
1

 Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 25
Secondary Storage Organization- II

So, what we have discussed about the fields of an inode? These are the fields which are stored on
the secondary stores. So following the same logic, why you have come to this inode is that
whenever a process puts a request for a particular data from a particular file, the first thing that
has to be done is you have to access the inode of the file. Then in the inode, you have to come to
the table of content TOC part of the inode. From the TOC part depending upon which byte offset
of the file is interested in, you have to go to the corresponding data block may be either
following the direct pointer or single indirect pointer or double indirect pointer or triple indirect
pointer, using some of the pointers one of the pointers you have to come to a particular data
block then you have to access that data block.

(Refer Slide Time: 00:01:03 min)

So for every read operation for every write operation on the file, you have to access the TOC part
of the inode to get the corresponding block identification number. Then once you have the block
identification number then you can check within the buffer whether that particular block is
present in the buffer or not. If it is present in the buffer you don’t have any problem, you can
simply transfer that from the buffer area to the user area. If it is not present in the buffer then I
have to physically read that particular block from the secondary storage and put it into one of the
buffer cache. Now because you have to access the inode for every file operation whether it is
read or write whatever it is that means once you open a file, it is quite expected that the inode of
that file will be accessed a number of times. Now for accessing the inode, if every time I have to
go to the disk then obviously the throughput of the file system will be very poor.

2

So to improve the throughput what is done is the same concept that we have used for the buffer
cache that is we put the data block in the buffer cache so that your physical access to the disk, the
frequency of physical access to the disk is reduced. Using the same concept whenever you open
a file, the first time you access the inode of that file from the disk and copy that inode into main
memory. So that as long as the file is open, every reference to the file will try to refer to the
inode of the file and now the inode is available in the main memory so your access time will be
quite less. So this is a copy of the inode in the main memory which is called an incore inode and
the incore inode is maintained almost in the same way as we have maintained the buffer cache
that is we will have a free incore inode list. We will also have a number of hash lists, the hash
lists consist of a number of inodes on that particular hash list. So to maintain the hash node in the
main memory in addition to these fields we need a number of additional fields, one of the field is
obviously the status field that we have also used in case of buffer cache.

(Refer Slide Time: 00:04:14 min)

So the first field in the incore copy that will be the status field and as before the status field will
contain similar kind of information that is the first information that has to be contained in the
status field is whether the inode is locked because it may so happen that more than one process
opens the same file simultaneously for reading purpose. In that case when one process say p1
wants to read a data from that file then before reading the data from the file, it has to access the
inode to find out what is the block number of the data that is requested. Once it gets that block
number then it can release the inode. So during this process the inode should remain locked, so
that during the same time if the second process also wants to access the same inode it should not
permit it.

Once the first process releases the inode, the second process can now access the inode. So one of
the field, one of the information that you have to maintain in the status field is whether the inode
is locked or inode is unlocked. Here as we have seen there is a difference that as we have seen in
the buffer cache that if the buffer is not locked that means it is free but in case of inode it is not
so.

3

Even if the inode is not locked that does not mean that inode is free, I will come to that later. So
the first information that you have to maintain in the inode is whether the inode is locked then
the next information that you have to put in the inode is similar to as you have used in case of
buffer cache that whether a process is waiting for this inode to become unlocked or not, inode to
be unlocked. Then other information that you have to maintain is whether the inode is same as
the disk copy or there has been some modification in the inode. So this information is whether
inode differs from disk copy and the other information is, one is inode differs from the disk copy
and the second information that has to be maintained is whether the file data is different or the
file data has been modified after the file has been opened. So here we have to put whether incore
file is different from disk copy, so these are the various information that you have to maintain in
the status field of the incore copy of the inode. Then obviously the other information’s will be
the device number and the device number that contains the file that we are interested in.

Then the inode number itself, you find that in case of disk copy of the inode we didn’t need this
inode number because in that case the position of the data structure in the inode blocks tells you
that what is the number of the inode. So just for example what you said is that if the inode needs
a 50 bytes for representation, if the data structure for inode needs 50 bytes in that case first 50
bytes in the inode block will belong to the first inode. Next 50 bytes will be for the second inode,
next 50 bytes will be for the third inode and so on. So it is the position of the data structure in the
inode blocks tells you that what is the inode number but incase of incore copy, we may not need
all the inodes in sequence and a particular inode may appear anywhere in the hash list or
anywhere in the free list.

