
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 04
CPU Design: Tirning & Control

We have started discussion on designing of a simple CPU and the CPU architecture that we have
considered is like this, having only two registers R1 and R2.

(Refer Slide Time: 00:01:16 min)

In addition to accumulator and data register, it is having an ALU, program counter, instruction
register, instruction decoder, timing and control unit and a memory address register. For
designing the CPU, we have considered few instructions around which the CPU will be designed
and the instructions that we have said is like this.

2

(Refer Slide Time: 00:01:47 min)

It is having an add instruction add R1 then complement and logical instruction and R1, one jump
instruction and few MOV instructions. Then we have seen that the block diagram of the timing
and control unit of this particular CPU will be something like this.

(Refer Slide Time: 00:02:07 min)

From the instruction register, the instruction opcode will go to the instruction decoder. Similarly
we have a sequence counter to generate different time states of the CPU. The counter output is
again going to a decoder. All the decoder outputs that is sequence counter decoder output and the
instruction decoder output they are going to the timing and control unit and the timing and
control circuit will generate the timing clock in the sequence that is required. So for that instead

3

of taking the entire instruction set that we are considering, we have tried to see that how the
timing and control circuit can be designed with respects to these three instructions that is add R1,
MOV R1, R2 and MOV accumulator, memory.

(Refer Slide Time: 00:02:51 min)

So till last class we have considered only the first instruction that is the add instruction and we
have said that for execution of any of the instructions, few operations like opcode fetch that is
common and the opcode fetch and the decoding that takes place during the time states machine
states T0, T1 and T2. So for execution of any instruction, the operation during T0, T1 and T2 will
remain the same. So those are the common micro operations which are to be there for execution
of any of the instructions. After that T3 onwards the operations, the micro operations are
different for instructions. So for add R1 during T3 the operations that are to be performed is
transferring the content of R1 to data register because as per our architecture, CPU architecture
addition directly on R1 is not possible because R1 does not provide any input to the ALU.

ALU gets input from the data register. So for addition operation add R1, the data from R1 has to
be transferred to the data register after that the content of data register can be added with the
accumulator and after additional operation is complete, the accumulator output has to be loaded
back into the accumulator. So this is the operation that will be performed while execution of add
R1 instruction. We were trying to develop the control logic for performing these operations.

4

(Refer Slide Time: 00:04:51 min)

So the control logic we are developing or something like this. We have said that during T0, T1
and T2, the operations for all the instructions are common. So during T0 the operation was
content of the program counter has to go to the memory address register. So output enable of the
program counter, it has to be activated during machines state T0. Then memory address register
that has to get the input during T0 and also during T2, when the operand address part of the
instruction that is IR0-11 the lower 12 bits will be transferred from the instruction register to
memory address register. So during T2 again the data has to be loaded into memory address
register, so the load control signal till now gets the logic of T0 plus T2. Instruction register that
instruction code is loaded into instruction register during T1.

So the instruction register load input has to be active during T1 and the instruction register output
enable also has to be active during machine state T2 because during that time, the operand
address part of the instruction will be loaded into the memory address register. So you find that
load input of the memory address register that is active during T2. Similarly the output enable of
the instruction register that is also enabled during T2. So because these two are activated
simultaneously, the output from the instruction register the lower 12 bits will be loaded into
memory address register.

Then for performing the add operation add R1, we have said that because this is a register
reference instructions so the decoder output, instruction decoder output D7 will be high. So if D7
is high then during time interval T3, what you have to do is we have to transfer the data from the
register R1 to the data register. So that is why if D7 is high, referring that it is a register reference
instruction and I0 that is the least significant bit of the instruction register, we have said that for
register reference instructions the operand fields identify that what register reference instruction
it is. We have said that if I0 is high then it is add R1 operation. So during T3, if D7 is high and I0
is high then data will be transferred from register R1 to data register. So the output enable of R1
must be active, if this condition is true. Similarly the load input of the data register also must be
active if the same condition is true.

5

So the same logic goes to the load input of the data register. It also goes to the output enable of
the register R1.

(Refer Slide Time: 00:08:07 min)

Now in addition to this for performing the addition operation, you find that during time interval
T4, accumulator will get the output of the ALU and because this is add operation, so ALU has to
perform the addition operation. Among the arithmetical logical operation, we have assumed that
we have only two operations. One is ADD, other one is AND. The other operation that has to be
performed on the accumulator is the complementation of the accumulator for which we will
assume that ALU will not be needed, q bar output of the accumulator can be fed back to the d
input of the accumulator. So by using a single clock pulse, within the same machine state, the
accumulator complementation can be performed.

