
Digital Computer Organization
Prof. P. K. Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 08
Pipeline Concept – II

Today let us consider designing of another pipeline architecture. You know that if we want to
multiply two matrices, let us assume that we have two matrices A and B and we want to multiply
the two matrices to generate a third matrix C.

Refer Slide Time: 00:01:17 min)

The matrix multiplication is multiplying two matrices A and B to generate the third matrix C.
We assume that this matrices A and B both are of dimension three. That is they have three
number of rows and three number of columns. So for matrices A the elements are a11 a12 a13 a21
a22 a23 a31 a32 a33. This is matrix A. Similarly matrix B is also of dimension three given by b11
b12 b13 b21 b22 b23 b31 b32 and b33 and you all know that if we want to multiply these 2 matrices,
our resultant matrix will be given by, every ijth element in matrix C is given by aik multiplied
with bkj sum of k equal to 1 2 3. If we write a program for creating this matrix C, the program
will simply look like this, that for i equal to 1 to 3 do, for j, aik. So it is cij equal to cij plus aik
into bkj and before this, at this point I have to initialize cij to zero. So I need such a for loop to
compute this matrix C and you find that here, the complexity of this matrix multiplication root in
will be 3 into 3 into 3, that is 27 number of operations. Now let us say whether we can design a
pipeline architecture so that I can multiply this matrix in less amount of time.

(Refer Slide Time: 00:05:08 min)

So for this pipeline architecture I assume that every element in the pipeline architecture is having
a function like this. It has got three inputs, inputs a b and c and it provides three outputs. In the
horizontal and vertical directions whatever is the input, the same thing comes as output. So here
the output will be a, here the output will be b, whereas in the diagonal direction the output will
be c plus a into b. So this is the processing element using which we will try to implement, try to
design a pipelines architecture so that I can multiply this 3 by 3 matrices. So the architecture will
be something like this. So as we have said that every such processing element will have three
inputs, one we represent as horizontal input, the other one as vertical input and we have a
diagonal input. So it is like this, the inter connection will be met of this form.

So this is the type of inter connection that we will have and you will feed the data on this input
sites. For feeding the data we will assume that during time t1, the data that we feed to this
vertical input or like this 0 0 a13 a12 and a11. So that is one row of matrix a, during the same thing
t1 we have to feed in one column of matrix b to this horizontal inputs. So those are b11 b21 b31
and these inputs are zero. During time t2 I feed the second row of matrix a in this vertical input.
So that will be 0 a21 a22 a23 and this input is 0 and during same time t2, I will feed the second
column of matrix b to this horizontal input. So this will be 0 b12 b22 b32 and this input will be
zero.

Similarly during time t3 I feed the third row of matrix a to this vertical input and this becomes
a31 a32 a33 and during the same time t3, I feed in the third column of matrix b to this horizontal
input. So this input becomes 0 0 b13 b23 and b33 and these are actually delay elements which are
shown by rectangles or latches. Now given this type of diagram, let us see how this architecture
works. You find that since each of these processing elements are of this type, that means
whenever you feed in a as horizontal input, b as vertical input and c as the diagonal input, this
will output a in the horizontal direction. The same thing is passed out, it will output b in the
vertical direction whereas in the diagonal direction it will give c plus a into b.

So if we assume this, you find that… in addition to this diagonal inputs are always zero, these are
always zero. So you find that since at time t1, we are feeding one row of matrix a in the vertical
direction and feeding one column of matrix b in the horizontal direction. So once this data are
available, what is the output of this processing node? That is 0 plus a11 into b11. So at this point I
will have the output as a11 into b11. What I will have here? Simply a11 and in this direction I will
have simply b11.

Similarly after same time t1 what I will have in this direction? Simply a12 will be passed here in
the vertical direction because this is the vertical input, b21 which is fed horizontally that will be
passed here. So what I get during t2 is during t2 here I am feeding a21 but during t2, a12 is already
available. Similarly during t2 this b21 is already available here. The next data that I am feeding is
b12. So after time instant t2 what I will get here? Here I have a12 available here. I have b21
available and in this diagonal direction I have a11 into b11. So in this diagonal output, I will have
a11 into b11 plus a12 which is already available on this link into b21 which is already available on
this link.

So here I will have a11 into b11 plus a12 into b21 available on this link after time t2. Similarly
after time t3 what I will get here is a11 into b11 plus a12 into b21 plus a13 into b31 that will be
available here. That is after time t3 and simultaneously because this data is flowing through this
pipeline, all other components will also be generated. So if you analyze this way, you will find
that the output will be something like this. You will get starting from time t6 onwards, so I will
put it like this. After t5 that is t6, during time t6 what I will get here? c11; c11 will be outputted by
this. That is after time t5 that is during time t6, I will get c11 here. At the same time, during time
t6, I will get c21 which will be outputted by this node in the diagonal direction. During the same
time t6, I will get c31 which will be outputted by this node.

