Digital Computer Organization
Prof. P. K. Biswas
Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology, Kharagpur
Lecture No. # 16
Memory Organization- IV

Today we will discuss about paged segmented memory management. In the last class we
have seen two types of memory organization. One is paged memory organization, other
one is segmented memory organization. And we have seen that in case of paged memory
organization, the main memory is divided into a number of partitions where every
partition of equal size and at the same time the logical address space of the user programs
they are also divided into number of partitions of the same size.

(Refer Slide Time: 00:01:05 min)

Paged \Seﬁmenfﬂﬁm- Lt,cr,::ta:-
cPu
l BId
de i
= Li*f’%2
// Jj Trap 4
\ fegmzm‘ :
Tble 61

%g =

In case of paged memory management, we have said that it is simpler to implement but
the difficulty is, it does not maintain the logical structure of the user address space. So to
avoid that problem we have discussed about segmented memory management where,
when you take the program into a number of partitions, every partitions corresponds to a
module of the user program. That means along with having the advantage of partitioning,
you also maintain the logical structure or the modular structure of the user address space
but the problem in that case is the management of the main memory because the main
memory has to be partitioned into different blocks.

So different partitions can be of different size and the sizes will be depending upon that
which module you want to load in the main memory. Now to take advantage of both what
is suggested is a paged segmented memory management or paged segmentation in which
case your basic partitioning scheme is the segmented memory scheme. Then every
segment can be broken into a number of pages.

1



So what we can assume is | can assume that every segment whatever is applied in case of
an user program in paged memory organization, the same concept will be applied to
every segment of the user address space or every module of the user address space. That
is every module of the user program will now be divided into a number of pages where
the module itself is a segment. So you are imposing paging technique over segmentation.
So now again what the CPU has to generate is an address. The address has to be in the
form of segment number and offset within the segment. So the CPU gives the address
having two components; the first component is the segment number and the second
component is d which is the offset within the segment. Using the segment number, as
before you refer a particular segment table. So this is segment table.

Now in earlier case, in case of segmented memory organization we have said that this
segment table, every entry in the segment table contains two fields. One field gives you
what is the base address of that segment and other field tells you that what is the limit of
the segment. So that this offset within the segment, you can compare with the limit value.
So only when this offset is less than the limit value, then only the addressing is valid. If
the offset becomes greater than the limit value then the addressing is not a valid address.
Here also we will divide every entry in the segment table into two components. The first
component instead of giving you the base address of the segment, now it will give you
that what is the address of the corresponding page map table.

As you said that the paging concept which is used for every user program, in case of page
mented, in case of paged memory management, the same concept will be used for every
segment of the user address space. So as in case of simple paged memory management,
where | have to have a page map table for every user program. Now | have to have a page
map table for every segment of a user program. So now every entry in the segment table
will have two fields. One field as before will give you that what is the limit of that
segment because | always have to check that the offset that is specified within the
segment must be less than the limit of the segment otherwise the addressing is invalid.
The other entry will give you the base address of the page map table. So let me write it as
BP T and this page map table whose base address is given in this entry is a page map
table corresponding to this particular segment which has been specified by the CPU.

Now as before what we have to do is | have to check this limit with the offset that is
specified within the address. So this d must be less than L, for this addressing to be a
valid addressing. So | have to check whether d is less than L or not. If d is not less than L,
in that case there will be a trap following which the program has to be terminated because
the address that has been generated is an illegal address. In case d is less than L, then only
this addressing is valid and what | have to do is as | said that every segment is broken
into a number of pages. So the paging and the offset within that page for this particular d
has to be found out for d itself. So if d is less than L, in that case what we do is this d is
broken into two components. One is the page number and | put it as d prime which is
offset within that page.

Again this is very simple because this d integer division with the page size that gives you
the page number and d mod capital P give you the offset within the corresponding page.



