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Hello, welcome to the video lecture series on digital image processing.  
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In our last lecture, we have started discussion on the Fourier transformation and towards the end 
we have seen some of the properties of the Fourier transformation. So, what we have done in the 
last class is we have talked about the Fourier transformation both in the continuous and in the 
discrete domain and we have talked about some of the properties of the Fourier transformation 
like the separability property and the translation property.  
 
Today, we will continue with our lecture on the Fourier transformation and will see the other 
properties of the Fourier transformation and we will talk about how to implement Fourier 
transformation in a faster way. That is we will talk about the fast Fourier transformation 
algorithm.  
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So, in today’s lecture, we will see the properties of the discrete Fourier transformation, 
specifically the periodicity and conjugate property of the Fourier transformation. We will talk 
about the rotation property of the Fourier transformation, we will see the distributivity and the 
scaling property of the Fourier transformation followed by the convolution and correlation 
property of the Fourier transformation and then we will talk about an implementation, a fast 
implementation of the Fourier transformation which is called fast Fourier transform.  
 
(Refer Slide Time: 2:34) 
 

 
 
So first, let us see what just try to repeat, what we have done in the last class. 
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So in the last class, we have talked about the separability. We have talked about the separability 
of the Fourier transformation and here, we have seen that given a 2 dimensional signal f (x, y)  in 
the discrete domain that is samples of this 2 dimensional signal f (x, y);  we can compute the 
Fourier transformation of f (x, y) as F (u, v) which is given by the expression 1 upon capital N 
where our original signal f (x, y)  is of dimension capital N by capital N.  
 
And, the Fourier transformation expression comes as f (x, y)  into e to the power minus j 2 pi by 
N into ux plus vy where both x and y vary from 0 to capital N minus 1 and if I rearrange this 
particular expression, then this expression can be written in the form 1 upon capital N then 
summation e to the power minus j 2 pi by capital N ux and then multiply this quantity by capital 
N and then 1 upon N again a summation f (x, y) e to the power minus j 2 pi by capital N vy.  
 
So, in the inner summation, it is taken from y equal to 0 to capital N minus 1 and the outer 
summation is taken from x equal to 0 to capital N minus 1 and here we have seen that this inner 
summation, this gives the Fourier transformation of different rows of the input image f (x, y) and 
the outer summation, this outer summation gives the Fourier transformation of different columns 
of the intermediate result that we have obtained.  
 
So, the advantage of this separability property that we have seen in the last class is because of 
this separability property; we can do the Fourier transformation, 2 dimensional Fourier 
transformations in 2 steps. In the first step, we take the Fourier transformation of every 
individual row of the input image array and in the second step we can take the Fourier 
transformation of every column of the intermediate result that has been obtained in the first step. 
So now, the implementation of the 2 dimensional Fourier transformations becomes very easy.  
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So, the scheme that we have said in the last class is like this. If I have an input array given by f 
(x, y) where this is the x dimension, this is the y dimension. So, first what we do is we do row 
transformation that is take Fourier transformation of every row of the input image, multiply the 
result by capital N. So, what I get is an intermediate result array and this intermediate result array 
gives Fourier transformation of different rows of the input image.  
 
So, this is represented as F (x, v) and this is my x dimension and this becomes the v dimension.  
And after getting this intermediate result, I take the second step of the Fourier transformation and 
now the Fourier transformation is taken for every column. So, I do column transformation and 
that gives us the final result of the 2 dimensional Fourier transformations F (u, v). So, this 
becomes my u axis, the frequency axis u, this becomes frequency axis v and of course, this is the 
origin (0, 0).  
 
So, it shows that because of the separability property, now the implementation of the 2 
dimensional Fourier transformation has been simplified because the 2 dimensional Fourier 
transformation can now be implemented as 2 step of 1 dimensional Fourier transformation 
operations and that is how we get this final Fourier transformation F (u, v)  in the form of the 
sequence of 1 dimensional Fourier transformations and we have seen in the last class that the 
same is also true for inverse Fourier transformation.  
 
