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Hello, welcome to the video lecture series on digital image processing. Last class we started our 
discussion on image transformation. Today we are going to continue with the same topic that is 
we will continue with the image transformation topic. So, let us see what we have done in our 
last lecture. 
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In our introductory lecture on image transformations, we have said the basics of image 
transformation. We have seen what is meant by a unitary transform. We have also seen what is 
orthogonal and orthonormal basis vectors. We have seen how an arbitrary 1 dimensional signal 
can be represented by series of summation of orthogonal basis vectors and we have also seen 
how an arbitrary image can be represented by series of summation of orthonormal basis images.  
So, when we talk about the image transformation; basically, the image is represented as a series 
summation of orthonormal basis images. 
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After today’s lecture, the students will be able to analyze the computational complexity of image 
transform operations. They will be able to explain what is meant by a separable unitary 
transformation, they will also know how separable unitary transforms help to implement fast 
transformations and of course, they will be able to write algorithms for fast transforms. So, first 
let us see that what we have done in the last class.  
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In the last class, we have taken 1 dimensional sequence of the discrete signal samples is given in 
the form u (n) where n varies from 0 to some capital N minus 1. So, we have taken initially a 1 
dimensional sequence of discrete samples like this, that is u (n) and we have found out what is 
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meant by unitary transformation of this 1 dimensional discrete sequence. So, by unitary 
transformation, by unitary transformation of this 1 dimensional discrete sequence is given by say 
v is equal to A times u where A is a unitary matrix and this can be represented expanded in the 
form v (k) is equal to we have a (k, n) u (n) where n varies from 0 to capital N minus 1 assuming 
that we have capital N number of samples in the input discrete sequence.  
 
Now, we say that this transformation is a unitary transformation if the matrix A is a unitary 
matrix. So, what is meant by a unitary matrix? The matrix A will be said to be a unitary matrix if 
it obeys the relation that A inverse, inverse of matrix A will be given by A conjugate transpose. 
That is if you take the conjugate of every element of matrix A and then the take then take then 
take the transpose of those conjugate elements; then that should be equal to the inverse of matrix 
A itself. 
 
So, this says that A into A conjugate transpose, that should be same as A conjugate transpose A 
which will be same as an identity matrix. So, if this relation is true for the matrix A, then we say 
that A is a unitary matrix and the transformation which is given by this unitary matrix is unitary 
transformation. So, using this matrix A, we go for unitary matrix, unitary transformation.  
 
Now, once we have this transformation and we get the transformation coefficients v (k) or the 
transformed vector, transform sequence v; we should be also able to find out that how from these 
transformation coefficients, we get back the original sequence u (n). So, this original sequence is 
obtained by a similar such relation which is given by u is equal to A. 
 
(Refer Slide Time: 6:23) 
 

 
 
Obviously, it should equal to A inverse v and in our case, since A inverse is same as A conjugate 
transpose; so, this can be written as A conjugate transpose v and this expression can be expanded 
as u (n) is equal to summation v (k) a conjugate (k, n) where k varies from 0 to N minus 1 and 
we have to compute this for all values of n varying from 0 to n minus 1, so 0 less than or equal to 
n less than or equal to capital N minus 1.  
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So, by using the unitary transformation, we can get the coefficients, the transformation 
coefficients and using the inverse transformation, we can obtain the input sequence, input 
discrete sequence from the coefficient, from this sequence of coefficients. And, this expression 
says that the input sequence u (n) is now represented in the form of series summation of a set of 
vectors or orthonormal basis vectors. So, this is what we get in case of 1 dimensional sequence.  
 
Now, let us see what will be the case in case of a 2 dimensional sequence.  
 
(Refer Slide Time: 8:18) 
 

 
 
So, for a 2 dimensional sequence; see if I go for the case of 2 dimensional signals; then the same 
transformation equations will be of the form v (k, l) is equal to we have to have double 
summation u (m, n)  into ak, l  (m, n) where both m and n varies from 0 to capital N minus 1. 
  
So here, u (m, n) is the input image, it is a 2 dimensional image. Again, we are transforming this 
using the unitary matrix A and in the expanded form, the expression can be written like this - v 
(k, l) is equal to double summation u (m, n) ak, l (m, n) where both m and n varies from 0 to 
infinity and this has to be computed for all the values of k and l where k and l varies from 0 to n 
minus 1. So, all k and l will be in the range 0 to N minus 1.  
 