Now from the segment table what we are getting, the segment table gives you the base
address of the page map table, the page map table for this particular segment s. So every
segment will have different page map table and accordingly every entry in the page map
table will give you different page map table pointers. So once | have the base map table,
base address | add to this the page number that is generated from the offset within the
segment. And this gives you a particular entry in a page map table. So this is a page map
table for this particular segment s and the content of this particular entry in this page map
table is obviously the frame number f where this page of this segment is loaded in main
memory.

So once | have this f, | can combine this f with d prime following the same formula that
we have said earlier that f multiplied by page size plus d prime that gives you the
physical address within the main memory. So this gives you the physical address within
the main memory where the data or instruction is to be accessed. So this is the main
memory. So now find that the concept is very simple that simple paged memory
technique is extended to every segment of an user program. So effectively what | get is
when it comes to the management of the main memory, the main memory is divided into
a number of pages or number of frames where every frame is of same size.

(Refer Slide Time: 12:20)

MM

il

Coming to the logical address space, the logical address space is initially broken by using
segmentation that means every module of the user program becomes a particular
segment. Then you applied paging technique on every segment. So because you are
applying paging technique on every segment, so for every segment | have to have a page
map table. So initially using the segment number that is generated by the CPU, come to
the segment table. From the segment table I get two components, one is the base address
of the corresponding page map table and other one is the link of the corresponding
segment. So offset within the segment which is generated by the CPU that is compared



with this length of the segment value. So when | find that offset is less than length then
only the addressing is valid.

The moment offset becomes greater than L, the addressing is not valid. So there has to be
a trap following which the program will be terminated. Only when the addressing is valid
then what | do is | apply paging on this offset d to get a page number and the offset
within the corresponding page. Now this page number and offset will be for a particular
page in this offset d or for this segment s. Once | have this page number, | have the page
map table base address from the segment table, at this page number with this base address
to give you an entry, give you a pointer to a particular entry in the page map table and
this page map table is the page map table of this segment. So for segment number 1, |
will have one page map table. For segment number 2, I will have another page map table.
So base addresses of all those page map tables will be entered in the corresponding
entries in the segment table.

Now as before, this entry in the page map table contains a frame number. Now using this
frame number and this offset within the page, | get the physical address of the main
memory from where the data or instruction is to be accessed. So now we find that I can
combine the advantage of both. I can maintain the logical structure, the modular structure
of the user program and coming to the main memory, the management of the main
memory is again simpler because the main memory is divided into number of partitions
or number of frames where every frame is of same size. Excuse me sir, the size of each
frame within size, what is the size? That size is to be decided while you install the
system. The page size may be decided to be say 256 bytes, 512 bytes, 1 kilo bytes and so
on. So once you decide that what is the size of the page, that page size will be applicable
to all the segments. | cannot have that for a particular program | use one page size, for
another program | use another page size because in that case again that lead to a
complication of memory management. So this is what is paged segmentation.

Now find that in all these techniques that we have discussed whether it is paged memory
organization or segmented memory organization or paged segmented memory
organization, in paged organization of segment or the segmented organization of this
paged segmented organization, we have assumed that if | have a job say 100 kilobytes in
that case it is no more necessary that | have to have a single partition of 100 kilobytes to
load the job into main memory and execute it. Rather if |1 have say 10 kilobytes of
partitions free and there are 10 such partitions and my page size is also 10 kilobytes then
what | can do is | can break my job of 100 kilobytes into 10 such pages. These pages can
be loaded into 10 frames in the main memory which are free and the job can be executed.
But still 1 need 10 such free frames because if my job size is 100 kilobytes, | had to have
a number of frames. The total size of that must be 100 kilobytes or more.