Inverse Fourier transformation is also separable. So, given an array F (u, v), we can do first 
inverse Fourier transformation of every row followed by inverse Fourier transformation of every 
column and that gives us the final output in the form of F (x, y) which is the image array. So, this 
is the advantage that we get because of separability property of the Fourier transformation.  
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The second one, the second property that we have discussed in the last class is the translation 
property. So, this translation property says that if we have an input image f (x, y), input image 
array f (x, y); then translate this input image by (x0, y0). So, what we get is a translated image f 
(x minus x0) and (y minus y0). So, if we take the Fourier transformation of this, we have found 
that the Fourier transformation of this translated image which we had represented as Ft (u, v), 
this became equal to F (u, v) into e to the power minus j 2 pi by capital N ux0 plus vy0. 
 
So, if you find, in this case, the Fourier transformation of the translated image is F (u, v) that is 
the Fourier transformer of the original image f (x, y) which is multiplied by e to the power of 
minus j 2 pi by N ux0 plus vy0. So, if we consider the Fourier spectrum of this particular signal, 
you will find that the Fourier spectrum that is F transpose Ft (u, v) will be same as F (u, v). 
   
Now, this term e to the power of minus j 2 pi by N ux0 plus vy0, this simply introduces an 
additional phase shift. But the Fourier spectrum remains unchanged and in the same manner, if 
the Fourier spectrum F (u, v) is translated by u0 v0. So, instead of taking F (u, v), we take F(u 
minus u0) (v minus v0) which obviously is the translated version of u F (u, v) where F (u, v) has 
been translated by vector u0 v0 in the frequency domain. And if I take the in inverse Fourier 
transform of this, the inverse Fourier transform will be f (x, y) into e to the power j 2 pi by N into 
u0 x plus v0 y. So, this also can be derived in the same manner in which we have done the 
forward Fourier transformation. 
 
So here, you find that if f (x, y) is multiplied by this exponential term e to the power j 2 pi by N 
u0 x plus v0 y; then the corresponding in the frequency domain, its Fourier transform is simply 
translated by the vector (u0, v0). So, what we get is Fu minus u0 and v minus v0. So, under this 
translation property, now the DFT pair becomes if we have F (x, y) e to the power j 2 pi by 
capital N u0 x plus v0 y. The corresponding Fourier transformation of this is F (u minus u0, v 
minus v0) and if we have the translated image f (x minus x0, y minus y0), the corresponding 
Fourier transformation will be F (u, v) e to the power minus j 2 pi by N ux0 plus vy0. 
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So, these are the Fourier transform pairs under translation. So, this f (x, y) and f (x minus x0, y 
minus y0); so these 2 expressions gives you the Fourier transform pairs, the DFT pairs under 
translation. So, these are the 2 properties that we have discussed in the last lecture.  
 
(Refer Slide Time: 14:15) 
 

 
 
Today, let us talk about some other properties. So, the third property that we will talk about 
today is the periodicity and conjugate property. So, the first one that we will discuss is the 
periodicity and the conjugate property. The Periodicity property says that both the discrete 
Fourier transform and the inverse discrete Fourier transform that is DFT and IDFT are periodic 
with a period capital N. So, let us see how this periodicity can be proved.  
 
So, this periodicity property says that F (u, v), this is the Fourier transform of our signal f (x, y).   
This is equal to F (u plus N, v) which is same as F (u, v plus N) which is same as F (u plus 
capital N, v plus capital N). So, this is what is meant by periodic. So, you will find that the 
Fourier transformation F (u, v) is periodic both in x direction and in y direction that gives rise to 
F (u, v) is equal to F (u plus N), F (v plus N) which is same as F (u plus N, v) and which is also 
same as F (u, v plus N).  
 
Now, let us see how we can derive or we can prove this particular property. So, you have seen 
the Fourier transformation expression as we have discussed many times F (u, v) is equal to 
double summation f (x, y) e to the power minus j 2 pi by capital N ux plus vy. Of course, we 
have to have the scaling factor 1 upon capital N where both x and y vary from 0 to capital N 
minus 1.  
 
