
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 23
Buffer Cache

So, in the last class we have started our discussion on buffer cache and we have said that
when you talk about the memory, memory is basically organized in a three level hierarchy.

(Refer Slide Time: 00:01:09 min)

So at the lowest level in the hierarchy, we have the secondary memory which may be hard
disk, which may be magnetic tape, which may be floppy drive and all those things. At the
higher level we have the main memory and still higher level, we have the cache memory
which has direct access to CPU. Now we have said that in between these two levels that is
main memory and secondary memory, we introduced one more level which is called a buffer
cache and this buffer cache is actually an interface between the main memory and secondary
memory and the buffer cache is maintained in the main memory under direct control of the
operating system.

So whenever we want to read any data from the secondary storage, we have already said that
I cannot access an individual character or an individual byte from the secondary storage.
Whenever I have to read any byte, I have to access the block containing that byte. This block
may be say 256 bytes, block may be 512 bytes, 1 kilo byte and so on. So whenever the user
process puts a request for any data or any instruction which is not available in the main
memory or in the cache memory that has to be read from the secondary memory, that means
the block containing that data or that instruction has to be read from the secondary memory
and put to main memory subsequently to the cache memory.

2

So to improve the performance of the system, what is done is in between the main memory
and secondary memory we introduce another layer that is buffer cache which is part of the
main memory. So whenever a block is read, the block is read from the secondary memory
and put into the buffer cache and it will remain in the buffer cache until you have a situation
whether when this buffer cache content has to be replaced or overwritten by the content of
another block from the secondary storage. So by this time it should be clear that I should not
have or we cannot have duplicate copies of a secondary block, a block of the secondary
memory into the buffer cache. There has to be only one copy of a particular block of the
secondary memory into one of the buffer caches. Then we have said for proper management
of the buffer cache, the buffer cache contains mainly two parts. One is called the buffer
cache header and the other part is called the cache data area and it is this data area which
will contain the content of a particular block.

(Refer Slide Time: 00:03:33 min)

So, naturally the data area of a cache must be of same size which is the size of a block on the
secondary storage. So if the secondary storage is of 512 bytes block, every block on the
secondary storage contains 512 bytes then the buffer, the data area in the buffer cache must
be at least of 512 byte size, it cannot be less than that. It can be more than that but the
remaining part will be wasted and we said that the cache header contains various fields. It
contains a field for the device number because in an installation, we can have more than one
file systems or more than one discs, even if it’s a single disc but logically a single disc can
be partitioned into more than one discs. So every such logical partition will have a device
number. So buffer cache header will have one field which will contain the device number
then the second field will contain the block number of that device. Then it has a status field,
the status field contains various information, for example one of the information can be
whether this buffer cache is currently being used by some process or not. So whenever any
process makes use of some buffer cache then while that buffer cache is in use by that
process, the buffer cache cannot be used by any other process until and unless it is released
by the process who is using it.

3

So in the status field you maintained an information whether the buffer cache is free or the
buffer cache is locked. If it is locked, no other process can access it. If it is free other
processes can access it. So when a process starts using a particular buffer cache firstly, what
has to be done is the buffer cache has to be locked then use it, then at the end you unlock the
buffer cache and come out. Among other informations that can be stored in the status field is
whether the content of the buffer cache is valid or it is invalid. There is one bit, you set that
bit equal to 1 whenever a process uses it. See why we need the buffer cache. We need the
buffer cache because from the secondary storage, if I want to get a new block I don’t
transfer the new block in single step to the user area. I first transfer it to the buffer cache
then from the buffer cache it will be transferred to the user area and in the buffer cache, it
will returned until and unless I face a situation that I have to bring in a new data block into
the buffer cache and I don’t find any other buffer cache which is free to contain this new
data.

So only in that situation, one of the buffer caches will be overwritten by the new block
content and whenever you overwrite, so that overwriting will be done in the data area
because it is the data area which contains the content of a block. so whenever I bring in a
new block content into the buffer cache, I have to put that into the data area and at the same
time all this error information are to be modified. To increase the through put, to improve
the performance of the system. See firstly whenever a base fault occurs, firstly the canal will
try to find out whether the data which is being asked for is present in the buffer cache or not.
If it is present in the buffer cache then from the buffer cache, the data can be transferred to
the user area. So that being main memory to main memory transfer, the time taken is very
small.

