the power bi (x) into bn minus 1 minus i (u) where x varies from 0 to 
capital n minus 1. 
 
The inverse transformation kernel, in case of this discrete Walsh transformation is identical with 
the forward transformation kernel. So, h (x, u), the inverse transformation kernel is same as 
product i equal to 0 to lower case n minus 1 into minus 1 to the power bi (x) into bn minus 1 minus i 
(u) and using this inverse transformation kernel, we can get the inverse Walsh transformation as f 
(x) equal to summation u equal to 0 to capital N minus 1 W (u) product i equal to 0 to lower case 
n minus 1, minus 1 to the power bi (x) into bn minus 1 minus i (u) So, this is the inverse kernel and 
this is the inverse transformation.  
 
So here, you find that the discrete Walsh transformation, both the forward transformation and the 
inverse transformation, they are identical. Only thing is there is the difference of the multiplicity 
factor 1 upon capital N but otherwise because the transformations are identical, so the algorithm 
used to perform the forward transformation, the same algorithm can also be used to perform the 
inverse Walsh transformation. 
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Now, in case of 2 dimensional signal; so in case of 2 dimensional signal, we will have the 
transformation kernel as g (x, y, u, v) which is equal to 1 upon capital N product i equal to 0 to 
lower case n minus 1, minus 1 to the power bi (x) into bn minus 1 minus i (u) plus bi (y) into bn minus 1 

minus i (v) and the inverse transformation kernel in this case is identical with the forward 
transformation kernel. 
 
So, the inverse transformation kernel is given by 1 upon capital N product again i equal to 0 to 
lower case n minus 1, minus 1 to the power bi (x) bn minus 1 minus i (u) plus bi (y) b n minus 1 minus i 
(v). 
 
(Refer Slide Time: 28:35) 
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So, using this forward transformation kernel and the inverse transformation kernel, now you find 
that the inverse as well as the forward discrete Walsh transformation can now be implemented as 
W (u, v) is equal to 1 upon capital N double summation f (x, y) into product i equal to 0 to n 
minus 1, minus 1 to the power bi (x) into bn minus 1 minus i (u) plus bi (y) into bn minus 1 minus i (v) and 
the summation has to be taken over x and y varying from 0 to capital N minus 1. 
 
And in the same manner, because the forward transformation as well as the inverse 
transformation, they are identical in case of discrete Walsh transformation; the same expression 
if i replace f (x, y) by W (u, v) and the summation is taken over u v varying from 0 to capital N 
minus 1, what I get is the inverse Walsh transformation and I get back the original signal f (x, y) 
from the transformation coefficients W (u, v).  
 
So, you find that here, the same algorithm which is used for computing the forward Walsh 
transformation can also be used for computing the inverse Walsh transformation. So now, let us 
see that what are the basis functions of this Walsh transformation and what are the results on 
some image. 
 
(Refer Slide Time: 30:34) 
 

 
 
So, for Walsh transformation, the basis function appears like this or the state of basis images 
appear like this. Here, the basis images are given for a 4 by 4 2D Walsh transformation and if I 
apply this Walsh transformation on the same image say Lena, you find that this is the kind of 
result that we get. 
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So, here again, you find that the property of this cosine transformations that is the coefficients 
neared 0, they are having the maximum energy and as you go away from the origin in the uv 
plane the energy of the coefficients reduces. So, this transformation also has the energy 
compaction property. But here you find that the energy compaction property is not as strong as in 
case of the discrete cosine transformation.  
 
So here, the coefficient energies which is mostly concentrated in this particular region is not that 
strong as the compaction of energy in case of discrete cosine transformation and by analyzing 
this forward as well as the inverse transformation, Walsh transformation kernels Walsh 
transformation kernels; you can again find out thus that this Walsh transformation is separable as 
well as symmetric. 
 
 Not only that, for this Walsh transformation, it is also possible to have a fast implementation of 
2D Walsh transformation almost in the same manner as we have done in case of the discrete 
Fourier transformation where we have computed the first Fourier transform or FFT.  
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So, in case of discrete Walsh transformation, the first implementation of the Walsh 
transformation will be even simpler and in this case, the first transformation can be implemented 
as W (u). So here, we are saying that because the Walsh transformation is separable; so the same 
way in which we have done the Fourier transformation, 2D Fourier transformation that the 
Walsh transformation, 2D Walsh transformation can be implemented by using a sequence of 1 
dimensional Walsh transformation and that is also true in case of discrete cosine transformation. 
 
So, first you perform 1 dimensional Walsh transformation along the rows of the image and then 
the intermediate result that you get, on that you perform 1 dimensional Walsh transformation 
along the columns of the intermediate matrix. So, you get the final transformation coefficients. 
The same is also true in case of discrete cosine transformation because the discrete cosine 
transformation is also separable. 
 