Now, if we try to compute F (u plus capital N, v plus capital N) then what do we get? Following 
the same expression, this will be nothing but 1 upon capital N then double summation f (x, y)  e 
to the power minus j 2 pi upon capital N and now we will have ux plus vy plus capital Nx 
because now u is replaced by u plus capital N, so we will have capital Nx plus capital Ny where 
both x and y will vary from 0 to capital N minus 1.  
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Now, this same expression, if we take out this capital Nx and capital Ny in a separate 
exponential, then this will take the form 1 upon capital N double summation f (x, y) e to the 
power minus j 2 pi upon capital N ux plus vy into e to the power minus j 2 pi into x plus y. Now, 
if you look at this second exponential term that is e to the power minus j 2 pi x plus y, you will 
find that x and y are the integer values. So, x plus y will always be integer. So, this will be the 
exponential e to the power minus j some k times 2 pi and because this is an exponentiation of 
some integer multiple of 2 pi; so the value of this second exponential will always be equal to 1.  
 
So finally, what we get is 1 upon capital N double summation f (x, y) into e to the power minus j 
2 pi upon capital N into ux plus vy and you will find that this is exactly the expression of F (u 
and v). So, as we said that the discrete Fourier transformation is periodic with period N, capital N 
both in the u direction as well as in the v direction and that is that can very easily we proved like 
this by this mathematical derivation; we have found that F (u plus capital N, v plus capital N) is 
same as F (u, v) and the same is true in case of inverse Fourier transformation.  
 
So, if we derive the inverse Fourier transformation, then we will get the similar result showing 
that the inverse Fourier transformation is also periodic with period capital N. Now, the other 
property that we said is the conjugate property. 
 
(Refer Slide Time: 20:09) 
 

 
 
The conjugate property says that if f (x, y), this function, if this is a real value function; f (x, y) if 
it is a real value function, in that case the Fourier transformation F (u, v) will be F star (minus u, 
minus v) where this F star indicates that it is complex conjugate and obviously because of this, if 
I take the Fourier spectrum, F (u, v) will be same as F of (minus u, minus v). So, this is what is 
known as the conjugate property of the discrete Fourier transformation.  
 
Now, find that using the periodicity property helps to visualize the Fourier spectrum of a given 
signal. So, let us see how this periodicity property helps us to properly visualize the Fourier 
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spectrum. So for this, we will consider a 1 dimensional signal. Obviously, this can very easily be 
extended to a 2 dimensional signal.  
 
(Refer Slide Time: 21:43) 
 

 
 
So, by this, what we mean is if we have a 1 dimensional signal say f (x) whose Fourier transform 
is given by capital F (u); then as we said, that the periodicity property says that F (u) is equal to F 
of u plus capital N and also the Fourier spectrum F of u is same as F of minus u. So, this says 
that F (u) has a period of length capital N and because the spectrum F (u) is same as F of minus 
u, so the magnitude of the Fourier spectrum of the Fourier transform is centered at the original. 
So by this, what we mean is, let us consider a figure like this. 
 
(Refer Slide Time: 22:43) 
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You will find that this is the typical this is a typical Fourier transform of a particular signal and 
here you find that this Fourier spectrum, the Fourier’s transform is centered at the origin and if 
you look at the frequency access; so this is the u access, if you look at this frequency access, you 
will find that F of minus u, the magnitude of F of minus u is same as the magnitude of the F of 
plus u.  
 
So, this figure shows that the transform values, if we look at the transform values from N by 2 
plus 1; so that is somewhere here, this is N by 2 plus 1 to N minus 1, so that is somewhere here. 
So, find that the transform values in the range N by 2 plus 1 to N minus 1, this is nothing but the 
transform values in the left, transform values of the half period in the left half in the left of the 
origin. 
 
So, just by looking at this, the transform values from N plus 1 N by 2 plus 1 to N minus 1, you 
will find that these values are nothing but the reflections of the half period to the left of the origin 
0. But what we have done is we have computed the Fourier transformation in the range 0 to N 
minus 1. So, you will get all the Fourier coefficients in the range 0 to N minus 1. So, the Fourier 
coefficients ranging the values of u from 0 to N minus 1 and because of this conjugate property, 
you will find we find that in this range 0 to capital N minus 1, what we get is 2 back to back half 
periods of this interval. So, this is nothing but 2 back to back half periods. So, this is 1 half 
period, this is 1 half period and they are placed back to back.  
 
So, to display these Fourier transformation coefficients in the proper manner, what we have to do 
is we have to displace the origin by a value capital N by 2.  
 