During same time t6, this node will output c12 and this node will output c13. During time t7 this
node will output c32, this node will output c22 and this node will output c23 and this output I will
get during time t7 and during time t8, this node will output c33. How the data will flow? If you
analyze that, you will find that after time t6 simultaneously I get c11 c12 c13 c21 and c31. During
time t7, I get c22 c23 and c32 and during time t8, I get c33. So as against in this case where we
have said that for this simple multiplication, matrix multiplication I need 27 operations. The
same output is obtained in just 8 clock periods. So this gives another example how pipelining can
reduce the computation time and this sort of pipeline has a specific name systolic array, you
know that. These two types of pipeline architectures that we have discussed, one for floating
point addition and the other for this matrix multiplication, you will find that these kinds of
pipelines are dedicated pipelines. That means you can perform only one operation with this
pipelines but it is ensured that operation is more efficient.

(Refer Slide Time: 00:20:20 min)

We can have other kinds of pipeline as well which are called generalized pipelines. What is the
generalized pipelines? In both these kinds of pipelines, you have seen that the data flows only in
one directions. That is from stage i, the data goes to the computation stage i plus 1. I don’t have
any provision of giving the data to a stage j where j is greater than i plus 1. From stage i, I cannot
give the data to a stage j where j is greater than j plus 1 or j is less than i. That means I don’t have
any provision of feed forward data flow or I don’t have provision of feedback data flow. So in
case of generalized pipeline we can have the provision of both feed forward as well as feedback
data flow.

(Refer Slide Time: 00:21:29 min)

So in this case of pipeline what we have done is or if you remember the earlier pipeline that we
have done for floating point addition, we have always said that the data enters from one end of
the pipeline, it comes out of the other end of the pipeline. From stage s1 the data always goes to
stage two. From stage two it always goes to stage three, from three it always goes to four. I don’t
have any facility of sending the data from stage one to stage three. I am always sending the data
from stage one to stage two or I don’t have any facility of giving the data from say stage three to
stage one. That is I don’t have any provision of feedback connection. Here in this case from this
stage, the data is always moving in this direction. From here the data always goes here, the data
always goes here that means it always goes in the forward direction following a linear path. I
cannot bypass of any this. I don’t have any provision of sending the data from this processing
element to this processing element directly. I always have go to where this processing element.
So this is a kind of pipeline which is also known as linear pipeline. The data always flows in the
linear direction.

In a generalized pipeline what we will see is from any stage i, I can send the data to any other
stage j where j can be greater than i plus 1. In case of linear pipeline, j is always equal to i plus 1.
form i, I can send the data to j where j is always i plus 1 equal to i plus 1 in case of linear
pipeline. In case of a generalize pipeline, j can be greater than i plus 1 that means I can bypass
some of the stages in between and feed forward the data or j can also be less than i that means I
can send the data in the backward direction in the pipeline. So such a generalize pipeline can
have a structure like this. Suppose we have got three spaced pipeline s1, s2 and s3. If it is a linear
pipeline, always data will move from s1 to s2, s2 to s3 and finally you get the output.

Now if it is not a linear pipeline and we have also said that to take care of the speed mismatch,
we can put latches in between stages. So let us also put the latches. We will have one latch here,
one latch here, one latch here and finally one latch will come here. From the latch, the data
always go to the corresponding stage. I will have an input, this stage will give an output, this will
also give an output, this will also give an output but now I have to have the provision of selecting
the source of data. So as I said that in this generalize pipeline, in case of linear pipeline the data
will always move from s1 to s2. So this output of s1 can be directly connected to the input of this
latch. Similarly the data will flow from s2 to s3, so this output of s2 will be directly connected to
the input to this latch but now in case of generalized pipeline, I can also have a provision that
from s1 I should be able to send the data to s3 bypassing s2.

Similarly from output of s3 I should be able to send the data to s2, I should also be able to send
the data to s1 which will be the feedback connection. If I send the data from s1 to s3 that becomes
a feed forward connection. from s1 to s2 or s2 to s3 that becomes a linear connection. So all these
three types of connections should be possible in a generalized pipeline. so because now the
source of data to every stage can be one of many, so I should put some sort of multiplexer using
which I can select the source of data to the input of every latch. So what I can do is I can put a
multiplexer here. One input of this multiplexer is the input data and output of the multiplexer is
coming to the input of this latch. The other inputs to this multiplexer can be from output of s3.

