
Digital Computer Organization 
Prof. P.K. Biswas 

Department of Electronic & Electrical Communication Engineering 
Indian Institute of Technology, Kharagpur 

Microprogrammed Control 
Lecture No. # 05 

 
In last class the control circuit unit that we have discussed that is called hardware control unit 
because all the control signals are generated by hardware circuit. Now there is another way of 
generating the control signals and that is called a micro programmed control unit. In case of 
micro programmed control unit, the control signals instead of being generated by hardware 
circuit, it is generated through software and because these control signals are generated through 
software this is more flexible. So now let us see how you can generate the control signals 
through software. So we have said during our previous discussion that once you design the 
hardware resources within the CPU for every hardware resource, you can determine that what 
are the control signals that will be required.  
 
(Refer Slide Time: 00:02:08 min) 
 

 
 

So in our hardware control unit when we have discussed, we have said that during time state T0 
the operation that was performed was the memory address register, gets the content of the 
program counter. Then during time interval T1 or machine state T1 what we had done is 
instruction register gets the value from memory whose address is in the memory address register. 
At the same time, the program counter is incremented by one and during T2 the content of the 
instruction register is decoded. So what we do is we decode the instruction register content. So 
these are the operations that were done during the machine states T0 to T2. We have also said 
that simultaneously what we have done is we have loaded the memory address register with the 
lower 12 bits of the instruction register that is supposed to hold the operand address in memory, 
if it is a memory reference instruction.  



So if I consider only these three machine states, you find that the controls that are invoked is for 
memory address register, we have to have the load control input of the memory address register. 
So I have load of memory address register, I have the control input, output enable of the program 
counter. So both of these control signals are to be activated during machine state T0. Then for the 
instruction register, we have to have load instruction register then because we have to perform a 
memory read operation, so we have to activate the read control signal which will go to the 
memory. The program counter is incremented, so for the program counter we have to activate the 
increment control signal. These are the control signals which have to be activated during 
machine state T1.  
   
Similarly during machine state T2, we said that decoder is a combinational logic circuit. So for 
that we don’t need any control signal to be activated. The moment, instruction register is loaded 
with the opcode of the instruction, the decoder starts working and the output of the decoder will 
be available after few gate delays but for the memory address register, when it is getting loaded 
from the instruction register, we have to again activate the load control input of the memory 
address register and we also have to activate the output enable control signal of the instruction 
register. So these are the control signals that have to be activated during time state T2. So in case 
of hardware control circuit, what we have done is we have ensured generation of these control 
signals in this proper sequence by making use of the instruction decoder and the sequence 
counter.  
 
Now there is another way of generating these control signals. That is given the architecture and 
the hardware resources that you have in the architecture, you identify total number of control 
signals that are required. So for the given circuit, if we say that the number of control signals that 
will be required, if number of control signals is equal to say n then we can generate these control 
signals in the given sequence, in the required sequence by having a memory whose every 
location will contain n number of bits. So a control signal Ci will be represented by the ith bit in 
a memory location. So since we are assuming that we are having a memory where every location 
in the memory will contain n number of bits, so every bit I can use to represent a control signal.  
 
So when ith bit is equal to zero in a particular memory location and when that memory location 
is read, the control signal Ci will not be activated. Whereas if ith bit equal to one and I read that 
particular location in the memory then control signal Ci will be generated. So accordingly for 
each of these control signals, I can associate every control signal with a corresponding bit in a 
memory location and read the memory locations in the desired sequence. So as you read the 
memory locations in desired sequence, you find that the desired control signals will also be 
generated in the desired sequence. The total architecture of such a micro programmed control 
unit will be something like this. 
 
 
 
 
 
 
 
 



 (Refer Slide Time: 00:09:20 min) 
 

 
 

So for storing these control signals I need a memory. So in this case the memory is called a 
control memory because it is storing the control signals. Now once I want to read a particular 
location in the control memory then I must have a register which tells you what is the address in 
the control memory that is to be read. So for that what we use is a control memory address 
register. We have a control memory address register or CMAR. Control Memory Address 
Register provides the location address where from this control memory is to be read. Then output 
of that particular location, I can load into another register. A part of this will give you the control 
signals. So this is a control signals and we call this field in the memory location as control field 
or CF and within this memory, there are other locations which can be divided in other fields.  
 