So ALU will be involved for performing only two operations, one is ADD operation and the
another one is AND operation. So in the simplest case, we will assume that ALU will also have
two mode select inputs. One corresponding to ADD, the other one corresponding to AND. So
whenever the ALU has to perform the add operation, the add mode select input of the ALU will
be active. When it performs AND operation, the AND mode select input of the ALU will be
active. So accordingly, for performing this ADD operation coming to the control signal needed
for the accumulator, what we need is accumulator has to have a load input. So for the
accumulator will have a load input because the result after addition will be loaded into the
accumulator and that is to be performed during the time state T4. So this load input of the
accumulator will be active during T4 when D7 is active because this is register reference
operation and I0 is high. So that is an add operation. ALU load input may be active in other cases
as well. So I will put it as OR logic. Similarly for ALU I have to have the mode select inputs. I
assume that for add operation I have the mode selection input called add. This also has to be
active during T4 if D7 is high and I0 is high. So with the help of these control signals I can
perform the add operation.

6

Now there is one more operation that is quite obvious that is at the end of each of these time
periods machine states, the sequence counter has to be incremented by one. So for that we have
an increment input of the sequence counter. So the other unit that is involved in the timing and
control is sequence counter. sequence counter is having an increment output. When this
increment output will be active, it has to be active during T0 because after T0 the machine state
has to go to T1. It also has to be active during T1 because after T2, the machine will go to T2. It
also has to be active during T2 because after T2, the machine has to go to T3. It also has to be
active during T3 because after T3 it will go to T4.

Now let me do one thing. Let me not put T3 right now. We will come to that later, for the time
being let it be here. The sequence counter also has a control input called clear. So after
completion of the execution of any instruction, the machine has to go back to time state T0 when
it will be ready for fetching the next instruction. So for that the clear input has to be active. Now
with respect to this add operation, you find that at the end of machine state T4, we have to bring
back the machine state to T0. So this clear input has to be active, if during T4 if D7 is high and I0
is also high. It will be cleared in other situations also, so we will put this as OR logic. So with the
help of this, whatever is the control signal required for performing add operation that control
logic has been done. After doing this let us take the next instruction that is MOV R1, R2. When
R1, content of R2 has to be transferred to register R1 and you have seen that this operation can be
performed in only one machine state that is during time state T3 and the control signals that is
required for performing this operation is output enable of R2 and load input of R1.

(Refer Slide Time: 00:14:32 min)

So we take register R2. We take the output enable of register R2 and for MOV R1, R2 what is the
code? Let us see.

7

(Refer Slide Time: 00:15:07 min)

This is what we have assumed for MOV R1, R2. That means it is also a register reference
instruction. All the operations had been performed within the register and the I3 bit of the
instruction register has to be high. That means for this instruction, we have to have the opcode as
1 1 1 that means D7 output will be high and the bit I3 will also be high. So for output enable for
register R2, we must have this condition to be true. During T3, D7 is high and I3 is also high.
During the same interval, the load input of register R1 also has to be active because the data has
to go from register R2 to register R1. So for that what we need is the load input of register R1. R1
have we considered till now? No. So for register R1, we have to consider the load input. So load
input also be has to be active, if this condition is true; load of register R1. So we have to have T3
D7 and I3.

So if we set this conditions true then the data will be transferred from register R2 to register R1.
Now in addition to this, what are the other things that we have to consider? For the sequence
counter, the clear input also has to be active. If this condition is true because after T3, the
sequence counter has to generate machine state T0. So for the clear input, we must have T3 D7
and I3. So clear becomes T4 D7 I0 or T3 D7 I3. Now here you find that for sequence counter, I
put a question mark that whether we should put T3 also here or not? In this case after T3 the
sequence counter has to be cleared, it is not to be incremented to T4. So I have to set what will be
the increment logic for the sequence counter. So the sequence counter will be incremented after
T3 for an add operation. So for that the was the logic? T3, D7 and I0, so I will put it as T3 D7 and
I0. Again the situation may arise in other cases. So I will put all of them are OR logic. So with
this I can complete the execution of MOV R1, R2 statement.