Similarly I will also put a multiplexer here that is input to s2 can also come from the output of s3.
So like this and similarly s3 can get input from s2, it can get input from s1. It can also get input
from s3 itself that is the self-loop. So in this case I can do a connection of this form s1, the data

can go to s3, the data can come to s3 from s3 itself. I can have data path something like this and
each of these are multiplexers. This is a multiplexer, this is also a multiplexer, this is also a
multiplexer. So you find that by properly selecting the select inputs of the multiplexers, I can
send the data from output of s1 to the input of s3. I can send the data from output of s3 to the
input of s1, I can also send the data from output of s3 to the input of s2. I can also send the data
from output of s3 to s3 itself.

So I have a reconfigurable type of pipeline. Depending upon what is the function requirement, I
can choose these multiplexer select inputs so that the data will be routed through this pipeline as
required. For functions I can also perform, this can be used for computing a single function. It
may also be used for computing multiple function. That is more than one functions can be
computed by the same pipeline. So if I want to compute more than one functions then suppose I
can take an output from this stage and this gives me a function A. If I take output from this point,
it gives me a function B. So there may be other connection as well. For example in this case we
have not shown a feedback connection from s2 to s1. That is also possible. With the help of this,
I can only feedback the data from output of s3 to s1, I can feedback of data from output of s3 to
s2, I can also feedback from s3 to s3 itself. I can also have a feedback connection from s2 to s1 or
s2 to s2 itself that is also possible in a generalized pipeline.

Now given such a generalized pipeline, now we have to decide that because now it is
reconfigurable. I have to decide that how the data path should be selected, how the data should
flow to compute a particular function which is not required in case of a linear pipeline because in
case of linear pipeline, the data flow is always fixed. From stage i it will go to stage i plus 1 but
in this case because there can be various ways in which the data can flow from one stage to
another, I had to specify for computation of a particular function, how the data path should be
selected. So for computing any function, I have to specify what is called a reservation table. That
means what are the time steps, what are the time periods during which, which of these
computation stages will be used for computation of a particular function.

(Refer Slide Time: 00:32:08 min)

So reservation table can be specified again in the form of a space time diagram. Say for example
for function A, for the computation of function A my reservation table can look like this. There
are three computation stages s1 and s2 and s3 and these are the different time steps or time
periods t0, t1, t2, t3, t4, t5, t6, t7. So when I specify the reservation table for function A, what I
have to specify is during which of these time periods which of the computation stages will be
used by this function A. So I can have a reservation table something like this. I can put a cross
here indicating that during time interval t0, it is the computation stage s1 that will be used by this
function. Similarly I can put a cross here, I can put a cross here. For s2 it can be something like
this, for s3 it can be something like this.

Similarly to compute the function B, function B will also have a reservation table and that
reservation table will obviously be different from this. If it is not different from this then
obviously function A and function B are same. So for function B, the reservation table can be
specified. Again I have the computation stages s1 s2 s3, I have the time durations t0 t1 t2 t3 t4 t5
t6, so something like this. So let us see how the data path will be set for computation of these two
functions. [Conversation between professor and student (Refer Slide Time: 00:35:37)].

If the tables are same, output point is also same. Say depends upon during the last step, last time
period which of the computation stages has been used? You will find that function for A, it takes
8 different time steps starting from t0 to t7. During t7 the computation block that is used is s2.
That means for function A, s2 is the output point. For function B at the last time step t6, the
computational block that is used is s3 that means for function B, s3 is the output point. For
function A the output point is s2, for function B the output point is s3 so that is what has been
shown in this pipeline diagram also.

(Refer Slide Time: 00:36:34 min)

I have taken output A, function A from the output of s2 whereas function B has been taken from
output of s3. So as this reservation table says, it specifies that during which time step, during
which time period which of the computational blocks are to be used for computation of a

particular function. So here you find that for computation of say A during t0, the computation
block that is used is s1 and this being the first one, the input obviously has to come from the
external input. That means the data path that has to be active during t0 is the direct data path
from the external input to this latch and from the latch it directly goes to computation stage s1.

Then you find that during t1, the computation block that is used is s2, during t2 the computation
block is that is used s3. So these follows a linear path. At least for this first three timing
durations, the data flow is linear. From s1 the data will go to s2, from s2 the data will go to s3 but
after that during time interval t3, the processing block that is being used is s1 and prior to that, we
had the output available from processing stage s3. That means now I have to feedback the data
from the output of s3 to the input of s1. So at this point the path that is to be active is this one and
I have to set the multiplexer select input in such a way that now instead of taking the data from
the external input, it has to take the data from this feedback path. From there data will come to s1
and the corresponding computation will be performed.