In the same manner, we can have the inverse transformation so that we can get the original 2 
dimensional matrix from the transformation coefficient matrix and this inverse transformation in 
the expanded form can again be written like this. So, from v (k, l) we have to get back u (m, n). 
So, we can write it as u (m, n) again is equal to double summation v (k, l) into a star k, l (m, n) 
where both k and l will vary in the range 0 to capital N minus 1 and this we have to compute for 
all values of m and n in the range 0 to capital N minus 1 where this image transform that is ak, l 
(m, n), this is nothing but a set of complete orthonormal discrete basis functions. So, this ak, l (m, 
n), this is a set of complete orthonormal basis functions. 
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And, in our last class, we have said what is meant by the complete set of orthonormal basis 
functions and in this case, this quantity the v (k, l), what we are getting these are known as 
transform coefficients. Now, let us see that what will be the computational complexity of these 
expressions.  
 
If you take any of these expressions, say for example the forward transformation where we have 
this particular expression v (k, l) is equal to double summation  u (m, n)  ak, l (m, n) where m and 
n vary from 0 to capital N minus 1. That means both m and n; m will vary from 0 to capital N 
minus 1, n will also vary from 0 to capital N minus 1.  
 
So, to compute this v (k, l), you find that if I compute this particular expression; for every v (k, 
l), the number of complex multiplication and complex addition that has to be performed is of the 
order of capital N square and you remember that this has to be computed for every value of k and 
l where k and l vary in the range 0 to capital n minus 1. That is k is having capital N number of 
values, l will also have capital N number of values.  
 
So, to find out v (k, l), a single coefficient v (k, l), we have to have of the order of capital N 
square number of complex multiplications and additions and because this has to computed for 
very v (k, l) and we have capital N square number of coefficients because both k and l vary in the 
range 0 to capital N minus 1; so there are capital N square number of coefficients and for 
computation of each of the coefficient, we need capital N square number of complex addition 
and multiplication. 
 
So, the total amount of computation that will be needed in this particular case is of the order of 
capital N to the power 4. Obviously, this is quite expensive for any of the practical size images 
because in practical cases, we get images of the size of say 256 by 256 pixels or 512 by 512 
pixels, even it can go upto say 1k by 1k number of pixels or 2k by 2k number of pixels and so 
on. 
 
So, if the computational complexity is of the order of capital N to the power 4 where the image is 
of size n by n; you find that what is the tremendous amount of computation that has to be 
performed for doing the image transformations using this simple relation? So, what is the way 
out? We have to think that how we can reduce the computational complexity?  
 
Obviously, to reduce the computational complexity, we have to use some mathematical tools and 
that is where we have the concept of separable unitary transforms.  
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So, we find that we have the transformation matrix which is represented by matrix A or we have 
represented this as ak, l (m, n) and we say that this is separable if ak, l (m, n) can be represented 
in the form, so if I can represent this in the form ak (m) into say bl (n) or equivalently, I can put it 
in the form a (k, m) into b (l, n). 
   
So, if this ak, l (m, n) can be represented as a product of a (k, m) and b (l, n); then this is called 
our then this is called separable. So, in this case, both a (k, m) where k varies from 0 to capital N 
minus 1 and b (l, n) where l also varies from 0 to capital N minus 1. So, these 2 sets - a (k, m) 
and b (l, n), they are nothing but 1 dimensional complete orthogonal sets of basis vectors. So, 
both a (k, m) and b (l, n), they are 1 dimensional complete orthonormal basis vectors. 
 
Now, if I represent this set of orthonormal basis vectors, both a (k, m) and b (l, n) in the form of 
matrices that is we represent A as a (k, m) as matrix A and similarly b (l, n) the set of these 
orthonormal basis vectors if we represent in the form of a matrix, then both and both A and B 
themselves should be unitary matrices and we have said that if they are unitary matrixes, then 
AA conjugate transpose is equal to A transpose A conjugate which should be equal to identity 
matrix. 
  
So, if this holds true; in that case, we say that the transformation that we are going to have is a 
separable transformation and we are going to see next that how this separable transformation 
helps us to reduce the computational complexity. See, in the original form, we had the 
computational complexity of the order capital N to the power 4 and will see that whether this 
computational complexity can be reduced from capital from the order capital N to the power 4. 
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Now, in most of the cases, what we do is we assume these 2 matrixes A and B to be same and 
that is how these are decided. So, if I take both A and B to be equal to be same, then the 
transformation equations can be written in the form v (k, l) will be double summation a (k, m)  u 
(m, n)  a (l, n). 
 