(Refer Slide Time: 25:26) 
 

 
 
So, by displacement what we get is this. So, here you will find that in this particular case, the 
origin has been shifted to capital N by 2. So now, what we are doing is instead of considering the 
Fourier transformation F (u), we are considering the Fourier transformation F (u minus capital N 
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by 2) and for this displacement, what we have to do is we have to multiply f (x) by minus 1 to 
the power x.  
 
So, every f (x) has to be multiplied by minus 1 to the power x and this result, if you take the DFT 
of this; then what you get is the Fourier transformation coefficients in this particular form and 
this comes from the shifting property of the inverse Fourier transformation. So, this operation we 
have to do if we want to go for the proper display of the Fourier transformation coefficients. 
 
(Refer Slide Time: 26:31) 
 

 
 
The next property that we will talk about is the rotation property, rotation property of the discrete 
Fourier transformation. So, to explain this rotation property, we will introduce the polar 
coordinated coordinate system that is we will now replace x by r cosine theta, y will be replaced 
by r sin theta, u will be replaced by omega cosine phi and v will be replaced by omega sin phi.  
 
So by this, now our original 2 dimensional signal, 2 dimensional array in the plane f (x, y) gets 
transformed into f (r, theta) and the Fourier transformation F (u, v), the Fourier transform 
coefficients F (u, v) now gets transformed into F of omega phi. Now, using these polar 
coordinates if we find out, compute the Fourier transformation; then it will be found that f of r 
theta plus theta0, the corresponding Fourier transformation will be given by capital F omega phi 
plus theta0.  
 
So, this will be the Fourier transformation pair in the polar coordinate system. So, this indicates 
our original signal was f (r, theta). If I rotate this f (r, theta) by an angle theta 0, then the rotated 
image becomes f (r, theta plus theta0) and if I take the Fourier transform of f (r, theta plus theta0) 
that is the rotated image which is now rotated by an angle theta0, then the Fourier transform 
becomes F omega phi plus theta0 where F omega phi was the Fourier transform of the original 
image f (r, theta).  
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So, this simply says that if I rotate image f (x, y) by an angle say theta0, its Fourier 
transformation will also be rotated by the same angle theta0 and that is what is obvious from this 
particular expression because f of r theta plus theta0 gives rise to the Fourier transformation f of 
capital F omega plus omega phi theta phi plus theta0 where f omega phi was the Fourier 
transformation of f (r, theta). So, by rotating an input image by an angle theta0, the 
corresponding Fourier transform is also rotated by the same angle theta0.  
 
So, to illustrate this, let us come to this particular figure.  
 
(Refer Slide Time: 29:47)  
 

 
 
So here, you find that we had a rectangle, an image where we have all values we have pixel 
values equal to 1 within a rectangle and outside this, the pixel values are equal to 0 and the 
corresponding Fourier transformation is this. So here, the Fourier transformation coefficients or 
the Fourier spectrum is represented in the form of intensity values in an image. The second pair 
shows that the same rectangle is now rotated by an angle 45 degree.  
 
So here, we have rotated this rectangle by angle 45 degree and here you find that if you compare 
the Fourier transformation of the original rectangle and the Fourier transformation of this rotated 
rectangle; here also you will find that the Fourier transform coefficients, they are also rotated by 
the same angle of 45 degree. So, this illustrates the rotation property of the discrete Fourier 
transformation.  
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The next property that we will talk about is what is called distributivity and scaling property. The 
distributive property says that if I take 2 signals, 2 arrays f1 (x, y) and f2 (x, y); so these are 2 
arrays, take the summation of these 2 arrays f1 (x, y) and f2 (x, y) and then you find out the 
Fourier transformation of this particular result. That is f1 (x, y) plus f2 (x, y) and take the Fourier 
transform of this.  
 
Now, this Fourier transformation will be same as the Fourier transformation of f1 (x, y) plus 
Fourier transformation of f2 (x, y). So, this is true under addition. That is for these 2 signals f1 (x, 
y) and f2 (x, y) if I take the addition, if I take the summation and then take the Fourier 
transformation; the Fourier transformation of this will be the summation of the Fourier 
transformation of individual signals f1 (x, y) and f2 (x, y).  
 