After s1 during time step t4, you find the computational block that is to be used is block s3. So
now it does not follow the linear path anymore. In case of linear path here from t0 to t1 we had
moved the data from s1 to s2 but now we have to move the data from s1 to s3. That means I have
to make use of the feed forward path and this is the feed forward path. So you have to bypass s2
and set the select input of this multiplexer in such a way that the data from this input will be
selected and that will be fed to the computational block s3 for this part of computation. This way
the computation will continue and at the end of t7, you get the output from the computation stage
s2.

Similarly we can also find out how the data flow will be performed for this function B. So it is
this reservation table which specifies that how the data will flow through the pipeline and how
many times it will be fed back or feed forward to compute a particular function. Obviously the
pipeline control circuit which decides that how the multiplexer select input will be decided or
how the data will be latched into different latches that will make use of this reservation table
because it is only through the reservation table, the control circuit will know how the data has to
move or how many times steps will be needed for computation of a particular function. This
reservation table is very important for a generalized pipeline. They will have different delays.
They will generate same delay. No. Blocks can have different delays but the final delay, I mean
how much delay is allowed that is decided by the control circuit. That is the control circuit will
which will decide that when to latch the data from one stage to the latch and that takes care of
what is the maximum delay in different stages.

At a particular time step only one block is working for these functions but it is not necessary I
can have a situation like this as well. This is also possible in a reservation table. That means for
computation of function A during time step t3, you are making use of both the computation stage
s1 and stage s3. So if you do this, you will find that during time step t2, s3 was used. So after
time step t2 the output is available for s3. During this time both s1 and s3 are being used. That
means I have to set the multiplexer in such a way that is that output of s3 goes to both s1 as well
as s3 itself. To s3 itself is going to s1 also. Data output of s1 (Refer Slide Time: 00:43:07) this is
leaving an output okay then after that the stage which is used is s3. You are talking about this

multiplexer, may be some more function will be generated here. That is also possible instead of
simple multiplexer I can have a functional block.

So multiplexer will be a part of that functionality also or may be before s3 I have one
computation stage which will combine these two outputs, output of s three and output of s1.
What I have shown is a very simplified situation but this can be complicated. So in case of
generalized pipeline, it is possible that more than one computation stage will be used during the
same instant of time. That can be done. Not only that, in a complicated situation it is also
possible that the pipeline is being used for computation of more than one functions
simultaneously, that is also possible. But how to do it that you have to find out. That has to be
found out by analysis of the reservation table.

Now when I come to this generalized pipeline, here you find in case of linear pipeline I didn’t
have any problem. At every time step I can feed in a new data, a new task to the pipeline but
when I come to this generalized pipeline that is not possible. By studying this reservation table, I
have to find that what are the time steps, when I can feed in a new task to the pipeline. I cannot
feed in a new task to the pipeline at every time step because in that case there can be data clash
how? See for example here, for computation of a particular function f A, function A the pipeline
makes use of this computation block s one during time instant t8. It makes use of the same
computation stage s1 during time instant t three. It also makes use of the same computation stage
s1 during time instant t6.

So if at t3, during t3 I want to feed in a new task, a new set of data but on which the same
function A has to be computed. Then you will find that this t3 becomes t0 for that new task. So
for the new task s1 has to be used simultaneously, when s1 is also being used by the previous
task which is not possible. That means two task at time to use the same processing stage s1 at the
same instant of time. So obviously there will be clash. So that is what is called pipeline
scheduling. I have to decide, when I can schedule a new task to the pipeline. I cannot schedule a
new task to the generalized pipeline every time which I can do in case of a linear pipeline
because in case of a linear pipeline, I know that the data enters one end of the pipeline, it goes
out of the other end of the pipeline and in between it always has a linear flow. That means from
s1 it will always come to s2.

For the same function, s1 will not be used again. So at every time step, I can give a new task to a
linear pipeline. I don’t have to consider about this collision. I don’t have to bother about this
collision but in case of a generalized pipeline, I have to find out that what are the time durations
or what are the time steps, when I can feed in a new task to the pipeline. That I have to do by
analysis of this reservation table. So now let us see how we can analyze this reservation table.

(Refer Slide Time: 00:47:49 min)

So one thing I have said that here if I initiate a task at t0, I cannot initiate next task at time instant
t3 because then there will be clash for this process stabilized one. Neither I can initiate a task at
time instant t6 because then also there will be a clash on s1. Similarly here I cannot initiate at a
task at t1 sorry. If at some instant of time at t1, this function A makes use of this processing stage
s2, I cannot initiate a task in such a way that the next task will make use of the same processing
stage s2 during time instant t7 because then there will be a clash in this processing stage s2. So I
have to analysis this reservation table so that at no computation stage, there is a clash. So only
when I know that by initiating a task, it does not lead to any clash I can initiate a new task at that
time instant. That yet can be founded only by analysis of this reservation table. That we will do
in the next part.