For the simple architecture, let us assume that this field gives you the branch address or the next 
address in the control memory that is to be read. So we assume that in every location, whenever I 
put the control signals that are to be put in that particular location, in addition to that we also put 
what is the next address of the control memory location that will be read, after execution of the 
micro operations initiated by this control signals. So this branch address because this is the next 
location in the control memory that has to be read, I must have a provision for giving back these 
branch address to the control memory address register. I should also have a provision of loading 
some address from the external source to the control memory address register. Why that is 
needed? Because whenever a new instruction is to be executed, for the first three time states, 
machine states the operations are identical but after that the micro operations that are to be 
performed depends upon the instruction that is going to be executed.  
 
So I must have an external resource generator or address generator which after decoding the 
instruction, identifies the location in the control memory from where the required control signals 
will be obtained. On this side I have to have a multiplexer. One of the inputs to the multiplexer is 
the branch address which comes from the control memory location itself. The other input to the 
multiplexer comes from the address generator or external address generator. So I call it external 
address generator.  



So this external address generator will generate the address depending upon the instruction that is 
going to be executed. I have one input to the multiplexer as the branch address which is provided 
within the control memory location itself and the other input to the multiplexer comes from the 
external address generator. This address is loaded into the control memory address register. I 
must also have a selection mechanism or the select input to the multiplexer which will decide 
whether the address that is going to be loaded in the control memory address register should be 
loaded from the external address generator or it should be loaded from the branch address 
provided within the control memory itself. So for that what we just done is within the same 
control memory location, I put a one bit field. Let us call it a mode field or m bit.  
 
Our logic will be that whenever this m bit is equal to 0, the address will be taken from the 
external address generator. If it is equal to 1 then address will be taken from the branch address 
field of the control memory location. So this is the one which will be used when M is equal to 1 
and this one will be loaded into control memory address register when M equal to 0. So this will 
be the over all architecture of a micro programmed control unit where the control signals are 
encoded within the control memory itself and this can be a round. So by analysis of the 
instructions, you decide that how many control signals are needed and in which sequence all the 
control signals will be generated. So accordingly you program this ROM, so that every location 
will contain control signals which are to be generated simultaneously.   
 
Now in this architecture all the components except the control memory, so this is the one which 
is called the control memory. So all the components except the control memory take part in 
deciding the next location in the control memory that is to be read. So all those components are 
called as micro program sequencer. So this whole thing multiplexer, control memory address 
register then this output register all these are taken together becomes a micro program sequencer 
and the micro program sequencer along with a control memory becomes the entire micro 
program control unit.  
   
Now let us see that how these control signals that is needed for all purpose can be generated 
through this micro program control unit. So as we said that for execution of the instructions in 
our machine, we need the control signals during T0 to T2. We need control signals, load memory 
address register, output enable of the program counter, load instruction register, read memory, 
increment program counter, load memory address register again, these are identical then output 
enable of the instruction register. So let us call these, associate these control signals with some 
bits in the control memory.  
 
 
 
 
 
 
 
 
 
 
  



(Refer Slide Time: 00:18:41 min)  
 

 
 
So let me say that load memory address register that is associated with bit number C0 that is the 
zeroth bit in the control memory. Output enable of the program counter that is associated with bit 
number one in the control memory or C1 then load instruction register is associated with bit 
number C2 in the control memory. Then read control signal for memory is associated with C3 in 
the control memory. Then we have program counter increment that is associated with bit number 
C4 in the control memory then load memory address register is already considered. Then what 
we need is output enable of instruction register is associated with bit number C5 in the control 
memory.   
   
So if I put these control signals in different control memories consecutively, so I assume that 
starting from the zeroth location in the control memory, the control signals that will be stored are 
the control signals which are common for all the instructions, that means the control signals that 
are required during the machine states T0, T1 and T2. So let me put it this way, that I put control 
signal C0 here, C1 here, C2, C3, C4 and C5. So these are the control signals that are required till 
now. Then during time state T0, the control signals that are required are output enable of 
program counter and load memory address register. So we have said that load memory address 
register is associated with bit number C0.  
 
So in the zeroth location, I will put C0 equal to 1 because that is the control signal that is 
required during time state T0 and I have to have output enable of program counter because 
program counter is loaded into control memory address register. So output enable of program 
counter which is associated with bit number C1, so I also said C1 equal to 1. Rest of the bits are 
equal to 0 because I don’t need these control signals during machine state T0. Then during 
machine state T1, the control signals that are required is load instruction register which is 
associated with bit number C2. So I said C2 equal to 1 in the next control memory location and I 
also need read control signal of the memory which is associated with bit number C3. So I said C3 
equal to 1 because these are the control signals which are to be generated simultaneously and at 
the same time, the program counter is to be incremented by one.   