But if I take the multiplication that is if I take f1 (x, y) into f2 (x, y) and take the Fourier 
transformation of this product; this in general is not equal to the Fourier transform of f1 (x, y) 
into the Fourier transform of f2 (x, y). So, this shows that the discrete Fourier transformation and 
same is true for the inverse Fourier transformation.  
 
So, this shows that the discrete Fourier transformation and its inverse is distributive over addition 
but the discrete Fourier transformation and its inverse is in general not distributive over 
multiplication. So, the distributivity property is valid for addition of the 2 signals but it is not in 
general valid for multiplication of 2 signals. 
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So, the next property of the same discrete Fourier transform that we will talk about is the scaling 
property. The Scaling property says that if we have 2 scalar quantities a and b; now given a 
signal f (x, y), multiply this by the scalar quantity a, it’s corresponding Fourier transformation 
will be F (u, v) multiplied by the same scalar quantity and the inverse is also true.  
 
So, if I multiply a signal by a scalar quantity a and take its Fourier transformation; then we will 
find the Fourier transformation of this multiplied signal is nothing but the Fourier transformation 
of the original signal multiplied by the same scalar quantity and the true but the same is true for 
the reverse that is also for inverse Fourier transformation. 
 
And, the second one is if I take f of ax, by that is now you scale the individual dimensions x is 
scaled by the scalar quantity a, the dimension y is scaled by the scalar quantity b; the 
corresponding Fourier transformation will be 1 upon a into b, then Fourier transformation u by a 
and v by b and this is the reverse. So, these are the scaling properties of the discrete Fourier 
transformation.  
 
Now, we can also compute the average value of the signal f (x, y). Now, the average value for f 
(x, y) is given by if I represent it like this, this is nothing but 1 upon capital N square into 
summation of f (x, y) where the summation has to be taken for x and y varying from 0 to capital 
N minus 1. So, this is what is the average value of the signal f (x, y).   
 
Now, you find that for the Fourier coefficient, the transform coefficient say f (0, 0); what is this 
coefficient? This is nothing but 1 upon capital N then double summation f (x, y) because all the 
exponential terms will lead to a value 1 and this summation has to be taken for x and y varying 
from 0 to capital N minus 1.  
 
So, you will find that there is direct relation between the average of the 2 dimensional signal f (x, 
y) and its 0’th Fourier coefficient, DFT coefficient. So, this clearly shows that the average value 
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f (x, y), the average value is nothing but 1 upon capital N into the 0’th coefficient 0’th discrete 
Fourier transformation coefficient and this is nothing but because here the frequency u equal to 
0, frequency v equal to 0, so this is nothing but the DC component of the signal. So, the DC 
component divided by N gives you the average value of the particular signal. 
 
(Refer Slide Time: 37:53) 
 

 
 
The next property, this we have already discussed in one of our earlier lectures when we have 
discussed about the sampling and quantization. That is the convolution property. In case of 
convolution property, we have said that if we have say 2 signals f (x), multiply this with the 
signal g (x); then the Fourier transform in the frequency domain, this is equivalent to F of u 
convolution with G of u.  
 
Similarly, if I take the convolution of 2 signals f (x) and g (x); the corresponding Fourier 
transformation in the Fourier domain, it will be the multiplication of F (u) and G (u). So, the 
convolution of 2 signals in the special domain is equivalent to multiplication of the Fourier 
transformations of the same signals in the frequency domain. On the other hand, multiplication 
of 2 signals in the special domain is equivalent to convolution of the Fourier transforms of the 
same signals in the frequency domain. So, this is what is known as the convolution property.  
 
The other one is called the correlation property. The correlation property says that if we have 2 
signals say f (x, y) and g (x, y), so now we are taking 2 dimensional signals and if I take the 
correlation of these 2 signals say f (x, y) and g (x, y); in the frequency domain, this will be 
equivalent to the multiplication F star (u, v) where this star indicates the complex conjugate into 
G (u, v).  
 
And similarly, if I take the multiplication in the special domain that is f star xy into g (x, y); in 
the frequency domain, this will be equivalent to F (u, v) correlation with G (u, v). So, these are 
the 2 properties which are known as the convolution property and the correlation property of the 
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Fourier transformations. So with this, we have discussed the various properties of the discrete 
Fourier transformation.  
 