So I need a specific field which will tell me that what is the number of the inode of that incore
copy whether it is the inode number 1 or inode number 2 and so on which is not needed in case
of disk copy. Then obviously I have to have a set of pointers, pointers to other incore inodes and
here again we can have two sets of pointers, one set of pointers will be for the free inode list and
other set of pointers will be for pointers to other inodes in the same hash queue, just as we have
done in case of buffer cache. And here I have to have an additional field which is not present in
case of buffer cache that is what is called reference count and it is the reference count which
makes it different from unlocked in case of buffer and unlocked in case of inode.

In case of buffer cache we have said that whenever the buffer is unlocked that means the buffer
is free and it can be on the free list as well in addition to its existence on the hash queue. In case
of inode because there is the possibility that the same file may be opened simultaneously by
more than one process and we expect that as long as the file is open, its inode should be present
in the main memory. I can remove the inode from the main memory only when the file is closed
but it may so happen that two processes has opened a particular file.

The first process which opened that file first and because of that file open command, the
corresponding inode has been read from the secondary storage from the inode block and it has
made an incore copy of time. Now the second process wants to open the same file, so it will get
the inode number of the file and after getting the inode number the first operation that will be
done is to check the incore copies of the inodes in the corresponding in the particular hash queue
to see whether the inode already exists in the main memory or not. If it is existing in the main
memory that means some other process had already opened it.

4

So I need not get the same inode from the disk once more because already it is present in the
main memory but what has to be done is this difference count field has to be incremented by one.
Now when the first process closes the file but not the second process, the file is closed for the
first process but it is still open for the second process. That means though the first process will
not need the data from the file anymore but the second process will need the data from the file.
So first process has unlocked the inode, may be the second process has also unlocked the inode
because inode will be needed only to get the block address not for other purpose. So may be the
inode is unlocked for both the processes, first process and second process but the second process
has not closed the file but the first process has closed the file that means file is still open for the
second process and the second process is lightly to access the data from the same file a number
of times. So I cannot simply remove this inode from the incore copy, I can remove the inode
from the incore copy only when the second process also closes the file so that is what is
maintained in this reference count field.

When the first process opens the file, the inode corresponding to that file is read from the
secondary storage and put into main memory and the reference count field is set to one. When
the second process also tries to open the file, it finds that the inode is already present in the main
memory so it need not be read from the secondary storage but now there are two instances, two
active instances of the same inode, so reference count will be incremented by one more so now
reference count becomes equal to 2. So it is the reference count field which indicates that how
many active instances of the same file exists in the system.

Now when the first process closes the file, it simply makes the reference count decremented by
one. So earlier reference count field was equal to 2, now it becomes equal to one because it is
one that indicates the file is still active for some other process. So I cannot simply remove the
inode from the main memory or I cannot put this inode on the free inode list because once it goes
to free inode list that indicates that this inode may be overwritten by another inode from the disk.
I can put this onto the free inode list only when the reference count field becomes equal to zero
that means there is no other active instance of the same file. So that can only happen only when
the second process also closes the file. So after the first process, if the second process closes the
file then earlier reference count field was equal to one, now it becomes equal to zero and when
the reference count field becomes equal to zero, it can be put onto the free list. So that is the
difference between your buffer cache management and the inode management.

In case of buffer cache we have said that whenever the buffer is unlocked, I can put it onto the
free list, may be either head of the free list or at the tail of the free list but in case of inode only
when the reference count field is equal to 0 even if the inode is unlocked. Only when the
reference count field is equal to zero then only I can put onto the free inode list otherwise I
cannot put it onto the free inode list. Other managements will be almost similar to what we have
discussed in case of buffer cache.

Now the major operation is as we have seen that for getting any data from the inode, I have to
access the inode, get the table of contents, from the table of contents I can get the block number
and once I have the block number then using that block number I can check in the buffer cache
whether it is present. If it is not present I have to access that block from the secondary storage,
put it into buffer. But what is most important is that we have not said till now is how to know the

5

inode number. Because when I execute a program or I want to open a file, I simply give the file
name or at best I can give the path name starting from the root leading to that file. But I never
specify the inode number or even the user need not know what is the inode number, so there
comes the concept of directory. Directory plays a very very important role in finding out the
inode number of a requested file or the inode number of a requested subject. Now what is a
directory? As we said the directory is a special kind of file, so just like file, in case of files we
have to have unique inode, every file will have to have an unique inode. Similarly every
directory or every subject will have to have an unique inode. So I just demarcate between the
inode given to a file or an inode given to a directory only through the type field. The type field
indicates whether the inode is unallocated. I will not say free, inode is unallocated that means it
has not been allocated to any of the files or any of the directories or the inode has been allocated
to a file, regular file or the inode has been allocated to a directory or there are some special kinds
of files which are maintained whether the inode has been allocated to any special kind of file. I
will forget about this special kind of file now. Let us consider about only directory, file and the
free inode.