Again that is the limitation but these days you know that even if you have a machine
which is having say 64 megabytes of memory and if you have a program whose size is
say more than 64 megabytes, say 120 megabytes even then the program can be executed
on the machine. So that clearly shows that it is not necessary that | have to load the entire
program in the main memory for execution. But what is needed is as it should be clear by



now when you discussed about the CPU, that for every program only one instruction is
executed at a time. You don’t execute more than one instruction. Even if we go for
pipelined type of concept so in that case again if you have 6 stage pipeline, CPU
maximum of 6 instructions can be in the pipeline simultaneously not more than that. So if
I load only that part of the program in the main memory which is currently under
execution, suppose | am executing say a hundredth instruction, so if the page containing
hundredth instruction is loaded in the main memory that should be sufficient to execute
my program.

The other instructions can be brought from the secondary storage to main memory only
when they are needed. So only the page which is currently active that has to be in the
main memory. Otherwise it cannot be executed but the pages which will be active later
they can be brought to the main memory from the secondary storage on demand, only
when they are needed. But your limitation is the total disc space must be sufficient to
accommodate the entire program. Otherwise obviously | cannot store the program
anywhere, so it cannot be executed.

So now your job size is limited by the disc size, it is no more limited by the main memory
size. And because you are bringing the pages to main memory on demand, when they are
needed so such a kind of memory management or memory organization is called demand
paging and we assume that the basic structure is a paged memory structure.

(Refer Slide Time: 00:17:29 min)

Excuse me. Yes. sir what is the advantage of this technique over segmented memory
management. Which one? What is the advantage of paged segmented memory
management over a segmented memory management? In case of segmented memory
management what we had? We have to break this main memory into a number of
partitions where the partitions are not of same size. That means | have to employ
something like M V T technique where | have to create partitions of variable sizes and

5



the numbers of partitions will also be variable that leads to a problem for accounting for
the memory, main memory. But in this case in paged segmented memory management,
though my basic scheme is segmented scheme, | am imposing paging technique on a top
of segmentation. So what advantage | get? The main memory can be pre partitioned into
a number of partitions where every partition will be of same size that is same as page
size. That means number of frames that | have in the main memory that is fixed, size of
every frame is also fixed. So | have a fixed setup, so the management becomes easy.

So in case of demand paging what is needed is whenever you start execution of a
particular program, the page containing the first instruction should be in the main
memory. | need not have immediately the second page in the main memory. Only when
execution of the first page is complete then only the second page will be needed and that
may be due to one of two reasons. One reason may be that in the first page some
instruction is a branch instruction and the branch will take place to an address, to an
instruction where the instruction is in the second page or it may be in the third page and
SO on.

So in that case you have to move from the first page to second page or first page to third
page, even though the execution of the first page is not yet complete. That means all the
instructions of the first page has not been executed. and the second situation may be that
there is no branch instruction, every instruction in the first page will be executed
sequentially. So when you complete execution of last instruction of the first page then
you have to move from the first page to second page. So only when I need an instruction
from the second page, then only I move the second page into the main memory before
that putting second page in the main memory is not necessary. So | am bringing the pages
from the secondary storage to main memory on demand, so that is why it is called
demand page. This is also called virtual memory system.

The reason being though my main memory is limited, may be the size of the main
memory is less than the size of the job and that is the physical memory size but to an
user, it appears that as if the main memory size is virtually infinite because | am not using
the main memory always. So only when | need, | will put a page in the main memory and
execute. So it appears that virtually main memory size is infinite, so it is called a virtual
memory system. Now in this case what are the things that are needed? Firstly as long as
the program, some page of the user address space is in the main memory, | need a page
map table for accessing a particular location in the main memory. Now if the page that is
requested is not available in the main memory in that case what to do? So | need some
modification in the page map table. In page map table I will put it this way that if an
address space, user address space is having a 100 pages. In the page map table I will have
100 entries, one entry for every page. For the pages which are there in the main memory
they will contain the corresponding frame numbers and along with the frame number in
the page map table, I will have one more field which I will call as interrupt field.