(Refer Slide Time: 41:03) 
 

 
 
Now, let us see an implementation of the Fourier transformation because if you look at the 
expression of Fourier transformation, the expression we have told many times; this is F (u, v) 
which is same as f (x, y) e to the power minus j 2 pi by capital N ux plus vy where both x and y 
vary from 0 to capital N minus 1 and this divided by 1 upon N. So if I compute, if I analyze this 
particular expression which we have done earlier also in relation with unitary transformation, 
you will find that this text N to the power 4 number of computations.  
 
In case of 1 dimensional signal, F (u) will be given by f (x) e to the power minus j 2 pi by capital 
N ux summation of this over x equal to 0 to capital N minus 1 and you have to scale it by 1 upon 
N. This particular expression takes N square number of computations. So obviously, the number 
of computations and each of these computations are complex addition and multiplication 
operations. So, you find that a computational complexity of N square for a data set of size capital 
N is quite high. So, for implementation, we have discussed earlier that if our transformations are 
separable; in that case, we can go for fast implementation of the transformations.  
 
Let us see how that fast implementation can be done in case of this discrete Fourier 
transformation. So, because of this separability property, we can implement this discrete Fourier 
transformation in a faster way. So, for that what I do is let us represent this particular expression 
F (u) is equal to 1 upon capital N f (x) e to the power minus j 2 pi by N ux, take the summation 
from x equal to 0 to capital N minus 1; we represent this expression in the form 1 upon capital N 
F (x).  
 
Now, I introduce a term WN to the power ux where x varies from 0 to capital N minus 1. Now 
here, this WN is nothing but e to the power minus j 2 pi by capital N. So, we have simply 
introduced this term for simplification of our expressions. Now, if I assume which generally is 

15 
 



the case that the number of samples N is of the form say 2 to the power N; so if I assume that 
number of samples is of this form, then this capital N can be represented as 2 into capital M and 
let us see that how this particular assumption helps us.  
 
(Refer Slide Time: 44:28) 
 

 
 
And with this assumption, now we can represent, rewrite F (u) as 1 upon 2 M because N is equal 
to 2 M. So now, I can write 1 upon 2 M, then take the summation f (x) into W 2 M to the power 
ux where x now varies from 0 to 2 m minus 1. The same expression I can rewrite as half 1 upon 
capital M summation F (2x) W 2 M to the power u into 2x plus 1 upon capital M summation F (2x 
plus 1) W 2 M to the power u into 2 x plus 1 where x varies from 0 to capital M minus 1, here also 
x varies from 0 to capital M minus 1.  
 
Now by this, you see that what we have done. F (2x), as x varies from 0 to capital M minus 1, 
this gives us only the even samples of our input sequence. Similarly f (2x plus 1), as x varies 
from 0 to capital M minus 1, this gives us only the odd samples of the input sequence. So, we 
have simply separated out the even samples from the odd samples and if I further simplify this 
particular expression, this expression can now be written in the form half into 1 upon capital M 
summation f (2x) into W capital M to the power ux where x varies from 0 to capital M minus 1 
plus 1 upon capital M summation f (2x) plus 1 W M to the power ux into W 2 M to the power u.   
 
So after simplification, after some simplification, the same expression can be written in this 
particular form. Now, if you analyze this particular expression, you will find that the first 
summation, this one gives you the Fourier transform of all the even samples. So, this gives you F 
even u and this quantity in the second summation, this gives you the Fourier transformation of all 
the odd samples. So, I read it will write it as odd u and in this particular case, u varies from 0 to 
capital M minus 1.  
 
So, by separating the even samples and odd samples, I can compute the Fourier transformation of 
the even samples to give me F even u; I can compute the Fourier transformation of the odd 
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samples to give me F odd u and then I can combine these 2 to give me the Fourier DFT 
coefficients of values from 0 to capital M minus 1.  
 
(Refer Slide Time: 48:37) 
 

 
 
Now, following some more property, so effectively what we have got is F (u) is equal to half F 
even u plus F odd u into W 2 M to the power u. Now, we can also show that WM to the power u plus 
M is same as WM to the power u. This can be derived from the definition of WM and also we can 
find out that W 2 M u plus M is same as minus W2 m to the power u. So, this tells us that capital F 
u plus capital M is nothing but half of F even u minus F odd u into W 2 M to the power u.  
 