So whenever a process wants to open a file, usually we give the file name, just the file name if
the file exists in the current directory or we simply give the path name from the root, if the file is
not in the current directory or even if it is in the current directory then also we can specify the
path name from the root. Now what is the directory? As we said that directory is a special kind of
file which contains a list of inode number file subject pair. So if you open a directory just like a
file, you will find that it will contain two fields.

(Refer Slide Time: 00:17:39 min)

One field is for inode and the other field is for directory or file. Suppose say this is the directory
of say slash etc. Under slash etc we can have a number of sub directories or a number of file. For
example under slash etc I can have a directory say bin, this directory bin, sub directory bin will
have a specific inode number let us say inode number 80. Under this I can have a file say

6

password, this password again will have an unique inode allocated to it and suppose this inode is
let us assume any numbers say 205.

Now the sequence which particular inode will be allocated to a particular file or to a particular
directory that depends upon what are the inodes unallocated at the time when this file or this
directory has been created. So, one of the inodes which is still unallocated will be allocated to the
newly created file or the newly created directory. So similarly it can have many other entries and
the corresponding inodes. So a directory is nothing but a list of inode directory file pair along
with this there may be other attributes just to identify that whether this is a file or this is a
directory, of course that is also available in this particular inode. So 80th inode will say that bin is
a directory.

Similarly 205th inode we will say that password is a file, it is not a directory and that will be
specified in the type field of this particular inode. So just like this when I say that etc is a
directory that etc itself has been allocated a particular inode, a unique inode which is not
allocated to any other file or any other directory. Then along with this there are two special kind
of entries, one entry is dot, the other entry is a dot dot. This entry dot means that it gives you the
inode number of current directory. Suppose this number is 100 then as I said that this directory
etc, this is the current directory is etc, the directory etc itself is assigned an inode number 100,
dot dot gives you the inode number of the parent directory of this directory. So may be the parent
directory of this has been allocated an inode number of 300. So you find that from a particular
directory using dot, I can find out what is the inode number of the current directory or using this
dot dot I can identify, I can find out what is the inode number of its parent directory.

For any other entries whether it is a file or a directory, I can always find out what is the inode
number of the corresponding file or the inode number of the corresponding sub directory under
the current directory. Now in addition to these directories there is a root inode, there is a root
directory for every file system. Root directory is also assigned an unique inode number. Suppose
the root directory is assigned an inode number let us say any inode which is not allocated to this
say 50. So for getting the inode number of any file or any directory that is specified I need one of
the two components, either the inode number of the current directory or the inode number of the
root directory because when you specify a path, the paths are specified from the root directory
itself or I simply specify the file name or the file directory which is under the current directory.
So, to get the inode number of the target file or the target directory if I have either the root
directory inode number, or the current directory inode number that is sufficient.

The root directory inode number is usually stored in a global variable which is accessible to all
the process but this cannot be modified. Similarly current directory inode number is within the
directory itself. So if I give a command like say open, fopen syntax may not be correct. So if I
give a command say fopen password, when presently I am under this directory etc then how this
will be converted to the corresponding inode number? I know that because I have not specified
any path name, so these have to be found within current directory only. You simply search the
current directory, get the entry corresponding to this file name password, extract what is the
inode number of that. So once I get the inode number of this password, the next operation what is
to be done is you read this inode number. First you check whether this inode number is present in
the main memory or not or whether I have an incore copy of this inode number 205.

7

If I have an incore copy of this inode number 205, what I do is I simply increment the reference
count field of the incore copy of inode number 205 by 1 but if it does not exist in the main
memory, if I don’t have an incore copy of this inode number 205 what I have to do is I have to
read the block from the secondary storage which contains this inode number 205 and that is very
simple because in case of inode blocks all the inodes are put in sequence. The first inode appears
first, second inode appears next, third inode appears after that and so on. So from this inode
number I can always find out that what is the block if I have more than one blocks containing the
inodes, I can always find out that which block contains this inode number 205 and what is the
byte offset within the block for this inode number 205 because I always know that what is the
starting block number of the inode blocks, what is the size for every block, what is the size of
every inode all these things are known.