Suppose while execution of a program, the CPU generates an address where the address
corresponds to say page number 5 and the page number 5 is not available in the main
memory. | have a corresponding entry in the page map table, there the frame number



field does not have any meaning because the page number 5 dose not exist in the main
memory but it is the interrupt field which will be important in that case. If we assume that
interrupt field is a one bit field, in that case for all the pages which are loaded in the main
memory will set interrupt field to 0. The pages which are not there in the main memory
will set interrupt bit to 1. So whenever a page number is generated, you go to the base
map table, check the interrupt bit. If the interrupt bit is 1 then you generate an interrupt.
This interrupt will be called a page fault interrupt that is page which is being looked for is
not available. So that leads to a page fault and you generate a page fault interrupt.

Following page fault interrupt what we have to do is now | know that the page is not
available in the main memory. So page is there on the disc. | have to bring the page from
the disc and put it into some frame in the main memory whichever is free. So for that
what | need? I need the address of the disc, a part of the disc which contains that page. So
once | get the address of the disc block which contains that page, | can simply read that
block and put that page into a free frame in the main memory. So now | need two tables,
one table as before will be a page map table P M T, where every entry in the page map
table will be divided into two fields. One field is let us put it as | field that is an interrupt
field and the other field is for frame numbers. The CPU generates page number and the
offset within that page.

Now this is applicable both for segmented paged memory management or even for paged
memory management because even for segmented paged memory management or paged
segmented memory management what we are doing is we are breaking the segments into
a number of pages. So in case of simple paged memory management whatever is
applicable to different user programs in case of paged segmented memory management,
the same concept is applicable for different segments. So we assume that we have been
able to generate the page number and offset within the page from whatever address
generated by the CPU.

Using this page number | go to a particular entry in the page map table. In the page map
table what | do is first I check what is the status of interrupt bit. If the interrupt bit is O
then | know this frame field contains a frame number where this page is loaded. So
whenever interrupt bit is zero, this gives the frame number. Using this frame number and
this offset within the page, so this is frame number and this is d which comes from here. |
generate a physical address using this physical address, | go to the main memory and
access the corresponding location.

Now in case you find that whatever page number that has been generated, using this page
number, you come to page map table. The corresponding interrupt bit in the page map
table is 1. So first checking we are doing on the interrupt bit whether the interrupt bit is 0
or 1. Now if the interrupt bit is 1 that means the page which has been referred is not
available in the main memory. So | have to get that page from the secondary storage put
into some frame in the main memory. So | have the secondary storage or the hard disc
which contains that page for getting address of the page on this secondary storage. | need
another table which is called a file map table or let us put it F M T or file map table. File
map table actually contains the disc addresses of different pages. So using this file map



table I come to the disc, get the corresponding page from the disc and put this page into a
frame which is available in the memory. So if | put this entire procedure in the form of an
algorithm, it will look like this.

(Refer Slide Time: 00:27:11 min)

First you start processing an instruction. So while processing the instruction, you will
generate the address for the data. So generate address, this address will give you the page
number. Then you have to check whether this page is available in main memory or not.
So | have to check page in main memory. If the page is in main memory then | have to
simply read data. After reading the data, you have to compute the instruction and then
you have to move to the next instruction and start processing the next instruction. So this
is what has to be done if the page which is required while execution of an instruction is
available in the main memory.

Now if the page is not available in the main memory, in that case what you get is what is
called a page fault or page fault interrupt. So here it leads to a page fault interrupt. Now
you have to do when you get a page fault, when | get a page fault then the first thing that
I have to do is I have to check whether in the main memory, there is any free block or not
or free frame or not where this new page can be loaded. If there is a free frame then there
is no problem, | can simply get the page address on the disc from the file map table, read
the page, load it into free frame. The other situation can be there is no frame in the main
memory which is free, every frame contains some page. So in that case | have to forcibly
evacuate one of the frames where this new page can be loaded. So in case of page fault
what I have to do is so let me mark this as A where this page fault interrupts will start.