8

(Refer Slide Time: 00:18:56 min)

Coming to the next statement that we are considering, that is MOV accumulator, M that is
reading the data from a location in memory and loading that data into accumulator. So for that
we need memory address from which location in the memory that data has to be read and you see
that during time interval T2, we have already put the operand address into memory address
register and this operand address has come from the instruction register. So whatever location
that has to be read and the data has to be put into the accumulator, the address of that location is
already available in the memory address register. So we don’t have to perform any extra
operation for that purpose.

So what we have to do is we have to simply generate the memory read control signal and we
have to generate the accumulator load control signal during time interval T3, if it is a memory
read operation. Whether it is memory read operation or not that will load from the decoder
output, from the instruction decoder output. So for this our instruction decoder output was 0 0 1
which is the instruction for MOV accumulator, memory. So our logic will be that during
machine state T3, if the decoder output one is active then what operations we have to perform?
We have to generate the memory read control signal, we have to generate or activate the load
control signal of the accumulator. So I will consider this. I will put, it is a memory M. For m I
need the control signal memory read, I will put it as a MR. So MR will be active, if during time
state T3 if D1 is high.

Similarly for the accumulator, the load input will be active, the load control signal will be active
during T3 if D1 is high. I can also have other conditions so let us put this as OR logic. So this
completes our memory read operation. Now again in memory read operation, after time state T3
the sequence counter has to be cleared. So for clearing sequence counter, here I have to have the
same logic that is T3 D1. I can have other condition as well, so I put this as OR logic. So with
this I can transfer the content of the addressed memory location to accumulator and after that
transfer is complete, the sequence counter will be cleared to zero, generating the next machine
state as T0, when it is ready for fetching the next instruction.

9

Now this memory read also has to be active for instruction fetch and that has to be done when we
have put the instruction opcode into the instruction register during time state T1. So irrespective
of the instruction during time state T1, we have to generate the memory read control signal
because this is also reading a location of the memory and loading the content into the instruction
register. So memory read also has to be active during time state T1 and there may be other
conditions as well. So you find that following this kind of logic after analyzing each and every
instruction that what are the micro operations that are involved in the instruction and in which
sequence the micro operations are to be performed, I can generate the control signals
accordingly.

(Refer Slide Time: 00:24:00 min)

So once I get the logic for each of this control signals, I simply put this logic design a
combinational circuit to replace this block with the combinational logic circuit and that
combinational logic circuit comes from this logical expressions. So with that I can complete this
timing and control circuit design. Sequence counter increment has to be done, why? After T3 D1,
you are resetting the sequence counter so that comes in clear input. You cannot put both clear
and increment active simultaneously because this transfer of data from the memory to the
accumulator is complete during T3. So following T3 the machine should be ready to get the next
instruction from the memory. So for that I have to generate the machine states T0. So that is what
has been done by this clear. Is that okay?

Now we will see that in this instruction register, one bit we had left in our last class. Instead of
having opcode as four bit opcode, we have said that our opcodes are 3 bit up codes, one bit I had
left. So what I can do is these bit I can use to indicate whether the memory reference that is being
performed is direct memory access or indirect memory access.

10

(Refer Slide Time: 00:25:44 min)

Now what is meant by direct memory access? In case of direct memory access, we have said that
whatever is there as the operand address, the bits 0 to 11 in the instruction register, this gives you
the operand address and for direct memory access we have said that this operand address directly
specifies the location in the memory that contains the operand. So this points to a location in the
memory that contains the data and for this, the most significant bit in the instruction register will
have a value zero. Now for indirect address, what we will assume is for any memory reference
operation, these bits from 0 to 11 which otherwise gives you the address of the operand in
memory, now this is pointing to a memory location something like this. This is pointing to a
memory location, this memory location gives you the address of the data. This is what contains
the data.

So in case of direct address, what we have said is for a memory reference instruction, we have to
have three bit opcode that is bit number 12, 13 and 14. This 3 bit opcode and the last bit indicates
whether it is direct addressing or it is indirect addressing. So if the most significant bit is 0, we
say that it is a direct addressing mode. In case of direct addressing mode, whatever you have in
the bit numbers 0 to 11 that is this lower 12 bits of the instruction that gives you the address of
the operand. That means this is pointing to a particular memory location and content of that
memory location is the data.