So, I can always find out that what is the starting byte of this inode number 205 and which
particular block. So what I do is I simply read that block, for reading the block again I have to go
to that buffer cache management because this block has to be read and put into the buffer. Then
once it is in the buffer then only I can filter out this inode number 205 and get the inode number
and put this inode into the incore copy of the inode. On the other hand if the command is given
like this fopen slash etc slash password, so if I give a command like this then what I have to do is
because this is the path name starting from the root, I know what is the inode number of the root
because that is stored in a global variable. I have to take out this inode number, read it from the
disk, put it into incore copy or may be while booting this inode number is already present in the
incore copy.

I have to check that this is a directory not a file because there are other components on this. So if
this is a file then this path name is not valid, it has to be a directory. So I have to check that this
is a directory, on verifying this is a directory I also have to check that I have the write permission
on this directory that I have to have the search permission on this directory. In case of directory,
search permission is equivalent to execute permission. A file can be executed but a directory
cannot be executed. So in case of a directory, the search permission is equivalent to execute
permission, so if you have execute permission on the directory then you can search that
directory. So if you have the search permission then what I have to do is the next component is
etc, I have to check that directory. So this etc, this root stored directory will be some sort of
listing like this, I have to search for this component etc in that listing.

Once I get an entry for etc I have to take out the inode number of that. So once I get inode
number of etc and in this case the inode number of etc is 100. So I have to get inode number 100.
Again read it from the disk, put that into main memory then from that inode number I get the
disk blocks from the table of content which contains the data of the directory and data of the
directory is this list. So I have to read this list then search within this list for this entry password.
So I get this entry password, inode number of the password 205, I have to extract this 205 then
on getting this 205 inode in the incore copy, I can go to the table of contents of this inode. Then
once I have access to the table of contents of this inode, I have access to different data blocks
containing the data of this file password. So this is the very very important step and always
whenever I want to access a file, I want to open a file or close a file or whatever I do, I an user
process and application specifies the file name or the path name leading to that file. It may be file
name or even the directory. So first operation that has to be done is you convert the file name or

8

convert the path name to the target inode number and that can be performed in this manner. So
once you have access to the inode, you have access to the inode table of contents. Once you have
access to the inode table of contents, you have access to the data blocks containing data of that
file or containing data of that directory and data of the directory means simply this listing. Sir,
the parent directory of the slash etc is the root directory. Parent directory of slash etc is the root
directory. Parent directory of slash etc is root directory. Yes, I remember. I see it should be 50th
it should be 50. For a root directory, the parent directory will be root directory itself.

So now it is clear that given a path name or given a file name, how you can convert that to an
inode number. Once you have an inode number, you have access to everything in the file.
Instruction will take more time. Yes, I think more time because this has to be passed. Now next
thing is so far whatever we have done, we have assumed that an inode is already allocated to a
file or inode is allocated to a directory. The next important question is how do you allocate the
inode to the directory or how do you allocate inode to the file? For that what we need to know is
what are the free inodes when the file is created or free means unallocated inodes because free
we are using for some other purpose.

What are the unallocated inodes in the file system which are not yet given to any other file or any
other directory, when this new file or the new directory is been created? So for that again the
super block plays an important role. In addition to the information that are maintained in the
super block that we have said that the super block maintains information about the file system
itself that is how big is the file, how big is the file system, how may files it can store and all those
things. The super block itself contains the list of unallocated inodes that may not be an existing
list that is the sub list of the total number of unallocated inodes of the file system.

(Refer Slide Time: 00:31:11 min)

9

So in the super block we have a list of inodes which are unallocated at a particular instant of time
or a sub list of the inodes which are unallocated at a particular instant of time. Now let us assume
that at a particular instant of time, I have several inodes which are still unallocated on the file
system. The inodes may be say 100, 105, 112 like this, may be inode number 200 and in this case
the super, this is called a super block free inode list or unallocated inode list. So this list is simply
the serial number of the inodes, this is not the inode itself or it is not the data structure, inode
data structure it is simply the serial number of the inode. to access this inode number 100, I have
go to the inode block and from the byte offset of this inode number 100, I have to get that inode
that is the data structure of the inode.

Now it says that inode number 100 is not yet allocated to any other file or any other directory,
105 is not allocated to any other file or any other directory and so on. So up to this inode number
200 is maintained in the super block free inode list. There may be other inodes free on the file
system but those are not yet maintained in the super block free inode list but they will be brought
in the super block free inode list, when this super block free inode list becomes empty. Now this
being the situation whenever a process puts a request for creating a particular file or creating a
particular directory, creation means this is being created for the first time. So it has to be
allocated an inode which is not yet allocated. So what it has to do is it has to change the super
block free inode list. On checking it finds that the first inode that appears in the super block free
inode list is inode number 100 that means inode number 100 is not yet allocated to any other
process.