In case it is not there in the buffer cache then only you go to the secondary storage because
in that case I don’t have any other option. So by introducing this buffer cache in between the
main memory, user area in the main memory and the secondary storage, the frequency of
physical discs access is reduced so that improves the performance. And the locking means
suppose the canal is making use of a buffer cache for getting the data from the secondary
storage into that buffer cache. While it is doing that this status filed has to show the locked
information because while the data transfer is taking place between a particular buffer cache
and the secondary storage the buffer cache, that particular buffer cache is being used by the
canal. So until and unless copying of data is complete and the canal releases the buffer, the
buffer cannot be used by any other process. Not only that, it can so happen that two
processes are trying to access, are trying to get the data from the same block on the
secondary storage, so both the processes and that will happen in case of page fault.

So the first process it finds that it encounters a page fault, it tries to get the data from the
secondary storage, a particular block of data from the secondary storage. So how does it do
it? It will invoke a system called for reading a block of secondary storage, following that
system call the control will be taken over by the canal of the operating system. Now the
operating system will try to find out in the buffer pool or buffer queue whether the block
which is needed exists in any of the buffer cache or not. So for the first process it finds that
the data exists in the buffer cache. So now the data has to be transferred from the buffer

4

cache to the user area because the user will be operating on it, so the data has to be
transferred from the buffer cache to the user area.

Now while this transfer will take place, the status of the buffer cache has to indicate lock
because until and unless for the first process, the data is transferred to the first processes user
area, the same buffer cache cannot be used by the second process. Now once for the first
process the data has been transferred then the status field has to be marked as free, it is no
more locked because if it remains locked the second process will never get the access. So
just after transferring the data to the user area of the first process, the canal will unlock this
buffer so that now the request of the second process can also be entertained, may be in the
user area the first process will take a lot of time to process that area but in the meantime the
second process can also get access to these buffer and the data can be transferred from the
same buffer to the user space of the second process.

Again while doing this transfer, the buffer has to be indicated locked so that if any other
process tries to access the buffer, during the same time there should not be time overlapped.
(Conversation between professor and student: Refer Slide Time: 10:38) Processing cannot
be done on the buffer area, processing can be done on the user area. But before that user
one’s area must have been overwritten by some other buffer content. It is not that whenever
user one finishes processing, it will lock the buffer because the data from the buffer is
already transferred to user one’s area. So until and unless it is requesting, user one is
requesting for another buffer, this buffer will not be locked. Whichever buffer that one puts
a request that buffer will be locked. So in the buffer pool I will have a number of buffers,
different buffers will contain different data blocks. The only purpose of putting this lock is I
should not allow more than one process to access the same buffer simultaneously.

(Refer Slide Time: 15:23)

5

For every buffer I will have such buffer header. If I have 1000 buffers in the system each,
the data area of each of the buffer has to be same as the block size of the secondary storage.
Every buffer will also have this header. So I will have 1000 headers, buffer headers, I will
have 1000 cache data areas if there are 1000 buffers in the buffer pool. For every buffer I
have to have a header. So among other informations which can also be there in the status
field is whether the content of that buffer is valid. See while processing, some process may
find that there is some data error in the data contained in the data area of some buffer. So
moment it finds that it is invalid then the content of the data has to be invalidated, content of
the buffer has to be invalidated.

So whenever such an invalid data is encountered, immediately some status bit in the status
field has to be marked saying that the content of this buffer is invalid, it should not be
processed by any other process. So likewise there can be many other informations put in this
status field that we will come subsequently. Usually no. For the efficient utilization of the
storage, that will help. What you are saying is right but the moment I go for such a
flexibility, the management becomes too difficult. So usually what is done is for a particular
file system, the block size is usually fixed. I can have more than one devices on the system.
say for example when you are working on pc’s, you must have seen that you have c drive,
you can have d drive, you can have e drive, you can have f drive, each of them is a different
file system. Logically they are taken as different devices. Now this device number and block
number taken together that uniquely identifies a particular block in a files system. If I put
only block number then I don’t know that this block number belongs to what, whether it
belongs to c drive or it belongs to d drive or b or belongs to e drive and so on.