So increment of the program counter which is associated with bit number C4 that also is to be 
activated during time state T1. So I also said C4 equal to 1. The remaining memory locations are, 
the remaining gates are set to zero. Then during time state T2, the control signals that is required 
are output enable of the instruction register which is associated with bit number C5.  So I set C5 
is equal to 1 and I also need load of the memory address register to be activated which is 
associated with bit number C0. So I also set C0 equal to 1. These are the two control signals 
which will be generated when you read this particular memory location and the remaining bits in 
that particular location are set to zero.  
 
So you find that initially when you power on the machine, the first operation that is to be 
performed is an opcode fetch. So if I ensure that whenever the machine is powered on or 
whenever the machine is reset, the control memory address register will also be reset to zero. So 
that ensures that just after switching on the machine or just after resetting the machine, the micro 
programmed controlled unit will start generating control signals from the zeroth location in the 
control memory. That means the first control signals it will generate are C0 control signals 
associated with C0 and C1 which are nothing but load memory address register and output enable 
of the program counter. From the program counter the address goes to memory address register. 
   
Now in addition to this, we also have said that every location in the control memory will have 
two more fields. One is the next address field or from the next control signals are to be read and 
it also have a field, one bit field which is the address select field. So I will put along with this, in 
the same locations the next address fields within the control memory address register. So here we 
find that after generating these control signals, the next control signals are to be generated from 
the next memory location within the memory which is memory location one. So I put the next 
memory location in few more bits. I put it as 0 1. Right now I am putting it in decimal form but 
this has to be coded into binary and the number of bits required in binary form that has to be 
used. For simplicity I am putting this as decimal number.  
 
So after execution of this, the next address is one that is this particular location in the control 
memory. So after generation of this control signals, next time the control signals will be 
generated are C4, C3 and C2 and C4, C3, C2 means increment program counter, read memory 
and load instruction register. So after these control signals are generated, the next control signals 
are to be read register from the third location in the control memory. So I again put in the next 
address field as 0 2, so you will find that I am putting in the decimal point.   
 
Now after this third memory location is read and these control signals are generated that means I 
have already read in the instruction and the instruction opcode is there in the instruction register. 
After that the instructions are to be decoded and depending upon the decoder output, the control 
signals have to be generated and that is the actual execution phase of the instruction. So during 
execution phase as we have said, the address has to come from the external address generator. So 
this address cannot be specified within the control memory itself. So whatever I put in this 
branch address location that is immaterial because the address now is to be generated by the 
external source but for that what you have to do is we have to set the mode field accordingly. So 
as we have said that whenever mode field is set to one, the next address is taken from the next 
address field of the control memory. If the mode field is set to zero then the next address is taken 
from the external address generator.  



So I have to set the mode fields accordingly. So what I will do is I will put the mode field here as 
one because after execution of this, the next address will be this branch address field. Here also I 
set mode field equal to one because after generating these control signals, the next control 
memory which is to be read is this one and these control signals are to be generated but after this, 
the address has to come from the external address generator, so I set mode field to zero. So this is 
the branch address field and this is the mode field in the control register. So after doing this, if I 
assume so that instruction that has been fetched is nothing but it's a move R1, R2 instruction. So 
if it is move R1, R2 instruction then during time state T3 what are the control signals that you 
have to generate? One is output enable of register R2 and the other control signal that is to be 
generated is load of R1. 
  
So I can have two more bits for to be associated with these control signals. So let me say C6 is 
the bit which is associated with output enable of R2 and say C7 is the bit which is associated with 
load of R1. So accordingly I will have bits C6, I will also have bits C7. Suppose when this is 
decoded, the external address generator that generates an address. Let us give a logical level say 
address L, L can have any value. So the logical address that is generated is address L. So the 
control signals that will be required during T3 for execution of this instruction move R1, R2 must 
start from location L in the control memory. 
   
So suppose this is location L in the control memory, so in this location what I have to put 
because I have to generate C6 and C7 so these two bits have to be made equal to one and the rest 
of the bits will be equal to zero. So I will set in location L, C7 equal to 1. I will also set C6 equal 
to one. The rest of the bits will be equal to zero because these control signals will not be required 
during T3 while execution of this move R1, R2 instruction. What will be the status of the other 
bits? Once this instruction is executed then I have to go back to instruction fetch cycle that 
means time state T0 and for time state T0 onwards, the opcodes are stored starting from location 
0. So that means in the branch address location I have to put the address 0 0 and the mode field 
has to be made equal to 1. So I set the mode field equal to 1 and in these cases, these bits will 
also be 0 because these control signals will not be generated during these machine states.  
   