So this inode number 100 will be allocated to the process or allocated to the file or directory
which is being created. On allocating this inode number 100, inode number 100 will be removed
from this super block free inode list. Now once you allocate this inode number 100, this inode
number 100 has to be located on the inode block, make an incore copy of that inode so for the
inode was free that is type field was set to 0. Now the inode is no more free that means the type
field has to be set to either regular file or directory depending upon to which it is being allocated.
Reference count has to be made to one because file has been open for creation and all this
updated information of this inode has to be written on to the disk inode. With this allocation of
this inode to the file or to the directory is complete. Then other operations from the file or
directory will continue as it is.

Next time another process tries to open a file or a directory, this inode number 105 will be
allocated so that way it will continue. Last when all these entries are empty, the last inode which
is maintained in the super block free inode list is inode number 200. So when the situation comes
that this inode number 200 is to be allocated to the requesting process then with allocation of this
inode number 200, the super block free inode list becomes empty. So when it is going to become
empty then what is done is the super block free inode list is filled up with other free inodes or
unallocated inodes on the file system. For that we have to search for the inodes which are
unallocated and the search operation will start from inode number 201. So this is an inode, that is
the last inode on the super block free inode list is called a remembered inode. That means you
have to remember this inode number for searching for other unallocated inodes on the file
system. So starting from inode number 201, you search for other unallocated inodes on the file
system and whatever inode number you get sequentially, this search is sequential, you fill up
those inode numbers in the super block free inode list and finally setting this remembered inode

10

in the super block free inode list. So there can be a situation that suppose the super block free
inode list can contain list of 100 inodes and I am starting my search operation from say inode
number 201, there are two situations that I have starting from 201, I have more than 100 inodes
free unallocated or I have less than 100 inodes unallocated. So filling up of this super block free
inode list will stop when you find that you don’t have any other free inode on the super block
free inode list or the super block free inode list is filled up. So at the most I can put 100 inode
numbers or less than that if I don’t have sufficient number of inodes which are unallocated on the
file system. So this is the situation I mean this is the way in which the inodes will be allocated to
different new files or new directories when they are created. Now the reverse process is
unallocating a particular inode. How do you unallocate a inode? An inode will be unallocated,
you find that inode becoming free whenever you close a file and the reference count becomes
zero but that is not unallocation of an inode.

In that case what you are doing is you are simply removing the inode from the main memory,
you won’t have an incore copy of the inode but the inode is still allocated to the file and inode
has to be made free or unallocated, when the file is deleted or the directory is deleted. So when
you delete a file or you delete a directory, in that case I have to put this one in the super block
free inode list if possible. So for doing that what is done is you simply check; what is the status
of the super block free inode list. If you find that I have some empty space, an empty entry in the
super block free inode list, I can simply write the inode number which is being unallocated into
that empty entry that is one way.

If there is no space in the super block free inode list, empty then what has to be done is the inode
number which is being unallocated, if you find that inode number is less than the remembered
inode because this remembered inode tells me that from which point I have to search for new
inodes, unallocated inode. Then you replace this remembered inode by this new inode number
sorry here the search operation will starts from inode number 200 itself. So if you find that
suppose the new inode which is being unallocated is inode number 55 and at that point, I don’t
have any free space in the super block free inode list. So what I will do is I will simply replace
this 200 by this inode number 55.

So that next time I search for free inodes unallocated inodes, this 55 will be encountered.
Otherwise if this new inode which is becoming free is more than the remembered inode then I
simply forget it, don’t make any changes in the super block free inode list. Suppose the inode
number which is being made free is the inode number 210, this is being unallocated. My earlier
remembered inode number is 200, next time I will start searching from this inode number 200. so
210 will any way be searched, so I will have these are the different possibilities whenever an
inode is unallocated that is if I have an empty space in the super block free inode list, I simply
put this new inode number which is unallocated into that empty space. In case super block free
inode list is full and the inode number that is being unallocated is less than the remembered
inode, you replace the remembered inode by this new inode number. If it is more than the
remembered inode number then I don’t make any change in the super block free inode list. I
simply mark the inode as unallocated by setting the type field equal to 0 on the disk copy of the
inode. So that next time, the search operation starts from this remembered inode that inode in any
case be searched. So with this I hope that allocation of an inode or unallocation of inode is clear.
So next day we will talk about management of disk blocks.