So these two together uniquely identify the particular block in the system and that is
important. Then among other things in the header, we have said that we have a number of
pointers, one pointer is obviously going to the data area because this is the one which
actually contains the block data, data block. then we said that the buffers can be maintained,
are maintained in two different queues, one is the free queue that means when I said this
status field, if the status field indicates that the buffer is locked then this buffer will not be
present in the free list queue. If the buffer is unlocked or the buffer is free that is indicated in
the status field then this buffer will be existing in the free list queue. When it exists in the
free list queue that does not mean; that the data area of this particular cache does not contain
any data. It may contain a valid data which is actually copy of block number on some
device. So it will contain the valid data but the buffer is not being currently used by any
other, any process. so it will exist in the free list queue, simultaneously it will also exist in
the hash queue, so we have two pointers pointing to hash queues and the hash queue this
pointers will determine that on which of the hash queues this buffer exists.

Now why we need hash queues? Suppose in a system, we have 1000 of buffers then
following a page fault interrupt what the canal will do is it will try to find out whether the
block requested is present in the buffer queue or not, is present in the buffer pool or not. For
that it has to go for a linear search. So if I have say 10000 buffers in the system, the system
is so configured that I have 10000 buffers in the system then in the worst case before the
canal says that particular block does not exist in the buffer, it has to make 10000 search
operations. On an average to get a buffer, the number of search operations is half of 10000

6

that is 5000. So tremendous amount of search time will be wasted just to see whether the
buffer is existing in the, whether the block exists in any of the buffer caches or not. So to
reduce the search time what is done is the same buffer is also maintained in a queue which is
called a hash queue. So this hash queue and the free list queue they are actually overlapped.

I don’t maintain separate buffers, one for the hash queue and other for the free list queue. It
is the same buffer which can simultaneously exist on a hash queue and also on a free queue.
If a buffer contains a data of any of the block, it will always be present in the hash queue but
it may not be present on the free list queue. So that is what we started saying that in a
particular implementation, if we decide that we will have say 4 number of hash queues. How
do you decide that hash queue? Whenever for the time being, let us forget about the device
number, let us concentrate on say suppose we have a single device in the system. So, only
block number gives you an indent unique identification of a data block on the file system.

(Refer Slide Time: 00:17:54 min)

So what we do is we perform some hash function on this block number to decide that on
which of the hash queues, this buffer will exist, a buffer containing a particular block will
exist. So the simplest search hash function is a mod function. So suppose a process puts a
request for say block number 5 then hash function that will be performed is 5 mod 4 which
gives you an output of 1. So if there is any buffer containing block number 5 then that buffer
must exist in hash queue one, it will not exist in any other hash queues. So now instead of
searching for all the buffers, the canal will search only buffers in hash queue one to see
whether this block number 5 exists in the buffer or not. If it exists, it will exist only in hash
queue one, if it does not exist in hash queue one then there is no buffer containing that block
number 5.

So the situation will be something like this. When I go for this mod 4 as a hash function then
what I will have is I will have a number of buffers which will be placed in one of the hash
queues. So in this particular situation I will have 4 such hash queue. So this is hash queue 0,

7

this is hash queue 1, this is hash queue 2, this is hash queue 3. There will be 4 such hash
queues because I am making use of mod 4 as the hash function. And suppose there are a
number of buffers in this hash queue something like this. Device number is needed but that
will lead to a complicated hash function. So for simplicity I am assuming that only block
number, I am having a single device but that is needed. But the concept is still valid whether
I go for a single device case or multiple device case.

So I have situations something like this. So let me assume that I have 4 buffers in each of the
hash queues. Now this queue number 0 suppose it will contain block number say 28, say 32
12, 64 something like this. this may contains a block number 5, block number 9, say block
number 61 then tell me any number say block number 13. This may contains a block number
6, block number 14 then say block number 38, say block number 26. This may contain block
number say 11, block number maybe 23, maybe say 39 and say 51 something like this. So
you find that if I perform 28 mod 4 that becomes 0.

So if there is any buffer containing block number 28, it has to exist in hash queue 0. 23 mod
4 that gives you 3, so if there is any buffer containing block number 23, it has to exist in
hash queue 3. Within every hash queue, all these buffers are maintained in the form of a
doubly connected circular link list. So I can assume that these are the header nodes of every
such hash queue with these buffers connected in a doubly connected circular link list like
this, so like this it will be. So then as I said that a buffer can simultaneously exist on a hash
queue and a free buffer queue. So I also have to have a free buffer list with a header node, so
this is free buffer list.