11

(Refer Slide Time: 00:28:51 min)

That is what we have done for this example when we have moved, executed the instruction
MOV accumulator, memory here. So in this we have assumed that whatever is the content of
those lower 12 bits, that is the address of the data and that is why we have during T3 we have
transferred the content of memory pointed to the memory address register to the accumulator
because this is the data. Here our assumption is the most significant bit is 0. So the control logic
that we have performed, in the control logic we have to put one more component that is the MSB
of the instruction register has to be 0. So instruction register I15 complement has to come in to
that.

Now in case of indirect addressing again this bit numbers 12, 13 and 14, they give you the
opcode of the instruction. Bit number 15 is one. So if bit number 15 is one and this is a memory
reference instruction then the addressing mode that is being used is an indirect addressing, not a
direct addressing. So for indirect addressing whatever you have in this bits that is bit number 0 to
11, they point to a particular memory location. Now this memory location is not a data but this is
a pointer that means it is another address. So whatever the content of this memory location, this
is the address of a memory location that contains the data. So what should our control logic do
now?

Control logic has to find out that if this is the memory reference instruction then it has to check
whether this most significant bit is 0 or not. If the most significant bit is 0 then whatever control
logic we have developed till now that is valid. If this is 1 then what we have developed is no
more valid because we have to take care of this indirection. If this bit is 1, MSB is 1 and it’s a
memory reference instruction then I have to get the data from this location and address of this
comes from this location. So during time interval T3, during the machine state T3 which
otherwise in case of machine state T3, what we have done is we have transferred the content of
the memory addressed by the memory address register to the accumulator. If this bit is one then
what we have to do is we have to read the same content but this cannot be put into the
accumulator because this is not the data. The content of this we have to put to the memory

12

address register. After putting this to memory address register, we have to perform one more
memory read operation and for this next memory read operation, whatever you get from the
memory that can be put into the accumulator.

(Refer Slide Time: 00:32:36 min)

So for this indirect memory transfer, let me put it as MOVI. The operands remains the same
accumulator, M. So what is the additional operation that we have to perform? During machine
state T3, previously we have read the memory and put the data into the accumulator. Now what
we have to do is again you read the memory, address coming from the memory address register
instead of putting this into accumulator, we have to put this into memory address register itself.
So I assume that I have that corresponding bit mapping. So during T3, this is the operation that
have to perform. During T4, I have to perform another memory read operation and now the data
will come to the accumulator. It will not go to the memory address register any more. What is the
content of memory address register now? Memory address register, that is the pointer that is the
address that has been set during T3. So for this our control logic has to be suitably modified.

13

(Refer Slide Time: 00:34:37 min)

So in earlier case for memory read, we have assumed that during T3 if D1 is high then we to
perform, we have to enable the memory read control signal. Memory read control signal will, in
any case be activated during T1 because that is an opcode fetch operation. So it is respective of
the instruction that we are going to execute. So now again similarly for memory read, for the
memory how do you activate the memory read control signal? Now memory read control signal
will be during T1, we have already activated this memory read plus during T3 if D1 is high then
we have to perform memory read.

Now we find that during T3 whether it is direct or indirect, in both the cases we have to read the
content of the memory, only the destination will be different. So I simply put as T3 D1. I don’t
check what is the content of the most significant bit in the instruction register. I have to perform
an additional memory read operation during T4, if the most significant bit of the instruction
register is one. So I will put it as T4 and if the opcode is D1, not only that if I15 the most
significant bit of the instruction register is one then also I have to perform memory read
operation. So this is the additional memory read operation that is required because of
introduction.

I may have other logics as well, so put this as OR logic. For memory address register, I have to
modify the control logic. The earlier control logic was this. During T0 and T2, so they will
remain as it is. So for memory address register the load input, the earlier conditions remains valid
during T0 and also during T2. We have to activate the load input of the memory address register.
Now additional thing comes here. So during T3 I again have to activate the load input of the
memory address register if it is an indirect memory address operation. So my condition will be
during T3, if D1 is high and I15 is high. Again I put this as a OR logic because there may be other
conditions as well during which this memory address register has to be active.