(Refer Slide Time: 00:30:33 min)

So in case of page fault, the first thing | have to check is there a free block or free frame.
If there is no free block then what | have to do is | have to select a page from the main
memory which is to be removed. So select a page to be removed. So once | select this
page which has to be removed, next what | have to do? Because as long as this page was
there in the main memory, the corresponding page map table had an entry for this page
where the interrupt bit was set to 0. Now because | am removing this page from the main
memory, so the corresponding page map table also has to be modified. So what | have to
do is I have to adjust the P M T, the page map table where | have an entry corresponding
to this page which is now being removed.

Now after this what | have to do is because | am going to remove this page, | have to
check whether this page was modified while this was in the main memory because it may
so happen that whenever I am loading a page from the secondary storage into main
memory then | am working on that page. While working on that page, it may be the case
that the page was modified. So some new data was written into the page. Copy of which
is not available on the disc but if there is no change in that page, | already have a copy of
that on the secondary disc. So | need not write this page back into the secondary storage
but if the page is modified then before overwriting that frame with a new page, | have to
store this page on to the second page storage. So what | have to check is whether page
was changed. If the page was changed then | have to write the page on disc but if the
page was not changed then | don’t have to do anything. I can simply overwrite this frame
with the new page.

So after that what | have to do is, so this completes one part and here what | have to do is
get disc address from F M T file map table. Here this part will be identical. So once you
get this disc address from the file map table then what | have to do is | have to read the
page, page into the frame that has just been made free.



After reading this page, the next operation that | have to do is | have to adjust the
corresponding page map table. Now once this page map table is adjusted, the page is
already there in the frame that has just been freed or the frame which was already free.
After adjusting this page map table, now what | have to do is | have to restart the
interrupted instruction and with this | go to level B where B is this one. So this is the
entire procedure that has to be followed in the demand paged memory management, that
you start processing an instruction, while processing an instruction you have to generate
the data address that is the page number. We have to check whether this page is available
in the main memory.

If the page is available in the main memory then you don’t have any problem. You
simply read the data, compute instruction, move to instruction and start processing this
next instruction. But in case the page is not available in the main memory then you have a
page fault then the operations that you have to perform during page fault are this. First
because there is a page fault, so this page has to be brought from the secondary storage
into the main memory. So first you check whether there is a frame in the main memory
which is free. If there is a free frame in the main memory then | don’t have any problem.
I have to simply get the disc address of the page that has been referred from the file map
table.

Once | get this disc address, | can read the page and fill, put it into the free frame which is
available. So once | put this page into the free frame, | have to adjust the corresponding
page map table because in earlier case, earlier the interrupt bit in this entry was set to 1. |
have to make it O because the page, | have put into main memory. not only that, the frame
field should get the value of the frame, the address of the frame which is used for loading
this page and now you are ready with execution of the instruction. So | have to restart the
instruction which was interrupted and then | go back to the initial stage that you start
processing this instruction which is now ready for execution. The other case is | face a
problem when there is no free frame in the main memory. if there is no free frame in the
main memory then what | have to do is | have to select a page from the main memory
which is to be removed and this frame which will freed will be used to load this page.

So | select a page to be removed. Once | select this page which is to be removed, the
corresponding page map table has to be modified because now the interrupt bit of this
particular page has to be made equal to 1 because next time if any process requests for
this page, that process will know that the page does not exist in the main memory. So, |
have to adjust the corresponding page map table then what | have to check is, | have to
check whether the page which is being removed was modified or not while it was in the
main memory. If it was not modified then | don’t have any problem because a copy of
this page is already available onto the disc. | can simply overwrite this frame by this new
page. But if it was modified in that case, the copy that | have on the disc is an unmodified
copy, unchanged copy. So this modified copy | have to store back onto the disc before
overwriting this frame by the new page. Otherwise all this modified data will be lost.