Free buffer list is also maintained in the form of a doubly connected circular link list. So
here because all these buffers are present in the hash queue, some of them will also be
present in the free list or maybe all of them will also be present in the free list, if none of
these buffers are being used by any of the process at a particular instant of time. So I can
have a free list like this, it can be present in any arbitrary form depending upon the way they
are used. So all these buffers are present in the hash queue they are also present in the free
list; that indicates that these buffers are not currently used by any of the process. Now how
this buffer management is done? Whenever a process puts a request for a particular data
block following a page fault interrupt, so for example a process has put a request for a data
block let us say data block which is not present in this buffer queue. For example the data
block say 55 is it present? No, suppose a process puts a request for data block 55. First, what
you have to do is you have to perform 55 mod 4 that gives you a value 3. That means if the
block, if there is any buffer containing this block number 55 it has to exist in hash queue
number 3.

So I directly come to hash queue number 3, check the buffers present in the hash queue
number 3. I find that there is no buffer with block number equal to 55 and this block number
will be identified by the block number field in the buffer header. So what I have to do is I
have to match this block number with the block number field in the buffer header and I find
that there is no buffer header in this hash queue which is having block number field equal to
55. So immediately I say that this block does not exist in the buffer but the process needs
this block, so I have to have some way of getting this block from the secondary storage, put

8

it into one of the buffers. For doing that what the canal will do is it will simply check this
free list because it knows that the buffers which are present in the free list they are not used
by any of the process at this moment. And this buffer overwriting is done following LRU
technique that is least recently used technique, LRU least recently used technique.

(Refer Slide Time: 29:38)

Following the same logic that we have done in case of page replacement that assuming a
buffer which has been used most recently that will also be used next. So a buffer which is
not used most recently or a buffer which is used least recently that will not be used for a
longer period of time. So based on that assumption even this buffer replacement is also done
following the LRU technique. So this free list is so maintained that a buffer which is at the
head of the free list that is least recently used, a buffer which is at the tail of free list that is
least recently used. When I say head or tail that is following the forward pointer of the free
list buffers. So following the forward pointer the first buffer that you get that is the least
recently used buffer and we should try to replace the content of this buffer that is block
number 11 by block number 55.

So what you have to do is we have to simply take out from this free list, replace the data
content by block number 55 and once this transferring data, copying the data from block
number 5 to this buffer is complete, we have to return this buffer to the free list until and
unless it is actually accessed by the process to transfer the data from the buffer to its user
area. and when we return this to the free list, we have to return it to the tail of the free list
because now this buffer becomes the most recently used buffer. So what you have to do is
we have to simply overwrite this by block number 55. And now which one becomes the
most recently used? that is 55 which has to come at the tail of the free list and the least
recently used among all these buffers which are there on the free list is this buffer containing
block number 14 because earlier this was the least recently used one which was at the head
of the free list, now this has been taken out. So the next buffer which is least recently used in
the free buffer is block number 14. So I have to modify the pointers like this and 55, it will

9

appear in the same hash queue because it is hash queue number 3 only. So it will remain in
the hash queue, same hash queue but its position on the in the free list will be different. Now
your free list will appear something like this. The other nodes in the free list remains intact.

So whenever a process puts a request for any of the data block, I can have one of the two
situations either the data block is present in the buffer cache in the corresponding hash queue
or there is no buffer containing that data block. So let us analyze these two different
situations individually. A is the most recently used.

(Refer Slide Time: 00:30:15 min)

So whenever a process puts a request for a particular data block then I can have two
situations, using this block number the canal has to search the corresponding hash queue to
find out whether there is any buffer containing this block or not. Then I can have two
situations, in one situation the block does not exist in the hash queue and in the other
situation I can have the block existing in the hash queue. Now if the block exists in the hash
queue then also I can have two different situations that the canal finds that the block exists in
the corresponding hash queue but the block is currently locked, the buffer is currently locked
because the same buffer is being used by some other process at that time.

So I can have a situation that it exists but locked. So if the block exists in the buffer and the
buffer is locked then the only way is because the data is already existing into the buffer, so I
cannot have another copy of the same data block into another buffer. So in this case the
process which is requesting for it that must go to sleep mode and the process will wake up
when this buffer becomes free. The second situation can be that the buffer exists and it is
unlocked and that is the situation that we expect. So if the block exists in the buffer and the
block is unlocked and the buffer is unlocked or the buffer is free then the process can use
this buffer.