14

(Refer Slide Time: 00:38:05 min)

Coming back to accumulator, for accumulator the load input earlier was during T4 if D7 is high
and I0 is high. Now this is the one that will be modified now. So these conditions remains as it is
because it’s a register reference instruction and the operation was moving the data from R2 to R1.
Sorry this was the operation for adding the content of R1 with accumulator and loading the data
back into accumulator. So that will remain as it is. So for accumulator control, the load input will
be modified as, the first condition we have to retain that is T4 D7 and I0. This will remain as it is.

The second condition that we had put is T3 D1. Now T3 D1 will be replaced by T3 D1 I15
complement because here the load input will be active only if it is an direct memory read
operation. If it is indirect memory read operation, the data will not come to accumulator. So I
will put it as T three D one and I fifteen complement.
What is the additional condition? That is during T4, the data will be loaded into accumulator if it
is D1 and I15 is high. I can have additional conditions, situations when the load input of the
accumulator also has to be active. So you put all of them as OR logic. So this is for getting a data
from a memory location, loading the data into accumulator that is the memory read operation.

Similarly for a memory write operation, when the transferring the data from the accumulator to a
particular memory location I can also have direct memory write operation. I can also have
indirect memory write operation. In such case the control signals that will be generated is not
memory read, I have to have another control signal which is memory write. So memory write
control signal also has to be activated accordingly. Similarly this accumulator, whenever you
transfer the data it’s a memory write operation, you have to transfer the data from the
accumulator to a location in the memory. So we have to accurate the output enable of the
accumulators accordingly. So this is how by analyzing the micro operations that will be
performed while execution of every instruction. To that analysis I have to find out that what will
be the logic for each and every control signal and I have to design the circuit for generating these
logics and that has to be replaced in the timing and control circuit block.

15

Now here you find that though the circuit is a combinational circuit but because of the sequence
counter output is also going to the timing and control circuit input, the sequences in which the
control signals will be generated that is defined, because in the timing and control circuit block
we have these inputs either T1, T2, T3 three. So these are the inputs which are going to that
particular block. So these input guarantee that these control signals will be generated during a
particular machine state only. This control signals will not be generated arbitrarily.

So I can design the timing and control circuit for a CPU, given the instructions and having the
knowledge of what the instructions are supposed to do. So far we have considered for the
internal data path that all the components are capable of loading the data from the internal data
path. They are also capable of sending the data to internal data path from there they can go the
destination. For that purpose, for each of the components we have an output enable. So our
restriction is the output enable of only one component can be active at a time. I cannot activate
the output enable of more than one component simultaneously because in that case there will be
data clash on the parser which is called bus contention. So this can be guaranteed in one of the
two ways. I can assume that the outputs of each and every component is tri stated output. So only
when you give the output enable component, only when you activate the output enable control
signal then only the data will move from that particular selected component to the data bus.
When the output enable control signal is low in that case, the output of that particular component
will go the tri-state, the third state that means high impedance state and the data from that
component will not reach the data bus. So that way we can avoid the parse contention.

The second approach is let there be number of components. The outputs of all these components
goes to a multiplexer and it is the output of the multiplexer that acts as a parse. So now in this
case I don’t need tri stated output device, I can have multiplexer. So this output enable signal
now will be replaced by multiplexes select channel signal. So assuming if the accumulator is
connected to multiplexer input to 0, so whenever the accumulator output is to be activated,
instead of activating the output enable of the multiplexer I will properly select the select inputs
instead of activating the output enable of the accumulator, I will properly select the select inputs
of the multiplexer. So that only the accumulator output goes to the internal data path. So I can
have one of the two ways either we can use a multiplexer or we can have tri stated outputs for
every individual component in a CPU. So I hope with this discussion now you know that given
any CPU and the instruction set of the CPU, you can design that particular CPU. So with this our
low level design is complete. Next class onwards everything will be in block diagrams.

16

(Refer Slide Time: 00:46:12 min)

(Refer Slide Time: 00:46:15 min)

Till last class the control circuit unit that we have discussed that is called harder control unit
because all the control signals are generated by harder circuit. Now there is another way of
generating the control signals and that is called a micro programmed control unit. So in case of
micro programmed control unit, the control signals instead of being generated by a hardware
circuit it is generated through software and because these control signals are generated through
software this is more flexible. So now let us see how you can generate the control signals
through software.

17

So you have said during our previous discussion that once you design the hardware resources
within the CPU, for every hardware resource you can determine that what are the control signals
that will be required.