So, compare this with our earlier expressions where in the expression we had ak, l (m, n). So 
now, this ak, l (m, n), we are separating into 2 components. One is a (k, m), the other one is a (l, 
m) and this is possible because the matrix A that we are considering is a separable matrix. So, 
because this is a separable matrix, we can write v (k, l) in the form of a (k, m)  u (m, n)  into a (l, 
n) where again in this case, both m and n will vary from 0 to capital N minus 1 and in matrix 
form, this equation can be represented as V equal to AUA transpose where U is the input image 
of dimension capital N by capital N and V is the coefficient matrix again of dimension capital N 
by capital N and the matrix A is also of dimension capital N by capital N.  
 
In the same manner, the inverse transformation that is what we have got is the coefficient matrix 
and by inverse transformation, we want to have the original image matrix from the coefficient 
matrix. So, in the same manner, the inverse transformation can now be written as u (m, n) equal 
to again we have to have this double summation a star (k, m) v (k, l) a star (l, n) where both k 
and l will vary from 0 to capital N minus 1.  
 
So, this is the expression for the inverse transformation and again as before, this inverse 
transformation can be represented in the form of a matrix equation where the matrix equation 
will look like this - U equal to A conjugate transpose V into A conjugate and these are called 2 
dimensional separable transformations. So, you find that from our original expressions, we have 
now brought it to an expression in the form of separable transformations.  
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So, you find that this particular expression that is V, when we have written this V equal to sorry 
so here we have written v equal to, so if you go back to our previous slide, you will find that V 
equal to AU UA transpose. So, if I just write in the form AUA transpose, so I get the coefficient 
matrix V from our original image matrix U by using this separable transformations. The same 
equation, we can also represent in the form of V transpose equal to A [AU] transpose. 
 
Now, what does this equation mean? You will find that here what it says that if I compute A, the 
matrix multiplication of A and U take the transpose of this. Then re multiply that result with the 
matrix A itself. Then what we are going to get is the transpose of the coefficient matrix V. See, if 
I analyze this equation, it simply indicates that these 2 dimensional transformations can be 
performed by first transforming each column U with matrix A and then transforming each row of 
the result to obtain the rows of the coefficient matrix V. So, that is what is meant by this 
particular expression.  
 
So, A into U, what it does is it transforms each column of the matrix A with of the input image A 
with the input image U with the matrix A and this intermediate result you get, you transform 
each row of this again with matrix A and that gives you the rows of the transformation matrix or 
the rows of the coefficient matrix V. And, so if I take the transpose of this final result, what we 
are going to get is the set of coefficient matrix that we wanted to have. Now, if I analyze this 
particular expression, you will find that A is a matrix of dimension capital N by capital N, U is 
also a matrix of the same dimension capital N by capital N.  
 
And then, from matrix algebra, we know that if I wanted to multiply 2 matrices of dimension 
capital N by capital N; then the complexity or the number of additions and multiplications that 
we have to do is of order capital N cube. So here, to perform this first multiplication, we have to 
have of order N cube number of multiplications additions. The resultant matrix is also of 
dimension capital N by capital N and the second matrix multiplication that we want to perform 
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that is A with AU transpose, this will also need of order N cube number of multiplications 
additions.  
 
So, the total number of addition and multiplication that we have to perform when I implement 
this as a separable transformation is nothing but of order 2N cube and you compare this with our 
original configuration when we had seen that the number of addition and multiplication that has 
to be done is of order N to the power 4. So, what we have obtained in this particular case is the 
reduction of computational complexity by a factor of capital N.  
 
So, this simply indicates that if the transformation is done in the form of a separable 
transformation, then it is possible and as we have seen that we can reduce the computational 
complexity of implementation of the transformation operation. Obviously, the final result that 
you get that is the coefficient matrix is same as the coefficient matrix that you get when you 
implement this as a non separable transformation.  
 
So, advantage is that you get by implementing this as a separable transformation is reduction in 
computational complexity. Now, let us see that what is meant by the basis images. 
 