So find that after generating these control signals, this execution of the instruction move R1, R2 
is complete. So after completing execution of this instruction, the control memory address 
register will be loaded with value 0 0 because the mode field I have set to 1 and as the control 
memory address register is loaded with value 0 0, the next address in the control memory that 
will be read is this one. Here I generate the control signals C1 and C0 which are meant for load 
memory address register and output enable of the program counter. That means I am going back 
to next instruction fetch cycle and these things will repeat.  
 
Next time this L, the value of L will depend upon which instruction has been fetched and put into 
instruction register and the decoder, instruction decoder will decide the value of L. So this is how 
I can write a software so I can put it this way that this is nothing but a software for execution of 
this instruction itself. So I have a set of assembly language instructions for execution of a 
program and every instruction itself is executed by a program which I call as a micro program. 
So you will find that for this simple situation move R1, R2 the micro program was a single micro 
instruction. So this I can call as a micro instruction, so it is a single micro instruction.  



Whereas for execution of some other programs, maybe I need more than one micro instructions. 
I think we had taken some such example where unit more than one. The example that we have 
taken is add. 
 
(Refer Slide Time: 00:35:25 min) 
  

 
 
One of the instructions that we had is add R1. In add R1 the micro operations that had to be done 
is during machine state T3, the content of R1 has to be loaded to data register then during 
machine state T4 accumulator is to be loaded with sum of accumulator and data register. So that 
we had put in this way, ALU performing add operation on accumulator and data register. So for 
this operation, I need a micro instruction and the control signals that are needed are load data 
register and output enable of R1. For this micro operation to be executed during machine state 
T4, the control signals which are required are load accumulator. Then we need ALU add control 
signal because when this control signal is made equal to 1 then only ALU will perform add 
operation. 
 
Simultaneously we also need output enable of ALU because from the ALU, output of the ALU is 
going to the common data path. So I also have to activate output enable of ALU. So if I say that 
this load data register within this assignment, I put assign load data register to control signal say 
C8, output enable of R1 to C9, load accumulator to C10, ALU add because I am not used any of 
these control signals before. In the control signals that we have considered so far these control 
signals are not considered. So I have to have new bits for generation of this control signals. So 
for ALU add I need C11 then output enable of ALU is C12. So I put it this way, I have to have 
bits C8, C9, C10, C11, C12. Then during machine state T3, the bits which are needed are C8 and 
C9. So I put these two bits equal to one. The remaining bits will be zero.  
 
Similarly on this side, other bits will be also zero. So it starts from bit number C0, so all these 
bits will be equal to zero. During machine state T4, I need the control signals load accumulator, 
so that is C10 which will be equal to 1. I need ALU add control signals C11 that will also be equal 
to one. Output enable of ALU that is also equal to one. The remaining bits will be equal to zero. 



So you will find that for execution of this instruction add R1, I need two micro instructions. So it 
is a program micro program consisting of 2 micro instructions and this will be the value of L. So 
L will now be this value which has been generated by the external address generator. Similarly 
we can also fill up these values. Here what will be the next address field in this particular case? 
Next address field will be L plus 1 and the mode field will be equal to 1 and after that next 
address field will be 0 0, mode field will also be equal to... Why zero? Mode field will be equal 
to 1 because the next address field will come from here only. So this is a micro program which 
executes the instruction add R1. So I can also put it this way that a task is executed by a program 
which is a set of instructions. Every instruction itself is executed by a micro program which 
consists of a number of micro instructions.  
  
So what is the advantage that we gain if I go for micro programming? You find that because this 
whole thing is loaded in a control memory and the control memory can be programmed as per 
requirement. So if I find that today I decide that the control signals are to be generated in some 
sequence but next day I find that the sequence in which I have generated the control signals they 
are not proper. I should change the sequence of control signals. So if I want to change the 
sequence of control signals, when I have the hardware control circuit generator then the entire 
hardware has to be changed. Whereas if I do it using the micro programming where the sequence 
in which the control signals are to be generated and how the control signals are to be generated 
because that is a program loaded into a control memory keeping every circuit same. If I simply 
change the control memory, the sequence of generation of the control signals will be different. 
So I have more flexibility. 
   