So, to illustrate the first implementation of the Walsh transformation, I take the 1 dimensional 
case. So here, the first implementation can be done in this form. I can write W (u) is equal to half 
of W even (u) plus W odd (u) and W (u) plus capital M is equal to half of W even (u) minus W odd 
(u). So, you find and in this case, u varies from 0 to capital N by 2 minus 1 and M is equal to N 
by 2. 
 
So, we find that almost in the same manner in which we have implemented the first Fourier 
transformation, the discrete 2 dimensional or discrete Walsh transformations, first discrete Walsh 
transformation can also be implemented in the same manner. Here, we divide all the samples for 
which the Walsh transformation has to be taken into even numbered samples and odd numbered 
samples, compute the Walsh transformation of the even numbered samples, compute the Walsh 
transform of the odd numbered odd numbered samples, then combine these 2 intermediate results 
to give you the Walsh transformation of the total number of samples. 
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And because this division can be recursive, so first I have N number of samples. I divide them 
into N by 2 odd samples and N by 2 even samples, even N by 2 odd samples can be divided into 
N by 4 number of odd samples and even samples and if I continue this and finally I come to a 
stage where I am left with only 2 samples, I perform the Walsh transformation of those 2 
samples, then hierarchical combine those intermediate results to get the final Walsh 
transformation. 
 
So here again, by using this fast implementation of the Walsh transformation, you may find that 
the computational complexity will be reduced drastically. 
 
(Refer Slide Time: 35:53) 
 

 
 
So, after discussing about the Walsh transformation, let us go to the next transformation which is 
called the Hadamard transform. So, the next transformation that we discuss is Hadamard 
transform. In case of Hadamard transform, first let us say consider the case in 1 dimension. The 
forward transformation kernel is given by g (x, u) equal to 1 upon capital N minus 1 to the power 
summation bi (x) into bi (u) where this i varies from 0 to lower case n minus 1.  
 
So again, the capital N as well as lower case N, they have the same interpretation as in case of 
Walsh transformation and using this forward transformation kernel, the forward Walsh 
transformation forward Hadamard transformation can be obtained as H (u) equal to 1 upon 
capital N summation x varies from 0 to capital N minus 1 f (x) into minus 1 to the power 
summation bi (x) into bi (u) where i varies from 0 to lower case n minus 1.  
 
And for Hadamard transform also, the forward transformation as well as the inverse 
transformation, they are identical. That is the forward transformation kernel and the inverse 
transformation kernel, they are identical. So here again, the same algorithm can be used for 
forward transformation as well as the inverse transformation. 
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So here, the inverse transformation kernel is given by h (x, u) is equal to minus 1 to the power 
summation bi (x) into bi (u) where i varies from 0 to lower case n minus 1 and using this, the 
inverse Hadamard transformation is obtained as f (x) is equal to summation u varying from 0 to 
capital N minus 1 H (u) minus 1 to the power summation bi (x) into bi (u) where i varies from 0 
to lower case n minus 1. So, these are the forward and inverse Hadamard transformation in case 
of 1 dimension. 
 
(Refer Slide Time: 39:03) 
 

 
 
Obviously, this can easily be extended into 2 dimension as in the other cases where the 2 
dimensional forward and inverse transformation will be given by g (x, y, u, v) is equal to 1 upon 
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capital N into minus 1 to the power summation bi (x) into bi (u) plus bi (y) into bi (v) where this 
summation is taken from over i equal to 0 to lowercase n minus 1 and similarly, the inverse 
transformation kernel is also given by h (x, y, u, v) which is same as g (x, y, u, v) that is 1 upon 
capital N minus 1 to the power summation i equal to 0 to lower case n minus 1 into bi (x) into bi 
(u) plus bi (y) into bi (v). 
 
So, you find that the forward transformation kernel and the inverse transformation kernel in case 
of 2 dimensional discrete Hadamard transformations are identical. So, that gives us the forward 
transformation and the inverse transformation for the 2 dimensional discrete Hadamard 
transformations to be same which enables us to use the same algorithm or same program to 
compute the forward transformation as well as the inverse transformation.  
 
And, if you analyze this, you find that this Hadamard transformation is also separable and 
symmetric. That means in the same manner, this 2 dimensional Hadamard transformation can be 
implemented by using a sequence of 1 dimensional Hadamard transformations. So, for the image 
first we implement 1 dimensional Hadamard transformation over the rows of the image and then 
implement the 1 dimensional Hadamard transformations over the columns of this intermediate 
matrix and that gives you the final Hadamard transformation output. 
 
Now, if I further analyze the kernels of this Hadamard transformation and because we have said 
that 2 dimensional Hadamard transformations can now be implemented in the form of a sequence 
of 1 dimensional Hadamard transformations, so we analyze further with respect to an 1 
dimensional Hadamard transformation. 
 