(Refer Slide Time: 27:36) 
 

 
 
So, what is meant by basis image? Now here, we assume that suppose ak star, this denote the 
k’th column of the matrix A conjugate transpose. So, ak star, we represent this, the k’th column 
of A conjugate transpose where A is the transformation matrix and now if I define the matrices 
Ak, l star as ak star into al star transpose; so you will find that ak star is the k’th column of the 
matrix A star transpose, al star is also the l’th column of the matrix A conjugate transpose.  
 
So, if I take the product of ak star and al star transpose, then I get the matrix, a matrix Ak, l star 
and let us also define the inner product of say 2 N by N matrices. So, I define inner product of 2 
N by N matrices, say F and G. So, the inner product of these 2 matrices F and G are defined as f 
(m, n) g star (m, n) where both m and n vary from 0 to capital N minus 1.  
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So, define the inner product of 2 matrices F and G in the form of f (m, n) g star (m, n) where both 
m and n vary from 0 to capital N minus 1. 
 
(Refer Slide Time: 30:21) 
 

 
 
So now, by using these 2 definitions, now if I rewrite all transformation equations; so now we 
can write the transformation equations as  v (k, l) is equal to, you will find that the old expression 
that we have written u (m, n)  ak, l  (m, n) where both m and n vary from 0 to capital N minus 1. 
So, this is nothing but as per our definition, so if you just look at this definition; this is nothing 
but an expression of an inner product. So, this was the expression of the inner product.  
 
So, this transformation equation is nothing but an expression of an inner product and this inner 
product is the inner product of the image matrix u with the transformation matrix A star k, l. 
Similarly, if I write the inverse transformation u (m, n) which is given as again in the form of 
double summation, v (k, l) into a star k, l  (m, n) where k, l vary from 0 to capital N minus 1. So 
again, you will find that in the matrix form, this will be written as U equal to summation v (k, l) 
into A star k, l where both k and l vary from 0 to capital N minus 1.  
 
So, if you look at this particular expression, you will find that our original image matrix now is 
represented by a linear combination of N square matrices A star k, l because both k and l vary 
from 0 to capital N minus 1. So, I have N square such matrices Ak, l and by looking at this 
expression, you will find that our original image matrix U is now represented by a linear 
combination of N square matrices a star k, l where each of these N square matrices are of 
dimension capital N by capital N and these matrices A star k, l are known as the basis images. 
  
So, this particular derivation simply says that the purpose of image transformation is to represent 
an input image in the form of linear combination of a set of basis images. Now, to look at how 
this basis images look like, to see how this basis images look like; let us see some of the images.  
 

10 
 



(Refer Slide Time: 33:52) 
 

 
 
So here, we find that we have shown 2 images. We will see later that these are the basis images 
of dimension 8 by 8. So here, we have shown basis images of dimension 8 by 8 and there are 
total 8 into 8 that is 64 basis images. We will see later that in case of discrete Fourier 
transformation, we get 2 components. One is the real component, other one is the imaginary 
component. So accordingly, we have to have 2 basis images. One corresponds to the real 
component, the other one corresponds to the imaginary component.  
 
(Refer Slide Time: 34:35) 
 

 
 
Similarly, this is another basis image which corresponds to the discrete cosine transformation. So 
again, here I have shown the basis images of size N by 8 by 8. Of course, the inner size image is 
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quite expanded and again we have 8 into 8 that is 64 numbers of images. So here, we find that a 
row of this represents the index k and the column indicates the index l. So again, we have 64 
images, each of these 64 images is of size 8 by 8 pixels. 
  
(Refer Slide Time: 35:22) 
 

 
 
Similarly, we have the basis images for other transformations like Walsh transform, Hadamard 
transform and so on. So, once we look at the basis images; so the purpose of showing these basis 
images is that as we said that the basic purpose of image transformation is to represent an input 
image as linear combination of a set of basis images and when we take this linear combination, 
each of this basis images will be weighted by the corresponding coefficient in the transformation 
coefficient v (k, l) that we compute after the transformation and as we have said that this v (k, l) 
is nothing but the inner product of k, l’th basis image. 
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So, when you compute this v (k, l) as we have seen earlier; so, if you just look at this, this v (k, l) 
which is represented as inner product of the input image U and the k, l’th basis image is star k, l. 
So, each of these coefficients v (k, l) is actually represented as the inner product of the input 
image U with the k, l’th basis image Ak, l star and because this is the inner product of the input 
image U and the k, l’th basis image Ak, l star, this is also called the projection of the input image 
on the k, l’th basis image. 
 