So if the frame was changed then you write the page onto the disc after that I follow this
procedure that is you get the disc address of the new page that is to be brought from the

10



Secondary storage into main memory from the file map table. Once you get the disc
address, you can read in the page, put in the frame which was either already free or has
just been made free. So once this page is put into that particular frame, | have to adjust
the page map table for this page because earlier the interrupt bit was 1, now | have to
make it equal to 0 and the frame number while this page is been loaded has to be put into
the frame field of the page map table. And with this now we are ready for execution of
this instructions, so we restart the instruction that was interrupted and restart means |
come back to this and start processing the instruction. So this is the entire operation that
has to be done in case of demand paging technique.

Now here we find that a particular operation which decides the performance of the
demand paged technique or the performance of the virtual memory technique is this
particular block. that is you select the page to be removed. Now how do you decide that
which page has to be removed? It may so happen that the page that | select for removal,
may be the next time the same page is going to be referred. So if another process refers
the same page immediately next, in that case again that will lead to a page fault. So again
I have to bring this page from the secondary storage into main memory then only that
process can start execution. and if this happens quite frequently, in that case you find that
I have, what you said is frequent swapping in and swapping out operation and disc being
slower in speed compared to your main memory or CPU, if you have frequent swap in or
swap out operation that is going to heavily affect the performance of the computer.

So | should have a selection criteria, so that | can reduce the number of page faults or
reduce the number of swap in, swap out operations that is to be continued, that will take
place. So depending upon different criterias and this is also called a page removal
technique or the criteria that will be used at different page removal criteria or page
removal algorithms, | can have different kinds of algorithms. The simplest kind of page
removal or page replacement algorithm is called the FIFO or first in first out page
removal algorithm. So there are in general three kinds of algorithms which are talked
aboult.

11



(Refer Slide Time: 00:41:47 min)

ccT

l;:
ul
o

One is FIFO that is the simplest kind of page removal algorithm which is called first in
first out that means a page which has been brought into the main memory first that is
page which is to be removed first. So in that case what you do is whenever | find a
situation that some page has to be removed from the main memory, to make a frame free
to bring in a new page then out of all the pages which are there in the main memory, |
find out which is the oldest one. Then what | simply do is | simply remove the oldest
page from the main memory and make that frame for loading the new page. The other
kind of page removal technique is an optimal page removal technique and you will see
that this optimal page removal technique is the best one but though practically this cannot
be implemented, we will see that later.

So an approximation to optimal page replacement is called an L R U or Least Recently
Used page removal technique. This is an approximation to optimal page removal
technique and this is something which can be implemented. So we will see the relative
performance of all these page removal techniques with the help of a sequence of page
differences and that is also called a page trace. So what you do is you take a random
sequence of page numbers and see if the pages are referred following that random
sequence then with the help of these different page removal techniques, how many times
you get page faults. So whenever a page is referred by an user program and the page is
found in the main memory that is called a page hit. You are hitting the page. If the page is
not available in the main memory that is called a page miss.

So accordingly we can define two terms, one is called hit ratio. Those are basically
performance measures. One is called hit ratio and the other one is called miss ratio. Hit
ratio is the ratio of the numbers of the number of hits you have to the total number of
page access that you have made. Similarly miss ratio is the number of misses divided by
the total number of page access.

12



So if we will consider a page trace something like this and with respect to this page trace,
we will try to find out that what is the relative performance of these different techniques.
So the page trace that we will consider is something like this, s0 7,0, 1, 2,0, 3, 0, 4, 2, 3,
0,32120,17 0, 1. So we will take this particular page trace and apply these
different techniques on this page trace and we will also assume that initially we have say
3 frames in the main memory which can be used for loading these pages. So | have to
load all these pages in this sequence, only in these 3 frames in the main memory. So, that
we will do in the next part of the lecture.

13