10

In the other case when the block does not exist in the buffer then also I can face various
situations. Block does not exist that means I have to physically read the block from the
secondary storage, put into one of the buffers which is free. I have to get the free buffers
from the free list, from the header of the free list. Now when I try to get this block, I can
have a situation like this that I find that the free list is empty because I can have a situation
that all these buffers which are present which are containing some data blocks they are being
used at that instant of time, all of them are being used by some process that means all the
buffers are locked. If all the buffers are locked then obviously the free list will be empty
because free list is a dynamic situation. So here I can have a situation that free list empty.

So if the process finds that the free list is empty then again the process has to go to sleep
mode because I don’t have any other option because there is no free buffer where I can put
this new block. So the process has to go to sleep mode. Now there is difference between this
sleep mode and this sleep mode. What is the difference? Here when the block exists into the
buffer, the process sleeps until and unless that particular buffer becomes free and in this case
the process is looking for any buffer which is free and currently there is no buffer in the free
list. So here the process will sleep until and unless there is some buffer which becomes free.
I am looking for a free buffer, this free buffer can be taken from any of the hash queues but
when the buffer contains block number 55 then the buffer will be returned to hash queue
number 3. See what I have done here.

In this particular situation block number 11 was at the head of the hash queue, at the front of
the hash queue. So I have extracted block number 11, loaded block number 55 into this
buffer. Now incidentally in this case, the previous location of the buffer was hash queue
number 3, after loading the data from block number 55 the buffer has to be returned to hash
queue number 3. So here it remains in the same hash queue but if my situation was like this
suppose this buffer was absent. So this block number 14 a buffer containing block number
14 is at the head of the free list. Process requests for block number 55, I have to get a free
buffer from the head of the free list. Now at the head of the free list, I have block number 14.
so I have to take out the buffer, overwrite this with block number 55 then when I return it to
the hash queue, this has to come to hash queue number 3, it cannot remain in hash queue 2
anymore.

So the new location of the buffer will be depending upon, what is the new block number that
is contained in that buffer. but this buffer, free buffer may be taken from any of the hash
queues because here we are interested in any free buffer which is at the head of the free list
and that may exist in any of the hash queues. So that is the difference between this one and
this one. Here if the canal finds that the block exists in the hash queue but it is locked then
the process has to go to sleep mode and it will be in sleep mode until and unless that
particular buffer becomes free, not any buffer. But in this case the free list was empty and
the block is not contained in any of the buffers, so block has to be read new and any free
buffer will serve the purpose because in any case I have to read the data from the secondary
storage and put into one of the free buffers. So earlier position of the free buffer can be in
any of the hash queues but the new position of the free buffer will depend upon what is the
block number that is being read. Is that okay?

11

So here the process goes to sleep mode until and unless any of the buffers become free. if
any buffers become free then that buffer will be returned to the free list, so free list no more
is empty and it is the same buffer which will be head of the free list as well as tail of the free
list because earlier there was no buffer in the free list, now one buffer has been returned. so
whatever be the earlier position of the hash queues, simply take out that buffer, overwrite
that with the new block and when you return to the free list of the hash queue you have to
place it in the appropriate hash queue depending upon which block has been left. The other
situation can be that free list is not empty but it is marked as delayed write. Now what is this
delayed write? We have said that whenever we wanted to read a disc block, first we try to
search that into the buffer cache just to reduce the frequency of disc operations to be
performed.

Similarly if I want to write some data into a disc block or I modify any of the disc blocks
then first modification is done on the buffer cache, you don’t modify that immediately on to
the disc. If the data, if the corresponding block content is present in any of the buffer, you do
the modification in the buffer, don’t modify it on the disc immediately. But once you modify
any of the buffer content, you mark that buffer as delayed write and that delayed write
information has to be placed in the status field of the buffer cache. So if I modify the content
of any of the cache buffers, buffer cache then the status field of the corresponding cache
header has to indicate a delayed write mark.