(Refer Slide Time: 42:09) 
 

 
 
So, as you as you have seen that 1 dimensional Hadamard transformation is given by g (x, u) is 
equal to 1 upon capital N minus 1 to the power summation bi (x) into bi (u) where i varies from 0 
to lower case n minus 1 and let me mention here that all these additions that we are doing, this 
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summations follow modular 2 arithmetic that means this summations are actually nothing but 
ORing operation of different bits. 
 
Now, if I analyze this 1 dimensional forward Hadamard transformation kernel, you will find that 
if I omit the multiplicative term 1 upon N, so if I omit from this, this multiplicative term 1 upon 
capital N; then this forward transformation actually forms, leads to a matrix which is known as 
Hadamard matrix. 
 
(Refer Slide Time: 43:22) 
 

 
 
So, to see that what is this Hadamard matrix, you will find that for different values of x and u, 
the Hadamard matrix will look like this. So, here we have shown a Hadamard matrix for 
Hadamard transformation of dimension 8. So, for N equal to 8, this Hadamard matrix has been 
formed and here plus means it is equal to plus 1 and minus means it is equal to minus 1. 
 
Now, if you analyze this particular Hadamard matrix, you will find that it is possible to generate 
a recursive relation; it is possible to formulate a recursive relation to generate the transformation 
matrixes. Now, how that can be done? 
 
You will find that this particular path, if I consider say these 4 by 4 elements, these 4 by 4 
elements, these 4 by 4 elements, they are identical. Whereas, these 4 by 4 elements of this matrix 
is just negative of this and the same is followed, the same pattern can be observed in all other 
parts of this matrix. So, by observing this, now we can formulate a recursive relation to generate 
these transformation matrixes. 
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So, to have that recursive relation, let us first have a Hadamard matrix of the lowest order that is 
for value of n equal to 2 and for this lowest order, we have a Hadamard matrix H2 which is 
nothing but (1, 1, 1, minus 1) and then using this recursively, a Hadamard matrix of dimensional 
2 N can be obtained from a Hadamard matrix of dimensional N which is given by the relation 
(HN, HN, HN and H minus N). So, a Hadamard matrix of higher dimension can recursively 
formed from a Hadamard matrix of lower dimension. So, this is a very very important property 
of the Hadamard transformation.  
 
Now, if we analyze the Hadamard matrix further; let us see, suppose I want to analyze, I want to 
analyze this particular Hadamard matrix, here you find that if I consider the number of sign 
changes along a particular column, so you find that the number of sign sign changes along 
column number of 0 is equal to 0. Number of sign changes along column number 1 is equal to 7, 
number of sign changes along column number 2 is equal to 3, along column number 3, the 
number of sign changes equal to 4, along column 4 it is equal to 1, along column 5 it is equal to 
6, along column 6 it is equal 2, along column 7 it is equal to 5. 
 
So, if I define the number of sign changes along a particular column as the sequence which is 
similar to the concept of frequency in case of discrete Fourier transformation or in case of 
discrete cosine transformation; so in case of Hadamard matrix, we are defining the number of 
sign changes along a particular column or for a particular value of u as the sequence.  
 
So here, you will find that for value of u is equal to 0, the sequence is equal to 0; u equal to 1, the 
sequence equal to 7; u equal to 2, the sequence equal to 3. So, there is no straight forward 
relation between the value of u and the corresponding sequence unlike in case of discrete Fourier 
transform or in case of discrete cosine transform or we have seen that increasing values of the 
frequency variable u corresponds to increasing values of the frequency components. 
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So, if we want to have similar type of concepts in case of Hadamard transformation also, then 
what we need is we need some sort of reordering of this hadamard matrix and that kind of 
reordering can be obtained by another transformation where that particular transformation, the 
kernels of that particular transformation will be given by g (x, u) is equal to 1 upon capital N 
minus 1 to the power summation bi (x) into pi (u). Now, instead of bi (u), we are writing pi (u) 
where this summation is taken over i equal to 0 to lower case n minus 1 and this particular term 
pi (u)can be obtained from bi (u) using these relations.  
 
p0 (u) will be given by bn minus 1 (u), p1 (u) will be given by bn minus 1 (u) plus bn minus 2 (u), p2 (u) 
will be given by bn minus 2 (u) plus bn minus 3 (u) and continuing like this, pn minus 1 (u) will be given 
by b1 (u) plus b0 (u) where all these summations are again modulo 2 summations. That is they 
can also be explained, they can be implemented using the binary OR operations. 
 
Now, by using this modification, again this particular forward transformation kernel that you get, 
the modified forward transformation kernel that you get that leads to a modified Hadamard 
matrix. So, let see what is this modified Hadamard matrix.  
 