So here again, u varies from 0 to m minus 1. That means this gives us the coefficients from M to 
2 M minus 1. So, I get back all the coefficients. The first part, this part gives us the coefficient 
from 0 to m minus 1 and this half gives us the coefficients from capital M to 2 M minus 1. Now, 
what is the advantage that we have got? In our original formulation, we have seen that the 
number of complex multiplications and additions were of the order of N square. 
 
Now, we have divided the N number of samples into 2 half’s. For each of them for each of the 
half’s, when I compute the discrete Fourier transformation, the amount of computation will be N 
square by 4 for each of the half’s and the total amount of computation will be of order N square 
by 2 taking 2 half’s, considering 2 half’s separately. 
 
So, straight way we have got a reduction in the computation by a factor of 2. So, it is further 
possible that this odd half of the samples and the even half of the samples that we have got, we 
can further sub divide it. So, from N by 2, we can go to N by 4; from N by 4, we can go to N by 
8 number of samples; from N by 8, we can go to N by 16 number of samples and so on until we 
are left with only 2 samples.  
 
So, if I go further breaking this sequence of samples into smaller sizes, compute the DFT’s of 
each of those smaller size samples and then combine them together, then you will find that we 
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can gain enormously in terms of amount of computation and it can be shown that for this first 
Fourier transform implementation, the total number of computation is given by N log N and log 
is taken with this 2.  
 
So, this gives enormous amount of computation, as enormous gain in computation as against N 
square number of computations that is needed for direct implementation of discrete Fourier 
transformation. So with this, we have come to the end of our discussion on Fourier 
transformation. 
 
(Refer Slide Time: 52:31) 
 

 
 
Now, let us discuss about these questions that we have given in our last class. The first question 
we said that find out DFT coefficients of a digital image f (x, y) of size capital N by capital N 
where f (x, y) equal to 1 for all values of x and y. Now, this computation is very simple. 
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(Refer Slide Time: 53:10) 
 

 
 
Here, you find that F (u, v) will be simply summation 1 upon N f (x, y) e to the power minus j 2 
pi by capital N ux plus vy. Now, for simplicity, let me break it into 2 summations. So, I will 
write it as 1 upon capital N into e to the power minus j 2 pi by capital N summation f (x, y); no, f 
(x, y) is equal to 1, so I can simply forget this term f (x, y). So, this will be simply e to the power 
minus j sorry this is ux e from minus j 2 pi by N vy.  
 
Now, let us take 1 of these terms. If I expand this, so summation e to the power minus j 2 pi by 
capital N vy, this will be simply 1 plus e to the power minus j 2 pi by capital N plus e to the 
power minus j 2 pi by capital N into 2 v, this is into v plus it continues like this and there will be 
total capital N number of terms and if you look at this particular series, it is nothing but a GP 
series having capital N number of terms. 
 
So, this summation will simply be 1 minus e to the power minus j 2 pi into v divided by 1 minus 
e to the power minus j 2 pi by capital N into v and this particular term will be equal to 1 only 
when v equal to 0 and it will be equal to 0 when v is non 0. So, by substituting this and same is 
the case for the other summation. So, by substituting this result in this expression what we get is 
F (u, v) is equal to 1 in this particular expression when u and v is equal to 0 and this is equal to 0 
when u and v are non 0. So, this is the final result that we will get for the first problem.  
 
Now coming to the second problem, consider the sample values of a 1 dimensional signal as 
given below; find out the DFT coefficients and also show that the inverse DFT produces the 
original sample values. This is very simple. You simply replace these values in our DFT 
expressions. So, you get the DFT coefficients f0, f1, f2 and f 3 and whatever value you get as the 
coefficients, you replace those values in our inverse DFT expression and you will see that you 
can get back the same sample values.  
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(Refer Slide Time: 56:51) 
 

 
 
Now, coming to the today’s questions, the today’s questions are: what is the time complexity of 
fast Fourier transformation, the second question is show that the discrete Fourier transformation 
and its inverse are periodic functions, third question is find out the Fourier coefficients for the 
following set of 1 dimensional signal using the fast Fourier transformation technique and verify 
that the result obtained using the fast Fourier transformation technique is same as that using 
direct implementation of discrete Fourier transformation technique.  
 
Thank you.  
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