So, this is also called the projection of the input image U onto the k, l’th basis image Ak, l star  
and this also shows that any N by N image; any image input image of size, any input image U of 
size capital N by capital N can be expanded using a complete set of N square basis images. So, 
that is the basic purpose of our input of the image transformation. Now, let us take an example. 
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So, let us consider an example of this transformation. Say, we have been given a transformation 
matrix which is given by A equal to 1 upon root 2 (1, 1, minus 1) and we have the input image 
matrix U equal to (1, 2, 3, 4) and in this example we will try to see that how this input image U 
can be transformed with this transform matrix A and the transformation coefficients that you get, 
If I take the inverse transformation of that, we should be able to get back our original input 
image U.  
 
So given this, the transformed image; we can compute the transformed image like this, the 
transformation matrix V will be given by 1 upon 2 into (1, 1, 1, minus 1) into our input image (1, 
2, 3, 4). See, if you just see our expressions, you will find that our expression was something like 
this. When we computed V, we had computed V equal to AUA transpose. So, by using that, we 
have AU, then A transpose and by nature of this transformation matrix A, you will find that A 
transpose is nothing but same as A. 
 
So, you will have (1, 1, 1, minus 1) and if you do this matrix computation, it will simply come 
out to be 1 upon 2 into (4, 6, minus 2, minus 2) into (1, 1, 1, minus 1). And on completion of this 
matrix multiplication, the final coefficient matrix V will come out to be (5, minus 1, minus 2, 0). 
So, I get the coefficient matrix V as (5, minus 1, minus 2, 0). 
 
Now, let us see that what is the, for this particular transformation, what will be the corresponding 
basis images? 
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Now, when we defined the basis images, you remember that we have said that we have assumed 
ak star to be the k’th column. This was the k’th column of matrix A star transpose. Now, using 
the same concept and from this our basis functions was taken as Ak, l star which was given by ak 
star multiplied with ah sorry Ak, l star the k, l’th basis image was computed as ak star multiplied 
with al star transpose. So, this is how we had computed the basis images, we have defined the 
basis images.  
 
So, using the same concept, in this particular example where we have all the transformation 
matrix A is given as 1 upon root 2 (1, 1, 1, minus 1); I can compute the basis images as A0, 0 
star. The 0’Th basis image will be simply half into the basis vectors (1, 1) and (1, 1) transpose. 
So, this will be nothing but half into (1, 1, 1, 1). Similarly, we can also compute A 0, 1 that is 
01’th basis image will be given as half into (1, 1, minus 1, minus 1) which will be same as A1, 0 
that is 10’th basis image and similarly we can also compute A 1, 1 that is 11’th basis image will 
be come out to be half into (1, minus 1, minus 1, minus 1).  
 
So, this is simply by the matrix multiplication operations. We can compute these basis images 
from the rows of from the columns of A conjugate transpose.  
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Now, to see that what will be the result of inverse transformation, you remember the 
transformation coefficient matrix V, we had obtained as (5, minus 1, minus 2 and 0). So, this was 
our coefficient matrix. By inverse transformation, what we get is or inverse transformation is A 
conjugate transpose VA conjugate which by replacing these values, we will get as half into (1, 1, 
1, minus 1) then (5, minus 1, minus 2, 0) and again (1, 1, 1, minus 1) and if you compute this 
matrix multiplication, the result will be (1, 2, 3, 4) which is nothing but our original image 
matrix U.  
 
So, here again, you will find that by the inverse transformation, we get back our original image U 
and we have also found that what are the basis images, the 4 basis images - A star 0, 0, A star 0, 1, 
A star 1, 0 and A star 1, 1 for this particular transformation matrix A which has to be operated on 
the image matrix U and we have also seen that by the inverse transformation, we can get back 
the original image matrix U. Now, let us look further in this separable transformation.  
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So, what we had in our case is we had U as the original image matrix and after transformation, 
we get V as the coefficient matrix and you would remember that both these matrices are of 
dimension capital N by capital N. Now, what we do is for both these matrices U and V, we 
represent them in the form of vectors by row ordering. That is we concatenate one row after 
another. So, by this row ordering, what we are doing is we are transforming this matrix of 
dimension capital N by capital N to a vector of dimension capital N square and by this row 
ordering, the vector that we get let us represent this by the variable say u.  
 