(Refer Slide Time: 00:47:26 min)

So you know our hardware control unit when we have discussed, we have said that during time
state T0 the operation that was preformed was the memory address register gets the content of
the program counter. Then during time interval T1 or machine set T1, what we have done is
instruction register gets the value from memory whose address is in the memory address register
and at the same time, the program counter is incremented by one and during T2 the content of the
instruction register is decoded. So what we do is we decode the instruction register content.

So these of the operations that were done during the machine states T0 to T2 and we have also
said that simultaneously what we have done is we have loaded memory address register with the
lower 12 bits of the instruction register that is supposed to hold the operand address in memory,
if it is memory reference instruction. So if I consider only these three machine states, you find
that the controls that are invoked is for memory address register we have to have the load control
input of the memory address register, output enable of the program counter, load instruction
register, read memory, increment program counter, load memory address register again, these are
identical then output of enable of the instruction register. So let us associate these control signals
with some bits in the control memory.

18

(Refer Slide Time: 00:50:02 min)

So let me say that load memory address register that is associated with number C0 that is the
zeroth bit in the control memory. Output enable of the program control that is associated with bit
number one in the control memory or C1, then load instruction register is associated with bit
number C2 in the control memory. Then rate control single for memory is associated with C3 in
the control memory. Then we have program counter increment that is associated with bit number
C4 in the control memory. Then load memory address register is already considered then what
we need is output enable of instruction register is associated with bit number C5 in the control
memory. The first operation that is to be performed is an opcode fetch. So if I ensure that
whenever the machine is powered on or whenever the machine is reset, the control memory
address register will also be reset to zero.

(Refer Slide Time: 00:51:47 min)

19

So that ensures that just after switching on the machine or just after resetting the machine, the
micro programmed control unit will start generating control signals from the zeroth location in
the control memory. That means the first control signals it will generate are C0 control signals
associated with C0 and C1 which are nothing but load memory address register and output enable
of the program counter. From the program counter the address goes to memory address register.

Now in addition to this we also have said that every location in the control memory will have to
more fields. One is the next address field or from the next control signals are to be read and it
also have a one bit field which is the modes, the address select field. So I will put in along with
this in the same locations, the next address fields within the control memory address register. So
you will find that after generating this control signals, the next control signals are to be generate
from the next memory location within the memory, which is memory location one. So I put the
next memory location in few more bits, I put it as 0 1. Right now I am putting it decimal form
but this has to be coded in to binary and the number of bits required in binary form that has to be
used. For simplicity I am putting this as the decimal number.

So after execution of this, the next address is one that is this particular location in the control
memory. So after generations of this control signals, next time the control signals will be
generate are C4, C3 and C2 and C4, C3, C2 means increment program counter, read memory and
load instruction register. So after these control signals are generated, the next control signals are
to be read from the third location in the control memory. So I again put in the next address field
as 0 2, so you find that I am putting in the decimal form. So we find that for the simple situation
MOV R1, R2 the micro program was a single micro instruction. So this I can call as a micro
instruction, so it is a signal micro instruction whereas for execution of some other programs may
be I need more than one micro instruction. I think we had taken some such example where you
need more than one.

(Refer Slide Time: 00:54:55 min)

20

The example that we had taken is add. One of the instructions that we had is add R1. In add R1,
the micro operations that are to be done is during time machine state T3, the content of R1 has to
be loaded to data register. Then during machine state T4, accumulator is to be loaded with sum
of accumulator and data register. So that we had put in this way ALU performing add operation
on accumulator and data register. So for this operation I need a micro instruction and the control
signals that are needed are load the data register and output enable of R1. For this micro
operation to be executed during machine state T4, the control signals which are required are load
accumulator then we need ALU add control signal because when this control signal is made
equal to one then only ALU will perform add operation.

Simultaneously we also need output enable of ALU because from the ALU, output of the ALU is
going to the common data path. So I also have to activate output enable of ALU. But does it have
only advantage? Yeah, speed wise this will be slow because for generation of any control signal,
I have to read the memory content. So because it is software in nature, it will be slower than
hardware control unit but the advantage is it is more flexible, gives flexibly while designing and
the second advantage is it is more compact because the full lot of hardware control circuit is now
put in just the control memory. So it is compact and flexible but speed wise it will be slower.
(Student: Refer Slide Time: 57:58). That accuracy does not matter much. So with this we will
take a break.