So, the modified Hadamard matrix that you get is of this particular form and if you look at to this 
particular modified Hadamard matrix, you find that here sequence for u equal to 0 is again equal 
to 0, sequence for u equal to 1 is equal 1, sequence for u equal to 2 is equal 2 and now for 
increasing values of u, we have increasing values of sequencing. 
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So, using this modified or ordered hadamard matrix forward kernel; in case of 2 dimensions, the 
ordered Hadamard basis functions are obtained in this particular form. 
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And using this ordered Hadamard basis functions, if I compare this with the Walsh basis 
functions, you will find that basis functions or basis images in case of Walsh transformation and 
the basis images in case of ordered Hadamard transformation; the basis functions are identical. 
But there is a difference of ordering of the Walsh basis functions and the ordered Hadamard 
basis functions.  
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Otherwise, the basis functions for Walsh transformation and the ordered Hadamard 
transformation, they are identical and because of this, in many cases, a term which is used is 
called Walsh Hadamard transformation and this term Walsh Hadamard transformation is actually 
used to mean either Walsh transformation or Hadamard transformation. So, this uses, this means 
1 of the 2. Now, using this ordered Hadamard transformation, the result on the same image that 
you get is something like this. 
 
(Refer Slide Time: 52:17) 
 

 
 
So here you find, again, if I look at the energy distribution of different Hadamard coefficients, 
the ordered Hadamard coefficients; you will find that here the energy is concentrated more 
towards 0 compared to the Walsh transformation. So, the energy compaction property of the 
ordered Hadamard transformation is more than the energy compaction property of Walsh 
transformation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 22 



(Refer Slide Time: 53:07) 
 

 
 
Now, this slide shows the comparison of the transformation coefficients of this different 
transformation. The first one shows the coefficient matrix for the discrete Fourier transformation, 
the second one shows the coefficient matrix for the discrete cosine transformation, third one is 
for discrete Walsh transformation and fourth one is for discrete Hadamard transformation, it is 
ordered Hadamard transformation. 
 
Now, by comparing all these 4 different results; you find that in case of discrete cosine 
transformation, the discrete cosine transformation has the property of strongly concentrating the 
energy in very few numbers of coefficients. So, the energy compaction property of discrete 
cosine transformation is much more compared to the other transformations and that is why this 
discrete cosine transformation is very popular for the data compression operations unlike the 
other cases.  
 
And, in case of discrete Fourier transformation and discrete cosine transformation, though we 
can associate the frequency term with the transformation coefficients, it is not possible to have 
such a physical interpretation of the coefficients of the discrete Walsh transformation nor in case 
of discrete Hadamard transformation. 
 
So, though we cannot have such a kind of physical interpretation but still because of this energy 
compaction property, the Hadamard transform as well as the Walsh transform can have some 
application in data compression operations. So, with this we come to our end of our discussion 
on the discrete cosine transformation, discrete Walsh transformation and discrete Hadamard 
transformation and we have also seen some comparison with the discrete Fourier transformation. 
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Now, let us discuss about the questions that we have discussed, we have given in the last class. 
The first 1 is the time complexity of the first Fourier transformation and if you analyze the way 
in which the first Fourier transform is implemented, you can easily find out that the complexity, 
the computational complexity of first Fourier transformation will be in n log n where n is the 
data size. 
 
The second question show that DFT and its inverse are periodic functions where the periodicity 
is N capital N. So, in the expression if you replace u by u plus capital N or v by v plus capital N, 
you will find that we will get back the same expression which means that the DFT as well as the 
inverse DFT, they are periodic with a periodicity of capital N. 
 
The third question is find out the Fourier coefficients for discrete Fourier coefficients for the 
sequence of samples as given here. We have to compute the first Fourier transformation and 
verify that the discrete Fourier transform coefficients as well as FFT coefficients, they are 
identical. It is also quite straight forward by using the expressions that we have discussed when 
we have talked about the Fourier transformation and discrete Fourier transformation, these 
coefficients can be easily computed and it can be verified that DFT coefficients and FFT 
coefficients, they are identical. 
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Now, coming to today’s quiz questions; the first question is which property of discrete cosine 
transform makes it so popular for image compression applications. The second one, what is the 
transformation kernel for Walsh transformation. Third question - what is the transformation 
kernel for Hadamard transform.  
 
Fourth question - explain the significance of modified Hadamard transform. Now, in this case, 
by modified Hadamard transform I mean the ordered Hadamard transform. So, explain the 
significance of ordered Hadamard transform. The fifth question - find out the Walsh transform 
coefficients for the following samples of a 1 dimensional signal where sample values are f (0) 
equal to 3, f (1) equal to 2, f (2) equal to 5 and f (3) equal to 4. 
 
Thank you.  
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