So, by row ordering, the input image matrix is mapped to a vector say u. Similarly, by row 
ordering, the matrix coefficient, matrix V is also represented by v. Now, once we do this, then 
this transformation equations can also be written as v is equal to A Kronecker product with Au. 
So, this Kronecker product of A and A can be represented as this A and it is represented by A 
into u.  
 
Similarly, the inverse transformation can also be written as u is equal to A Kronecker product of 
A conjugate transpose which is nothing but A sorry A conjugate transpose v where this particular 
sign A, A this represents Kronecker product and the matrix A which is equal to the Kronecker 
product of the 2 matrices A and A, this is also a unitary matrix.  
 
So, once we do this, then you will find that our 2 dimensional transformation; after doing this 
row ordering of the input image U and the coefficient matrix V, once they are represented as 1 
dimensional vectors of dimension capital N square, so this 2 dimensional image transformation is 
now represented in the form of or in a 1 dimensional transformation form.  
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So, by this what we have is say, any arbitrary 1 dimensional signal say x can now be represented 
as, say y can now be transformed as y equal to Ax and we say that this particular transformation 
is separable where A is the transformation matrix; we say that this transformation is separable if 
this transformation matrix A can be represented by as the Kronecker product of 2 matrices A 1 
and A 2. 
 
So, whenever this transformation matrix A is represented as Kronecker product of 2 matrices, A 
1 and A 2 sorry A 2, then this particular transformation is separable because in this case, this 
transformation operation can be represented as y equal to A 1 x into A 2 transpose where this y is 
the coefficient matrix and x is the input matrix and we have mapped this y into a vector y by row 
ordering and this matrix x is mapped into this vector x again by row ordering. 
 
Now, if we represent this in this form, then it can be shown that if both A1 and A 2 are of 
dimension N by N and then because this A is the Kronecker product of A 1 and A 2; this A will 
be of dimension N square and by this matrix multiplication, again we can see this will be of 
dimension N square by N square.  
 
So, total N to the power of 4 numbers of elements. So, the amount of computation that you have 
to do in this particular case will be again of order N to the power 4 and because this 
transformation A is separable and this can be represented as Kronecker product of A1 and A2 
and you will find that this particular operation can now be obtained using N cube number of 
operations order N cube number of operations.  
 
So, this again says that if a transformation matrix is represented as Kronecker product of 2 
smaller matrices, then we can reduce the amount of computation. So obviously, if both A 1 and 
A 2 can be further represented as Kronecker product of other unitary matrices, then it is possible 
that we can reduce the computation time further and effectively actually that is what is done in 
case of fast transformations.  
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So, today we have discussed about the separable transformation and we have seen that how this 
separable transformation can be used to reduce the computational complexity.  
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Now, the answers to the quiz questions that we given in the last class. Obviously, in this case the 
first 2 are quite obvious. The third one which we said that determine if the following set of 
vectors is orthogonal. Now, what you have to do is you have to check whether these vectors, 
these 3 vectors are pair vise orthogonal or not.  
 
That is if you take the inner product of pair of these vectors, then only if you take the inner 
product of the vector with itself, you should get a non 0 value and if you take the inner product 
of 2 different vectors, you should get a 0 value and you will find that if you verify on this, you 
will get the same result that is A1, 0, 0, inner product with 1, 0, 0 that will be 1. But 1, 0, 0, 1 inner 
product with 0, 1, 0 or inner product with 0, 0, 1 that will be 0 and you can verify that obviously 
this particular set of vectors is orthogonal and it is not only orthogonal, this particular set of 
vectors will be orthonormal. 
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The fourth one, you have to find out the coefficient Cn. Obviously this comes from the definition 
that if you integrate x (t) an (t) dt over the interval capital T; then that gives you the value of this 
coefficient Cn. So, this again straight way comes from the lecture material that we have covered 
in our previous class that is lecture number 11.  
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Now, coming to today’s quiz questions; the first question is what is the advantage of separable 
transform? Second question: under what condition, a transform is said to be separable? The third 
question: here we have given 2 matrices A and B, you have to find out the Kronecker product of 
the matrices A and B.  
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(Refer Slide Time: 55:27) 
 

 
 
The fourth one: here we have given 2 matrices, the first one is the transformation matrix A and 
the second one is the input image matrix U. You have to calculate the transform, this image 
matrix U when transformed with the transformation matrix A and you also have to find out the 
corresponding basis images.  
 
Thank you.   
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