Of course you can question that when it is a design of CPU, I cannot change the control memory 
within the CPU any time but still in that case, it is the design flexibility that you have. But does it 
have only a advantage? Speed wise this will be slow because for generation of any control 
signal, I have to read the memory content. So because it is software in nature, it will be slower 
than hardware control unit but the advantage is it is more flexible, gives flexibility while 
designing and the second advantage is it is more compact because the whole lot of hardware 
control circuit is now put in just the control memory. So it is compact and flexible but speed wise 
it will be slower.  It will be more accurate in that. That accuracy does not matter much. So with 
this we take a break. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:44:34 min) 
 

 
 

(Refer Slide Time: 00:44:38 min) 
 

 
 

Now let us see another aspect that is designing of micro instructions. Till now we have seen that 
in the control memory, every location will have the number of bits which are same as the number 
of control signals that you have within the system. Now in any system I can have hundreds of 
control signals that means our control memory every location must have hundreds of bits which 
makes the control memory very big. So we have to think, is there any way by which the number 
of bits in every location in the control memory can be reduced. 
  
One of the simplest way is instead of directly putting the control signals in the control memory, 
you encode the control signals and put the encoded control signal in the control memory.  



(Refer Slide Time: 00:45:51 min) 
 

 
 

So that way if I have n number of control signals present in a system, the number of bits in every 
location in the memory that we will need is log of n to the base 2 and then ceiling function of 
this. So that will be the number of bits needed in every location in the control memory but this 
has a disadvantage. That is while analyzing the instructions that we have seen that in any cases, 
we need more than one control signals to be activated simultaneously. Now when we are 
encoding the control signals and putting them as encoded bit stream in the control memory that 
means after reading a location from the control memory to generate the control signals, I have to 
decode  that encoded bit stream, so that has to pass to a decoder. 
  
In case of a decoder generating more than one decoder output active, simultaneous case is not 
possible. So that puts a restriction that if we have fully encoded bit stream to represent the 
control signals. I can generate only one control signal at a time. I cannot generate more than one 
control signal at a time. So these are two extreme cases. One case is where every bit is assigned 
to a control signal which we call as horizontal microprogramming. This is called horizontal 
microprogramming. So let us take an example to see how the design can be done. I take a very 
simple example with only say 4 micro instructions, so let us take an example. 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:47:53 min) 
  

 
 

So here I consider 4 micro instructions say I1, I2, I3 and I4. So suppose we have these 4 micro 
instructions and the control signals which are activated by I1 or let us say a b c and g. The 
control signals which are activated by I2 let us say those are a c e and h. Control signals which 
are activated by I3 let us say those are a d and f and the control signals which are activated by I4 
let us say those are c b c and f. So you will find that for this example, the total number of control 
signals that we have are a, b, c, d, e, f, g and h. These are the total control signals that we have 
for this example, out of which a1 activates a b c and g, I2 activates a c e and h, I3 activates a d 
and f, I4 activates b c and f. 
   
Now before designing the micro instructions for this particular example let me define one more 
term that is maximal compatibility class. So for that what I will do? I will take every 
compatibility classes from step 2 or we have compatibility classes containing, all the 
compatibility classes containing two control signals each and try to insert another control signal 
in that still maintaining the compatibility property. So if I do that in step s3, you will find that I 
will have a number of compatibility classes like bde, bdh, deg, dgh, efg and fgh. So by analyzing 
this, I can find out that. So again once I find out the compatibility classes containing three 
control signals each, again I remove from the previous step all the compatibility classes which 
are subset of some compatibility class in step s3. 
 
So here you find that except cd, all other compatibility classes can be removed because they are 
subsets of some compatibility class in step number s3. So once I have this s3 then I should go for 
next step s4 where we will try to find out compatibility classes containing 4 control signals each 
and here you will find that I cannot insert any other control signal with any of the classes in s3. 
So for example bde, with bde I cannot include a, with bde I cannot include, b is already there so I 
don’t have to consider that. I cannot include c because b and c they become incompatible. I will 
try to find out the columns containing only one class. If I get any column which contains only 
one class that indicates that the row where the class is present that is the only maximal 



compatibility class which contains that control signal. There is no other maximal compatibility 
class containing the same control signal. Now what is our aim? 
  
(Refer Slide Time: 00:53:14 min) 
  

 
 

Our aim is I will try to remove some of the maximal compatibility classes to get the minimal 
cover such that the minimal cover will contain all the control signals. Now while trying to 
eliminate some of this maximum compatibility classes, these are the compatibility classes such 
that corresponding to that in a column, I have only one class. Those compatibility classes cannot 
be removed because if I remove that compatibility class in that case those control signals will 
also be removed. So in a minimal cover, those compatibility classes must be retained. So these 
are the compatibility classes which are called essential compatibility classes and in our minimal 
cover, we must retain the essential compatibility classes. 
  
So you will find that by studying this, I have two columns. The column corresponding to a and 
the column corresponding to c. These are the two columns which contain a single class.  