Now why this delayed write is necessary because in case I have to overwrite this buffer with
the block of another data with another data block and maybe this happens to be the header of
the buffer; the header of the free list. As we are taking always a free buffer from the header
of the free list for overwriting then this is the block which needs to be overwritten by new
data block. In that case if it is marked as delayed write that means now the actual disc
content is different from the content of the buffer. When you read it, you copy the disc
content into one of the buffers so they are identical. The moment you modify the buffer then
the content of the disc and content of the buffer are different. So before you overwrite this
buffer, what you have to do is you have to write the content of the buffer on to the disc then
only this buffer can be overwritten, otherwise all this modified data will be lost. So if you
find that the free list is not empty, the free list contained a number of free buffers and so
what I have to do is I have to take the buffer from the header of the free list, from the head
of the free list and the buffer that I get from the head of the free list that is marked as
delayed write. if it is marked as delayed write then we have to initiate the process of writing
the content of the buffer into the corresponding disc block and this process, writing process
what is invoked is called an asynchronous writing.

Asynchronous in the sense that process who is requesting for the block has initiated this
writing operation but it does not wait for the writing operation to be complete because any
free block will meet the requirement of the process. So what the process does is it simply
initiates this write operation but without waiting for this write operation to complete, it
searches for another free block. so what will be done is in this particular case while loading
this block number 55, we take this block number 11 from the free list because block number
11 is at the header of the free list and we find that block number 11 is marked as delayed
write. So what we do is we simply initiate writing the content of this buffer into block

12

number 11 on the secondary storage, on the disc but don’t wait for this buffer to become free
because once you have started writing the content of the buffer to the disc, the buffer must
have been locked by the canal. But you don’t wait for this write operation to be complete.
one way can be you let this writing operation be complete then get this same buffer to load
this block number 55 but instead of doing that because in this case any of the free buffers
will meet my requirement. So what I do is I simply start writing this into secondary storage
but without waiting for it I will try to look for whether there is any other buffer in the free
list which is free.

So initiate writing this block number 11 on to the secondary storage then you search for the
free buffer on the free list, another free buffer on the free list and you find that the next
buffer is block number 14 and it may so happen that block number 14 is not marked as
delayed write. So you get block number 14, write this block number 55 into block number
14. Now place this buffer into this hash queue and return the buffer at the tail of the free list
because it is the most recently used one. But what will happen to this buffer? This buffer
because we have start initiated the process of storing this buffer back on to the secondary
storage onto the disc. Now at the completion of this write operation, the device rather will
give an interrupt saying that the writing operation is complete following that because this
was locked only for storing the data on to the secondary storage, once this writing operation
is complete this block will become free but still what I have done is I have simply copied the
data, the block still contains the data it has not been overwritten. So it will be remaining in
the same hash queue but now position of the in the free list is likely to be different.

See what we are doing is every time we are returning a block to the free list, we are always
returning it to the tail of the free list because that is the most recently used block. But what is
this situation? In true sense it is not most recently used, it was least recently used in between
we have accessed this only to save the modified content onto the disc. So it is still least
recently used. So in this case what will be done is when you return this block into the free
list, you don’t return it at the tail but you return it at the head because truly speaking it is not
most recently used, it is still list recently used. So this is one situation when you returned a
buffer to the free list I don’t return it to the tail but I return it to the head. The status will be
changed. The other situation is I get a free buffer into the free list and that is not marked as
delayed write. Free list and not empty and not delayed write and obviously this is the
situation that we expect when the buffer can be used by the process to write the new data, so
you can simply use the buffer. And obviously now the new location of the buffer may be
different depending upon which block is being read from the secondary storage and put into
the data area of the buffer.

So one situation we have said that when the buffer can be placed at the head of the free list,
there is another situation that a process puts a request for a buffer for a block, the block
exists in the buffer, the process gets the data from that buffer puts into user space, while
processing it the process finds that the content of the buffer is not valid there is some data
error. I can have a situation like this. Now it is always expected that I should not maintain
any buffer containing an invalid data. So I should try to overwrite it as early as possible with
a valid data. In such cases also when this buffer is to be returned to the free list, it should be

13

returned at the head of the free list because only the buffer which is at the head of the free
list that is going to be overwritten next.

So there are two situations in which we can place a buffer at the head of the buffer list, one
situation is that when just writing operation has been complete because of delayed write, the
next situation is when the content of a buffer is found to be invalid. In all other situations we
will place the buffer at the tail of the free list but a buffer can never be inserted in middle of
the free list, it will either go to the head or to the tail not in the middle. So let us stop here
today.

